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1 . Introduction

Significant points of digitized curves can be used 
a s  a compact and effective representation of the 
c u r v e  for shape analysis and pattern recognition 
[20].

Significant points are of two types, namely, (i) 
c u rv a tu re  maxima points and (ii) curvature minima 
p o in t s .  The technique of detecting local curvature 
m a x im a  originates from Attneave’s famous obser­
v a t io n  [1] that informations about a curve are con­
c e n t r a te d  at the curvature maxima points. 
F r e e m a n  [2] suggested that the points o f  inflexion 
c a r r y  in form ation about a curve and hence they 
c a n  be used as significant points. The curvature 
m in im a  points are the points o f  inflexion.
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Many algorithms have been built up for detect­
ing significant points of  digitized curves. The 
oldest of these algorithms was given by Rosenfeld 
and Johnston [3]. They, in an attempt to determine 
whether a procedure [4] designed to detect discon­
tinuities in the average grey level would also detect 
discontinuities in the average slope, detected 
significant points as curvature extrema points of 
digitized curves. The procedure is parallel and 
needs an input parameter in. The value o f  m  was 
taken to be 1/10 or 1/15 of the perimeter o f  the 
curve. The input parameter was introduced to 
determine the region o f support and the A:-cosine 
of  the boundary points.

An improved version of this procedure was 
given by Rosenfeld and Weszka [5]. They used 
smoothed A:-cosine to determine the region o f  sup­
port and to detect the significant points. The pro­
cedure is parallel and needs a single param eter m  
as in [3].



Freeman and Davis [6] designed a corner-finding 
scheme which detects local curvature maxima 
points as significant points. The algorithm consists 
of scanning the chain code of the curve with a 
moving line segment which connects the end points 
o f  a sequence of 5 links. As the line segment moves 
from one chain node to the next, the angular dif­
ferences between successive segment positions are 
used as a smoothed measure of local curvature 
along the chain. The procedure is parallel and 
needs two parameters s and m [10]. Both are 
smoothing parameters and their assigned values 
will determine the degree of smoothing. The 
greater the 5, the heavier is the smoothing. The 
parameter m  is used to allow some stray noise. For 
a well quantized chain s will always be a relatively 
small number ranging from 5 to 13. And the 
parameter m  will take value either 1 or 2.

Anderson and Bezdek [7] devised a vertex detec­
tion algorithm which, instead of approximating 
discrete curvature, defined tangential deflection 
and curvature of  discrete curves on the basis of the 
geometrical and statistical properties associated 
with the eigenvalue-eigenvector structure of sam­
ple covariance matrices. The vertices are the 
significant points in the sense that they carry infor­
mations about the curve. The procedure is sequen­
tial and needs more than one parameter.

Sankar and Sharma [8] designed an iterative 
procedure for detecting significant points as points 
o f  maximum global curvature based on the local 
curvature of  each point with respect to its im­
mediate neighbors. The procedure is parallel. In 
contrast to the previous algorithms, it does not 
need any input parameter.

Each of the algorithms [3], [5], [6] and [7] needs 
one or more input parameters. The choice of these 
parameters is primarily based on the level of detail 
o f  the curves. In general, it is difficult to choose a 
set of parameters that can successfully be used for 
detecting significant points of a curve consisting of 
features of multiple sizes. Too large a parameter 
will smooth out fine features, and a small param ­
eter will generate a large number of unwanted 
significant points. This is a fundamental problem 
of scale because the features describing the shape 
of  a curve vary enormously in size and extent, and 
there is seldom a well-defined basis for choosing a

particular value o f  parameter corresponding to a 
particular feature size [9],

Though S ankar-S harm a’s algorithm [8] does 
not need any input parameter, it does not involve 
determination of region of  support. The procedure 
is iterative in nature and fails to operate successful­
ly on curves consisting of features of  multiple 
sizes.

Recently, Teh and Chin [10] have disigned a pro­
cedure for detecting significant points which re­
quires no input parameter and remains reliable 
even when features of  multiple sizes are present. In 
Section 2 we give an overview of this algorithm.

In Section 3 we have introduced a new method 
for the determination of  region of support and 
detection o f  significant points. We have also in­
troduced a new measure of significance based on 
fc-cosine and subsequently in Section 5 we have us­
ed all these ideas for polygonal approximation.

2. Teh and Chin algorithm

2.0. A  new observation

In contrast to the existing belief that the detec­
tion of significant points depends heavily on the 
accurate measures of significance (e.g., /r-curva- 
ture masures, k -cosine measure, cornerity meas­
ure, weighted curvature measure), Teh and Chin
[10] made an important observation: the detection 
of dominant points relies not only on the accuracy 
of the measures of  significance, but primarily on 
the precise determination of the region o f  support. 
Their procedure is motivated by the Rosen- 
feld-Johnston angle detection algorithm [3], in 
which both an incorrect region of support and in­
correct curvature measure may be assigned to a 
point if the input smoothing parameter is not 
chosen correctly, and hence significant points may 
be suppressed [11], To overcome this problem they 
proposed that the region of support, and hence the 
corresponding scale or smoothing parameters of 
each boundary point should be determined in­
dependently, based on its local properties. They 
have further shown that once the region o f  support 
of each point is determined, various measures of 
significance can be computed accurately for the



detection of  significant points. They have called 
the significant points as the dominant points.

2.1. D eterm ination o f  region o f  support

Let the sequence of  n integer coordinate points 
describe a closed curve

{P, = (x„.y,) ! '=  1 . 2 , ( 2 . 1 . 1 )

where p i+x is a neighbour of  p, (modulo n). The 
Freeman chain code of cd consists of n vectors

c,= A A 7 T  (2.1.2)

each of which can be represented by an integer

/ = 0 , 1 ,. . . ,  7 (2.1.3)

as shown in Figure 1, where \ n f  is the angle be­
tween the x-axis and the vector. The chain of  cd is 
defined by {c, | /=  1 ,2 ,. . . ,  n] and c, = c,±„. All in­
tegers are modulo n.

For each point p, of c(/, the region of support 
(kj)  is determined by the following procedure.

Procedure: Determ ination o f  region o f  support
(1) Define the length o f  the chord joining the 

points p i_ k and p ,, k as

lik=\Pi-TPn~k\- (2.1.4)

Let d lk be the perpendicular distance of  the point 
Pi from the chord p,

(2) Start with k = 1. Compute llk and d,k until

(a) hk^h.k, i (2 .1.5) 

or
(1,1 dj i i i

(b) for dlk> 0 , (2.1.6)
'ik k 4 1
d  ;k d , /., |
_ lL ^_ h h ± ±  fo r ^ . < 0 , (2.1.7)
‘ik ‘/, k + 1

f igure 1. Directions in Freeman chain.

Then the region o f support (D(p, ))  o f  p, is the set 
of points which satisfy either condition (a) or con­
dition (b), i.e.

D ( p , )  =  { ( P i - k , . . . , P i - i , P i , P i + i , - . . , P ^ k ) \
condition (a) or condition (b)}. (2.1.8)

2.2. Detection o f  dom inant points

To detect the dominant points any one o f  the 
three measures of significance (S(p,))  [12], nam e­
ly, Ar-cosine measure, ^-curvature measure and 
1-curvature measure, can be used. The measure of 
significance of each point is determined by using 
the neighboring points within the extent. The 
measure of significance and region o f support are 
used to guide the selection of points to be removed. 
The remaining points (after the removing process) 
are the dominant points. The procedure leading to 
the set of dominant points is described below.

Procedure: Detection o f  dom inant po in ts
(1) Determine the region of support of each 

point by the last procedure described in Section 
2 . 1 ,

D{Pi) = {Pi-k, ...,Pi i,P,,Pi+i, ■■■,P, + k}-

(2) Select a measure of  significance and calculate 
its absolute value for each point, |S(/?,)|.

(3a) 1st Pass. Perform non-maxima suppression 
as follows: retain only those points p, where

|S (A -) |^ |S (/?y ) |  (2.1.9)

for all j  such that

\ i - j \ ^ k i / 2 .

(3b) 2nd Pass. Further suppress those points 
having zero 1-curvature.

(3c) 3rd Pass. For those points surviving after 
the 2nd Pass, if ([&, of D (/>,■)] = 1) and (/>,•_., or 
p j+l still survives) then further suppress p, if

( \S(Pi ) \ s j \S(Pi_0\ )  or (|S(p,-)| sS |S(p, + 1)[).

If 1-curvature is selected as a measure of 
significance, then go to Step (3d) and do a 4th Pass 
else those points which survive are the dominant 
points.

(3d) 4th Pass. For those groups o f  more than 2



points that still survive, suppress all the points ex­
cept the two end points of each of the groups.

For those points of exactly 2 points that still 
survive,

if ( |S (a ) I > I 5 ( A +1)I) then suppress p i+x 
else if (|S(/7,)| < \S (p i+ 01) then suppress p, 

else if (k i > k i+1) then suppress p j+] 
else suppress p h 

End  of procedure.

3. Present algorithm

3.0. A  new concept

As stated by Teh and Chin [10], there are two 
m ajor problems with the detection of significant 
points of  digitized curves. One is the precise defini­
tion o f  discrete curvature, the other is the deter­
mination of  the region of support for the 
computation of the curvature.

In [10] the region o f support was determined by 
using the chord lengths and perpendicular 
distance. In the present communication we wish to 
show that we can use /r-cosine itself to determine 
the region of support for each point. The pro­
cedure, as described below, is parallel and does not 
require any input parameter.

3.1. Procedure: Determination o f  region o f  
support

(1) Define the k -vectors at p, as

a,k = (xi - x i + k, y i - y i + k), (3.1.1)

bik = (xi - x i..k, y i - y i_k) (3.1.2)

and the /r-cosine at p, as

Here Cos,* is the angle between the ^-vectors aik 
and bik, so that -  1 :$Cos,*^ 1.

(2) Start with k  = 1. Compute Cos,* giving incre­
ment to  k.

If Cos,-A.+ , | >  |Cos,* then k  determines the 
region of support /?,

else if Cos,* = Cos,ilt + 1 then the greatest k  for

which this relation holds determines the region of 
support of Pj

else if Cos,* and Cos, k t , are of  opposite  sign 
then the least value of  k  for which it happens gives 
the region o f  support o f  p r

The region of support o f  p,,  which is also called 
the domain [12] of p h  is the set o f  points given by

D i p , )  = {P i -k, A- -  b PhPi-\, >Pi + k}-

3.2. Measure o f  significance

The last procedure determines the region o f  sup­
port (kj) for each point /?,. To detect the  signifi­
cant points we need a measure of  significance. 
Rosenfeld and Johnston [3] used Cos,7, as the 
measure of significance and h , as the region of 
support of p ^  Rosenfeld and Weszka [5] used 
smooth ^-cosine as a measure of  significance. In 
the present communication we propose  to in­
troduce a new measure of significance. W e denote 
it by Cos, and define it by

1 ki
Cos, = — £  Cos,,. (3.2.1)

k, J = i

This measure is a kind o f  smoothed cosine but it is 
different from that given by Rosenfeld and 
Weszka [5].

With the region of support (k,) determ ined  by 
the procedure given in Section 3.1 and the measure 
of  significance introduced in Section 3.2, we now 
proceed to detect the significant points.

3.3. Procedure: Detection o f  significant p o in ts

Comments.  As the procedure runs we remove 
those points from consideration where C o s / s  are 
too low (C os ,^  -0 .800 ) ,  because in the neighbor­
hood of  these points the curves are relatively 
straight and our ultimate goal is to  m ake  a 
polygonal approximation o f  the curves.

1st Pass. Retain only those points p t for  which 
either

(a) C o s ,^C os, (3.3.1)

for all j  satisfying



\ i - j \ ^ k , - / 2 ,  k , >  1,
(3.3.2)

^  k , ,  k;  =  1

or

(b) C o s ,^ C o s / (3.3.3)

for all j  satisfying

\ i - j \ ^ k , / 2 ,  k , >  1,
(3.3.4)

si k r kj = 1.

In (3.3.1) and (3.3.3) the inequality should hold for 
at least one j  satisfying (3.3.2) and (3.3.4).

Com m ents. The points detected by (a) are the cur­
vature maxima points and those detected by (b) are 
the curvature minima points.

2nd Pass. If a curvature minima point falls within 
the region of support of a curvature maxima point, 
then the curvature minima point is discarded and 
the maxima point is retained.

If we have two successive points p , and p j+ j ap­
pearing as curvaturc maxima points then

if both Pj and p t , , have the same cosine and 
same region support, then retain p , and discard 
A +i

else if the cosines are the same and the regions 
o f  support are different, retain only that point with 
higher region o f  support and discard the other.

The points obtained from the 1st and 2nd Pass 
constitute the set of significant points of the 
digitized curve.

End o f  procedure.

Remark 1. When two successive points p t and p i+ t 
appear as curvature maxima points and both have 
the same cosine, then both the points are equally 
important for being selected as a significant point 
and thus there is a tie. We have proposed to break 
the tie by choosing p ,. On the other hand, when p , 
and p j + 1 have the same cosine but different 
regions o f  support, then there is no tie and the 
choice is entirely deterministic.

Remark 2. The 1st Pass of  the procedure can be 
carried out in parallel, whereas the 2nd Pass is se­
quential. We note that the 2nd Pass is carried out 
only on a small number of points.

4. Computational complexity

The success o f  a procedure is determined by its 
computational feasibility. In this section we p ro ­
pose to discuss the computational complexity of 
the procedure described in Section 3.1.

In this procedure, we determine Cos/A. by the 
definition (3.1.1), (3.1.2) and (3.1.3). The com ­
putations of  the vectors aik and b jk need 2 subtrac­
tions each.

Let us write â k\  a)k for the x- and ^-component 
respectively of the vector ajk and b{-k , b^f for those 
of  bjk. Then

Cos,A' " i

a X  + a $ b $

V/{(^»)2 + ( ^ ,)2}{(^,)2 + ( ^ ))2}'

The computation of  the numerator involves 2 
multiplications and 1 addition. The computation 
(a,*1)2 + (afk )2 involves 2 multiplications and 1 ad ­
dition, that o f  (b)^)2 + (b]k )2 involves 2 multiplica­
tions and 1 addition. So the computation of  the 
denominator needs 5 multiplications, 2 additions 
and 1 square root. So for each value of k  the com ­
putation of Cos,* needs 7 additions, 8 multiplica­
tions/divisions and 1 square root, i.e., a total o f  16 
arithmetic operations. The procedure determines 
the region of support (k, ) for each point p h  Let us 
write

Arnm = max (£,).
i

Then the total number of arithemetic operations 
required to carry out the procedure is 16n k max. 
Since k, does not depend on data size, hence Armax 
too does not. Therefore the computational com ­
plexity of the procedure is O(n).

The procedure described in Section 3.3 involves 
only comparisons. The time complexity of  the pro­
cedure is also 0 (« ) .

5. Polygonal approximation

A digitized curve can be approximated with a r­
bitrary accuracy by a polygon. For a closed curve



the approximation is exact when the number of 
segments in the polygon is equal to the number of 
points in the boundary so that each pair of adja­
cent points defines a segment in the polygon. In 
practice the goal of polygonal approximation is to 
capture the ‘essence’ of the boundary shape with 
the fewest possible segments. Although the prob­
lem is in general not trivial and can very quickly 
turn into a time-consuming iterative search, there 
are a number of  polygonal approximation techni­
ques with modest complexity and processing re­
quirements [13],

The earliest of the polygonal approximation 
techniques involving the fewest possible line 
segments were given by Ramer [14] and Duda and 
Hart [15]. Their procedures split the curve into 
smaller and smaller curve segments until the max­
imum perpendicular distance of the points of the 
curve segment from the line segment joining the 
initial and last point of the curve segment falls 
below a specified threshold. The curve segments 
are split at the point most distant from the line 
segment.

Some of the other works on polygonal approx­
imation were done by Williams [16], Pavlidis and 
Horowitz [17], Pavlidis [18] and Wall and 
Danielsson [19]. Williams [16] used a cone in­
tersection method to find the maximal possible line 
segment. Circles are drawn around each point. 
Points are merged one after another with the initial 
point until the intersection of  the cones with vertex 
at the initial point and touching the circles is an 
empty set. The line segments are obtained by join­
ing the initial point to the last point which passes 
the test.

Pavlidis and Horowitz [17] used a split and 
merge technique which fits lines to an initial 
segmentation o f  the boundary and computes the 
least squares error. The procedure then iteratively 
splits the line if the error is too large and merges 
two lines if the error is too small.

Pavlidis [18] developed an algorithm which is 
based upon the concept of a sequence of points be­
ing almost collinear. To check whether a sequence 
o f  points is collinear/almost collinear the procedure 
computes an error of fit which is a function of  two 
variables, T  and C. T  is the maximum of the 
perpendicular distances of the points (being tested

for collinearity) from the yet-to-be-obtained line 
segment, and C  is a normalized variable ( O ^ C ^ l )  
which is determined by the ratio of  the number of 
sign changes the perpendicular distance goes 
through to the total number of possible sign 
changes. If T - Cw0 - T 0< 0 the line segment is ac­
cepted else if r - C w 0-  r o> 0  the line segment is 
rejected, where wQ is the weighting factor o f  C  and 
Tq is the acceptable error.

Wall and Danielsson [19] designed a merging 
technique which is based on the concept o f  area 
deviation. The procedure finds the maximal line 
segment by merging points one after another to the 
initial point until the area deviation per unit length 
of  the current line segment exceeds a maximum 
allowed value. The line segments are obtained by 
joining the initial point to the last point that passed 
the test.

Polygonal approximation of  digitized curves is 
often a compact and effective representation of the 
curve for shape analysis and pattern classification 
[21]. Such representations facilitate the extraction 
of numerical features for the description of  the 
curve.

In the present communication we use the 
ordered set of significant points to make a 
polygonal approximation o f  digitized curves. The 
polygon is obtained by joining the successive 
significant points.

6. Approximation errors

The shape of a digitized curve is determined by 
its significant points. The set o f  significant points 
can be regarded as a set of parameters characteriz­
ing the digitized curve. So it is very much necessary 
to locate the significant points accurately so that 
necessary and sufficient informations abou t the 
curve are contained in the location o f  significant 
points. In Sections 3.1 and 3.3 we have described 
a procedure for detecting significant points of 
digitized curves.

The accuracy of  the location of the significant 
points and the closeness of  the polygon to the 
digitized curve can be determined by the pointwise 
error between the digital curve and the approx­
imating polygon. We measure the error between



Figure 2. (a) A chromosome shaped curve, (b) Polygonal approximation o f  (a), (c) Overlap o f  (b) on (a).

the digitized curve and the approximating polygon 
by the perpendicular distance o f  the points p, 
from their approximating line segment. We denote 
this error by e,. Two error norms between the 
closed digital curve and the approximating 
polygon can be defined:

(1) Integral square error

£ i = t e ;  
i= i

(2) M axim um  error 

E x  = max e,
I

7. Experimental results

in Figure 1. The procedure processes data  in 
clockwise direction.

In an attempt to focus on the efficiency o f  our 
procedure as a significant point detector and a

Table 1
Chain code of  chromosome shaped curve

01101 11112 
55555 43112

11212
12255

00665
45432

65560 01010 76555 45555

Table 2
Chain  code of  figure-8 curve

11217 67767 
22112

70071 01212 22344 45555 56545 54534

We have applied our procedure on four digital 
curves, namely, a chromosome shaped curve 
(Figure 2(a)), a figure-8 curve (Figure 3(a)), a leaf­
shaped curve (Figure 4(a)) and a curve with four 
semicircles (Figure 5(a)). The first three have been 
taken from [3] and the last, which is a special 
figure exhibiting an image consisting o f  features of 
multiple size, has been taken from [10], The chain 
codes (input data) o f  each curve are given in Tables 
1-4. The curves have been coded in clockwise direc­
tion starting from the point marked with /  on 
each curve, using the Freeman chain code defined

Table 3
Chain  code o f  leaf shaped curve

33333 32307 00003 32323 07000 03323 22267 77222
12766 61111 16665 66550 00100 56656 55001 10665
65655 55566 67666 66666 64222 22222 22232 24434

Table 4
Chain code o f  curve in Figure 5 (a)

22222 21221 11111 00100 00000 07007 77777 66766
66666 65767 66564 54434 36666 56554 54444 34332
32222 54544 34232 21213 22



Figure 4. (a) A leaf shaped curve, (b) Polygonal approximation o f  (a), (c) Over lap o f  (b) on (a).

polygonal approximation technique we have com­
puted (a) the data compression ratio defined by 
n /n s, ns being the number of significant points,
(b) the integral square error and (c) the maximum 
error. The results are given in Table 5. Table 6 
shows the results obtained by the algorithm 
described in [10],

8. Discussion

We have made no attempt of comparing our 
procedure with the existing ones [3], [5], [6] and 
[7], A comparison of these algorithms with that

given in [10] can be found in [10]. But incidently 
we find the following features of our procedure.

(i) Our procedure, like S a n k a r-S h a rm a  [8] and 
Teh-Chin [10], does not require a n y  input 
parameter.

(ii) Though [8] does not require a n y  input 
parameter, it does however not de te rm ine  the 
region of support. But our procedure, like the pro­
cedure of [10], does determine the region of 
support.

(iii) Our procedure detects more significant 
points (except for the curve in Figure 3(a)) than 
any other algorithm and consequently, th e  approx­
imation errors are lowered.

Figure (a) A curve consisting ot four semi-circles, (b) Polygonal approximation of  (a), (c) Overlap o f  (b) o n  (a).



Table 5
Results o f  present algorithm

Digital curve of Num ber  of  
data  points

Number of  
significant 
points (Hj)

Compression Integral square Maximum 
ratio (n /n s) error error

Figure 2(a) 
Figure 3(a) 
Figure 4(a) 
Figure 5(a)

60
45
120

102

18
12
32
29

3.33
3.75
3.75 
3.50

5.566
5.989

14.718
11.818

0.707
0.894
0.996
0.833

9. Conclusion

We have designed a procedure which shows that 
A'-cosine itself can determine the region of support 
w ithout using an}' input parameter. The significant 
points can be detected with the help of the smooth­
ed /r-cosine defined in (3.2.1). The procedure 
detects not only the curvature maxima points but 
also the curvature minima points. The polygon ob­
tained by joining the successive significant points 
gives a good approximation to the digitized curve. 
The procedure ‘Determination of region of sup­
p o r t’ implicity fits a circular arc in the 
neighborhood o f each point. The new concept has 
been applied on a number of curves and promising 
results have been obtained.
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