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EFFICIENT ESTIMATION WITH MANY
NUISANCE PARAMETERS

(Part II)

By J. BHANJA and J. K. GHOSH
Indian Statistical Institute

SUMMARY. In Part II, we shall construct an efficient estimate for the fixed set-up
Neyman-Scott model where the nuisance parameters are unknown constants. This part
also contains two special cases where we have orthogonality of @ and G(@,) or partial
likelihood factorisation of f. A summary of the main results appear in the Introduction
to Part I.

4*. FIxED SET-UP

In this section, we shall state the analogues of Lemma 3.1, Theorem
3.2 and Theorem 3.3 in the fixed set-up. However, we apply a random
permutation IT to the original sample (X, X,, ..., X,) and base the analysis
on (Xgay Xy -oor Xmew). Let s, denote the group of all permutations
of {1,2,...,n} and P, denote the probability distribution of II. Later we
shall make an appropriate choice of P, for the asymptotically efficient
estimate so that the empirical distribution functions (or the empirical
probability measures) of ¢gu)’s based on odd and even indices will be close
to each other.

Let us start with the following definitions.

Definition 4.1. Let (Y, %), (Z, &) be measurable spaces. For any
n > 1, Z-valued statistic V, on (¥, #)* and probability measure P,
on s,, call the statistic sending (yy, ¥a ..., ¥n) 0 V., ¥nw» Ymey - Yum)
the randomisation of the statistic V, corresponding to P, and denote it
by Vi(P,).

In practice, we shall take (¥, %) to be (S, 8) or (B, &(8)), Z to be 0,
gor Ox.g and & to be &(Z).
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Definition 4.2. Let (Y, p) and ¢ be as considered in Definition 2.1. For
any n > 1, estimate V, of §(6,, G,) in Model I ($(8,, G,) in Model 1I) and pro-
bability measure P, on s, we shall call the Y-valued statistic V3(P,) as defined

in Definition 4.1 a randomised estimate of ¢(6,, G,) in Model I (§(6y, Go) 0
Model II).

As a special case of the above definition, we can define the notions of

randomised estimates of 6, G, or (6, @,) in Model I (6,, G, or (6, G,) in
Model II) (cf Definition 2.1).

Note that (1) non-randomised estimates are special cases of randomised
estimates. Also for any n > 1, Z-valued statistic ¥, on (S, 8)* and proba-
bility measure P, on s,, the following hold

( 51;[1 Py, c‘-)({V,'.(Pm) eAd}) =] ( illl Peo,e,,(,-,>({Vn€ AYdPm) ... &1

for all 4 in &, 6, in ® and {ihici<nin 7 and
to.ao{Va(Pu) € A}) = P} ¢ ({V, 6 4} - (42)
for all 4 in &, 6,in © and G, in G.

(2) In view of relations (4.1)—(4.2), there are extensions of Definitions
2.1—-2.4 for randomised estimates and in view of observation (1), for any
property P defined in Definitions 2.1—2.4 and statistic ¥,, P holds for V,,

if and only if it holds for all possible randomisation V3(P,)’s of it, both in
Model I and Model II.

(3) As in observation (2), the notion of efficiency (I) ((II)) has obvious
extensions for randomised estimates and one can easily prove that in the
extended sense, regularity (I) implies regularity (II). So the problem of

efficiency (I) reduces to finding a randomised estimate which is efficient (I1)
and regular (I).

For the remaining part of this section, we shall need the following
Model I-analogue of assumption (B1).

(C1) (a) There is a uniformly +/n-consistent (I) estimate U, of 6, (vide

Definition 2.2) and (b) there is a uniformly consistent (I) estimate G of (C
(vide Definition 2.1).
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Convention 1: For any n > 1, let P% denote the uniform distribution
over s,. From now on we shall use the shorthand notation V for V, (Py).
Let ¢ be a kernel. Our goal is to solve the following randomisation of equa-
tion (3.1).

Vn.Z ¥ (X3, 0, (G5")+ T}: P> ;0 *6,(G)") = . (3.2)°

t odd ‘l evm
where (G9)* and (GE)* are obtained from @, using (11) of Section 2 and Defini-
tion 4.1 with P, = Pj. T2(y)is defined in analogy with 7Tx(y) by replacing
(3.1) and Uy by (3.1)* and U, respectively in Definition 3.1. Clearly Ty(¥)
equals (7,(¥))*. Note that

(4) Theorems 3.2—3.3 and relation (4.2) together imply that Z, is
efficient (II) under assumptions (B1)—(B3) and 7(y) is efficient (II) under
assumptions (B1), (B2) and (B3s).

In view of observations (1)—(4), it remains to show that Z, and Ti()
are regular (I). Naturally, we shall prove an analogue of Lemma 3.1 when
we have Model I instead of Model IT and randomised estimates. Before stating
the required lemma we need two more auxiliary results namely the folowing
proposition and Lemma 4.1(t).

Proposition 4.1, Let GO and GE be empirical distributions of éi's based
on odd and even numbered observations (vide (II) of Section 2, of course they are
not observable since &'s are unknown constants). For any € > 0

sup  Pu{d(GR)", (GR)°) > €})—> 0 as n—> 0
Bligign®™ -7
where d denotes the Prohorov metric on & as defined in (10) of Section 2.
The proof is given in Appendix C.
Corollary 4.1.1. There is a sequence {e3}n =1 decreasing to zero such that
sup  Py{d( (GO (G0 > ¢ 21)— 0 as n—> co.
Edycogn®
Proof. The result follows trivially from the proposition.
In view of the corollary it is natural to consider for any n >
@ (6‘) = {{fl}l“iSn : (_qg’ g_f) > 6}
deoreasing to zero. Let Oy¢ ®. Let

>lande>0
(4.3)

Fix any sequence {6,}n =1
{ént}1 < i< n,n=1 be a triangular array of elements in E such that

{Enhsisn€l6s) V7P v (44)

is
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Corollary 4.1.1 leads to an analysis of the following triangular array ver-
sion of Model 1.

Model I(t). Let {Xni}1<ign, 021 be atriangular a,rra,y of rowwise indep-
endent random variables with X,; following the distribution Pf’o tni’ where

0,60 and the triangular array {€niti<ign, 2 »1 satisfies (4.4).

Convention 2 : Let (Y, %) and (Z, &) be as considered in Definition 4.1.
Let {ynt}1 <i<n n=1be a triangular array of elements in Y. For any n > 1
and Z-valued statistic ¥V, on (Y, %)%, we shall denote V,({ynihigign) PY Van:

The above convention suggests obvious Model I(t)-analogue of equation
(3.1) which we shall denote by (3.1)(t).

(5) As in observation (2), Definitions 2.1—2.4 have obvious Model I(t)-
analogues, and for any property P defined in Definitions 2.1--2.4 and statistic
V. V, satisfies P(I) only if V, , satisfies P(I(t)).

Let 7 be a kernel. Fix 6, in © and {£nih < i < n, n » 1 satisfying relation (4.4).
The following is the Model I(t)-analogue of relation (3.2)

1 (2 A
\717—. ; -zl {gﬁ(Xm,@, Gf’ n)_¢(Xﬂi} 60’ g_’n,‘n)

iodd

+(0—6,) [ ¥(., O, gn,n)fl(-, 6y, Cinn)dﬂ()}

Enm(e) L=

1 2 A
+ '\/7 .21{¢(Xni) 0, Gg, ")—'zﬁ\(Xni, 00, gn’n)

| H(O—00) J Y., Bo G ) (s Br Gonr)iie(.)} . (45)
for all 6 in @.

In order to state Lemma 4.1(t) we need new conditions in which G, has
to be replaced by GZ,, G¢, and then Gy, in the conditions (i)—(v) and
U()—U(vi) of Section 3. The exact conditions to be referred to as (i)t—(v)?
and U(i))—U(vi)} which are somewhat artificial, are given in Appendix C.
However Lemma 4.1(t) is only an auxiliary result needed to prove our main
result, namely Lemma 4.1(IV), the assumptions for which are only slightly

stronger than those of Lemma 3.1(IV), vide observation (6) preceeding
Lemma 4.1.

Lemma 4.1(t). Assume (C1)(b). Fix any sequence {€,}n =1 decreasing to
zero. Fix 0y in O and {énth<icnnz1 Satisfying (4.4). Let  be kernel. Let

t)-
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5;., n be as defined by relation (4.5). Also, whenever it makes sense, let Tn,n(Yr)
be the estimate defined through Definition 8.1 and Convention 2. We can con-
clude the following.

(1) If conditions (1)t—(iii)! hold, then for all ¢ > 0 and € > 0.

n ~
su ne Dpn(@)| > €})— 0 as n—> 0.
{6 313'—‘00%)é0,’~/n} (‘=1 0o €ns ) ({l n,n( )l 6})

(1) If conditions (i)t—(iv)t hold, then

A)  for any sequence {cn}, » increasing to infinity < 1 p, £ ‘)({Tkere
=1 "

is a solution of (3.1)(¢) lying in (Gg—ca/v/N, Op-Fcu/v/n)})—> 1asn— o and
(B) under assumption (C1) (@), T, (¥) is @ v/n-consistent solution (I(¢))
of (3.1)(¢).
(IIT) If condition (i)i—(v)t hold, then
(A) forany c>0an €>0,

< iEl PBO, EM) ({{0: |0~0i7(275 c/«/n}lﬁn’”(e)l > €}> — 0 asn—>0

and
(B) wunder assumption (C1)(a),

sup | (L Py ) (ol () —60) < 2)— (el V{0, G, YD) O

zeR } -1 Go, s

as n—» oo

where V is the positive real-valued function defined in (9) of Section 2.

(IV) As in Lemma 3.1 (IV), for any conclusion C among (I)—(I1I), let
UC denote the conclusion that C holds uniformly with respect to 0, in compact
subsets of © and {én}icignnm1 satisfying (4.4). Then, UI), U(I) and
UILI)A) hold if the relevant conditions among U@E)t—U(v) hold whereas
U(III)(B) holds if U(i)t—U(wi)t hold.

We can prove this by an easy modification of the proof of Lemma 3.1.

Let us now consider the original set-up, namely Model I with randomised
estimates.

For any n > 1 and {£}1<ign in B%, define

Plléthaica) ={mes, : Exwhaisn € 2ulen)), e (46)

where the sequence {3}, is defined in Corollary 4.1.1.
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Let i be a kernel. Fix 6, in © and {£,}, >, in E*. Consider the following
analogue of (4.5) in the present context.

Bi0): = 7 5 X3, 0, (B5))~v (X 60, Go)

+ (0 00).“[’( 00,_ V(G eo,Gn)dﬂ()}

1 A
abyy g}m{w (X1, 6, (9"~ (X3, 05, G.)
+ (0—064) § ¥ (> O, G) f (> B0, G)Ap()} (4.7)

for all 8 in O.

Consider the following conditions uniformly with respect to 7 in
B (Eh1<icn)

®)* () lim limsup
66, n-—> o0

A(.,0,,G,0,6)— 2 _

where s, denote the kernel defined by relation (2.2), a.n.d

(. 60 D—F" (., O, GIF| dul )= 0 85 1= 00.
(b) § G, Bos CI',,,) ‘G"(G_?;)‘W((jﬁ)* u(.)— 0 a8 n

(i1)* (a) There is 8, > 0 such that

limsup  sup § 92, 6, (., B, C)dpe(-) <
n—>w  (6,0)e B((f0,@), 8o g..(GO )*or (6E)

and
O) msup | B oy VO OV BN = 0
(iii)* Assumption (C1)(b) holds with a choice of G?n so that

where (6, @) = «g?.)*, (GE)), (G2)", &,), (9", (B2)") or (GE), G-
(iv)* (a) There &, > 0 and ny > 1 such that for all n > n,, # in S and G

in B(Gn’ 80):
- "/’(w’ i G) € G(B(eo» 80))

(b) Timsup [§Y2(., 6oy Gl B> Go) ()] < 0
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(This condition follows from (ii)* (a) but is given separately for case in later
references.)

and (c) lim inf | § (., By, G (- Oor Guldp()| > 0.
(V)‘ Ther? is 60 > 0 and A(, 00, gn) € Ll(f(-, 00’ gn)) such that

(., 8, &) —(., 8, O < | 0'—014(, b Gn)
for all 6, ¢ in B(f,, &,) and @ in B(Gy, &)

Analoguous to the formulation of the conditions U(i)—U(v) on the .basis
of the conditions (i) to (v) in Section 3, we formulate the condiions U®)* —
U(v)*. An additional conditicn U(vi)® is given below.

U(vi)* (a) There is d, > 0 such thab

POGS 0@} IOEH] 0

limsup sup { { i
n—>00 (8,0 B((00,Gn), S0) b {200 > K}
ag K—
and (b) (4, @)= J(0, G, ) is continuous, where J denote the non-negative
real-valued function defined in (8) of Section 2 which i positive by parb (a) of
this condition.
Note that
(6) Any condition among U(ii)*—U(vi)* is equivalent to the correspor:d-
ing condition among U(ii)— U(vi) of Section 3 whereas U(i)* is a stronger version
of condition U(i) of Section 3 with U(i)* (a) equivalent to it.
The following is the required analogue of Lemma 3.1.
Lemma 4.1. Assume (C1)(). Fix 0y in O ond {Ea} =1 10 BT Let Y be
a kernel. Let 5; be as defined in relation (4.7). Also, whenever it makes sense,

let T3(y) be the estimate defined in Convendion 1. We can draw the following
conclusions.

(1) If conditions (i)* —(iii)" hold then for all ¢ > 0 and € >0
n

6: |3~§?féOIVn}< I Py«

(D) If conditins (i)*—(iv)* hold then

(4) for any sequence {Cu}n>1 increasing to infinity

)({13;(9)1 > € })—> 0 as n—> ©.

( ‘Tnl Py gi) ({There is a solution of (3.1)* lying in (Bp—cx/ A/, Boteavmi—1
- 3
as n—»
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and (B) under assumption (Cl)(a), Ti(y) is a randomised +/n-consistent
solution (I) of (3.1)".
(LII) If conditions (i)*—(v)* hold then
(4) for any ¢ >0 and ¢ > 0
( ‘1;11 P,o’ g'_) <{{0: w_s;?;)écwn}l Dy(6)| > e})—) 0 as n—>
and (B) under assumption (C1)(a)

sup |( 1§ Py, ) (ynT30)—0) < 28]V 0y Guth) | 0
zeR '’ i=1 )8 :

as n—>00 where V denote the positive real-valued function defined in (9) of Section2.

(IV) As in Lemma 3.1 (IV), for any conclusion C among (I)— (I1I), let
UC denote the conclusion that C holds uniformly with respect to (8o, {€n}nz1) @0
compact subsets of @ X B®. Then U(I), U(II) and U(ILI) (4) holds if the relevant
conditions among UG)*—U@)* hold whereas U(IIINB) holds if conditions
UGy — Uwi)* hold.

Proof. Observe that for all n > 1,d((G3)*, (6%)*) << if and only if
{Ehaign € ¢,(62) (vide relation (4.3)) so that Corollary 4.1.1 can be restated as

sup  [1—P(B,{éhaicn))]—> 0 as n— 0 . (4.8)
{éth<igneE®

where £,’s are as defined in relation, (4.6).

We shall now prove part (I) of the lemma and then indicate & proof of
part U(I) of it. The other parts can be proved similary.

For this purpose note that conditions (i)*— (iii)* imply that for any 6, in©,
{€.), > 1 in E* and sequence of permutations {7}, with 7, in Su({fhicicn)
conditions (i)t—(iii)t with e, = ¢2 hold at the point 6, in ® and triangular
array {£, i} i< n =1 Which statisfies (4.4) by the choice of m,’s. Hence by
part (I) of Lemma 4.1(t) for any ¢ > 0 and ¢ > 0

Sup sup
mefa(Ehgisn) {0:160—0] < o/Vn}

n ~
(1 Py o) (Di0) >e| T=m) > 0asnsc0. ... (49)

=1 0

Let A4, =E2% TFor any a in 4, and 7 in g, (&), let
” Lad
2T, ) = su Im rp DXO)| > e} Il = m}).
famayi= . swp (I Py ) (130 > | =)
By (4.9)

sup f, (m,a)> 0asn—> oo
7 e fn (@)

and f, is [0, 1]-valued.
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Hence, by (4.8)
§ fal, @) d PY = j fn dP“+ ) fn( a)d Py — 0asn—» o
on Pa ( 8@
proving part (I). Part U(I) follows similarly from the uniform versions of

(48) and (4.9) provided A4, is replaced by relevant compact subset
of @ x&n, B

Definition 3.2 has an obvious extension for randomised estimates. The
following is the Model I-analogue of the extension.

Definition 4.3. Any kernel ¢ satisfying U(ii)*— U(vi)* will be called an
estimable kernel in Model I (or, in short, an EK (I)) and any randomised uni-
formly 4/n-consistent solution (I) of (3.1), i.e. any uniformly +/n-consistent
solution (I) of a randomisaton of (3.1) namely,

I VP, 0, @ B+ 2 B (XK, 6, @) = 0
VB -1 VR =1

: i odd $ even
for some probability measure P, on s, will be called a generalized C,-estimate
in Model I corresponding to i (or, in short, a GC,y(I) estimate).

There is an obvious analogue of Lemma 3.1a for Model I and randomised
_estimates and in view of observatlon (6), we can make the following
remark. g

Remark 4.1. For any kernel ¢, ¢ is EK(I) if and only if it is EK(II)

" whereas for any randomised estimate ¥, of 8,, ¥, is GCy(I) only #f it is GC,(II).
Also, one can easily verify that Example 3.1 and 3.2, with 7', () replaced by
T; (f) for the latter one, remain valid for Model I.

The following is the Model I-analogue of Remark 3.3.

Remark 4.2. If (S, 8) = (R?, 8?) and sssumptions (Al) and (B2) (a)
hold then Corollaries 2.1.1 and 2.1.2 enable us to drop assumption (C1) (b)
ceven if @ is unbounded.

Let us now write down the anaidgues of Theorems 3.2 and 3.3.

Theorem 4.2. Assume (C1), (B2) and (B3). The (randomised) estimate Z,
of Oy, as defined through relations {3.3)— —(38.4), Definition 4.1 and Convention 1
i8 UAN (I) with AV (1/). -

Theorem 4.3. Assume (0’1), (B2) amd (.B3s) The (randomised) estimate
TaP) of 6y, as defined through Deﬁmtwm 31, 41and C’onventwn 1 i UAN (I)
with AV (1), . G T ,
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Remark 4.3. Theorems 4.2 and 4.3 tell us that Z; and 7% (y) have the

most limiting concentration around 6, among the randomised regular (I) esti-
mates, i.e. the following holds.

For any (fy, {€4}n»1) in @ x E®, randomised regular (I) estimate ¥, of 6,
and convex symmetric set 4 in Z(R),

lim (1 Py, )(v/n I1%6,, GaXWa—bp)e 4)) = POE(O, Do d)
n=>w \jml ,

> timaup ( 11 Payg,)(v/n V%00, )V, —00e 4)

where W, = Z% or T3()).

Remark 4.4. It has been pointed out by van der Vaart (1987) as criticism
of regular estimates that given any regular estimate one can construct a non-
regular asymptotically normal estimate which is better. To some extent tl.le
idea of such a construction is implicit in a grouping technique introduced in
a paper of Chatterjee and Das (1983) as variance estimation. However, .Su‘?h
better estimates due to van der Vaart are, of necessity, non-symmetric m
Xy, ooy X,. This makes one reluctant to use them. Moreover, from a techni-
cal point of view, one should compare its maximum risk, over permutations
of £, ..., €,, with the risk of a regular estimate. This is & matter that requires
further examination. In this connection it would be interesting to study the
efficient regular estimate in Example 1.2 with the best equivariant estimate

that exists if (¢, ..., ,) is known up to a permutation. We hope to study
this in a further communication.

Remark 4.5. There can be no asymptotic improvement over efficient
regular estimates of the kind disoussed in the previous paragraph, if the
optimal kernel does not depend on G. Typical situations where this happens
are discussed in Lindsay (1980) and Pfanzagl (1982) (see also Section 5(b)).
In particular, this holds for the estimate in Example 1.1. We omit proof.

Remark 4.6. If the dimension ¢ of X; is not constant one can group
the observations according to their dimensions. Let us now consider the
special case where the distinet values of gy, i running from 1 to n, remain
fixed as  tends to infinity, in other words, there are finitely many such groups.,
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Let us rearrange the observations to get an array of independent random
variables ’

Ynu Yy .. Y

Y’l Y 28 ses Y’”’

Y r1 Y rs ‘e v Y rﬁr
with Yg's following f( ., 6,, &n, &) and n,é being non-negative integers with

21 n; = n. Without loss of generality let us assume that by < by < ... < kr
JS
and liminf (n5/n) > 0 for all j, so that each group represents a distinct

fixed set-up model by itself. Call an estimate of 6, regular (in the new model)
if it is uniformly asymptotically equivalent to a pooled mean of regular esti-
mates (including the randomised ones) as defined through Definitions 1.1,
4.1—4.2 and observation (2), corresponding to each component fixed set up

submodel. For the j-th submodels let ¥y denote optimal kernel as defined

through (2.2)~(2.4) Uy and Gy ; denote, respectively, the uniformly +/n
congistent estimate of 6§, and uniformly consistent estimate of G;: =

F,(Enh)is1 <ny) (vide Definitions 2.1—2.2) as considered in assumption

(C1) the superseript *j stands for the operé.tion of randomisation as defined

in Definition 4.1 and the superscripts O and E stand for the operations defined

in (11) of Section 2. Then an efficient regular estimate will be a solution of
f

[ 3 AT, 0, ¢ .,),,)+ >: B (Y 6,@90] =0 .. @10)

l odd
which is nearest to Uy, if there i isa solutxon of (4.10) lying in [(—/'- —log nf+/n,

=1

T, +log n4/n] and equal to U, otherwise ; where U, : = 7—?: 21 n Uny.
]_

Remark 4.7. 1In view of remarks 4.2 and 8.4, for Euclidian § and expon-
ential f, it is enough to check assumption (Cl1)(a), i.e. the existence of a uni-
formly v/n-consistent (I) estimate of 8, and (B3) or (B3s), i.e. smoothuess
properties of the optimal kernel (cf Remark 3.8).

: 5. Two srnom OASEE
. In this section, we shall chscuss the special cases referred to in Section 1

where the optimal kernel ¥ is “smooth”; .-Throughout the discussion; we
are assuming the validity of aasmptmns (A2) ~and (A3) and compact~

ness of Q.
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(a) Orthogonal case.

location-scale problem with known functional form of the density f, as in
Example 1.2. Here, for all (4, G), 3,(., 0, @) belongs to the orghogonal com-
plement of the space Ny, ¢, 50 that s, itsolf is a version of the optimal kernel.

Let us assume that

(D1) (a) For all xin 8, f(x, ., .)€ Cpq (®X E) and (b) for any compact subset
0, of @ the following statements hold

(i) there is d, > 0 such that

(a) the following two families of functions

and (3 (., 0, GV (.,0,@) :0, ), (@ ¢)O,x g with |6—0'| +d(6,¢") < &}
are uniformly integrable with respect to # and

() sup  [f(Te]) (., BB &), 8)) (., 6, Ddp(.)] <00
(6.Ghe0, X @ - . .

and

W) oo g[{ (0.0)55) _f( 0,6 M )}i10, &) 0 85 Koo

Assumption (D1)- and orthogonality together lmply assumptlons (B2)
and (B3s). Hence by the theorems proved in Sections 3 and 4, Z,, and Tw(¥)

are efficient (IT) and, Z; and T,,(zﬁ) are efficient (I) as well as efficient (1I),
both under assumptions (C1) and (D1I).

We have verified assumptions (Al) and (D1) for Euclidean § and

exponential f as considered in Remark 3.4. In particular, they hold for
Example 1.2 with p > 2.

Example 1.2 with p = 1 does not fall in the exponential families des-
cribed in Remark 3.4. However in this case one can easily verify assumption

(D1). The verification of assumption (Al) is as follows : Let (4, @), (¢', G')
be such that f(., 6, @) = f(., 6, @) ae. [A]. By symmetry of the normal

density function we get that 0 =0. 8o, it remains to prove, for all § in )
the identifiability of @. In this respect, let us observe that conditions (b)—(d;
of Remark 3.4, have obvious modifications guaranteeing, for any 6in @, the

identifiability of @. We have verified these conditions for Example L 2 8C
that @ = G and hence the validity of assumption (Al).

This is & generalised version of the symmetmc'
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In view of Remark 4.7 and observation (1) of Section 2, it remains to
check assumption (C1) (a) for Example 1.2 and in this respect the grand mean

is & natural choice for U,

In view of the last paragraphs, Theorems 3.2, 3.3, 4.2 and 4.3 hold for
Example 1.2 with arbitrary p. An asymptotically efficient estimate for
Example 1.2 with arbitrary p can also be obtained from the results of van der
Vaart (1987, 89-93).

(b) Case of partial likelihood factorization. This case in the Pfes‘?nt
context was first considered by Lindsay (1980). Here the likelihood function
[ factorizes in the following manner.

There are Borel-measurable functions p: 9 x @— R+ and ¢: § X O X E-R*
such that

f(, 6, &) = ple, 6) q(x, 6, £) for all (z, 6, £) e SXOXE .o (8.1)

wnd §p(.,0)q(.,6,8dp(.)=1forall(d, 6, £)e@xOXE .. (52)

In cases where (5.1) and (5.2) hold we call p a partial-likelihood function,

In applications, for (5.1) and (5.2) to hold one assumes the existence of

either a partially sufficient statistic ¢ for ¢ or a £-ancillary statistic ¢. In the
first case ¢ is the marginal of ¢ and in the second p is the marginal of ¢.
Example 1.1 falls in the first case with #(X() = Xi. (An example of the
other kind is Example 9.4 of Lindsay, 1980, 654-655).

Here C e e
s,;%#’_._ .. (5.3)

Assume that
(D2) (a) For all ¢ in S, p(z, .) e O3 (©) and ¢(x, . , ) € Cyo (O X B)
and (b) for any compact subset ®, of @ the following statements.hold
(i) thereis §, > 0 such that |
(a) the following three families of functlons

@), 610, D) . p o @ with |6—6'] < 8, and Geg
e ad. 5.0 0. Guith [0=07] <% e }

LIS, L, h [6—6'| < & and Ge&
{ TR T eeroWIt | | an }
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and -
{@pR (., ) p(, 6) ¢(,6, Q) : 6,6 €@, with |§—6'| & and Ge8}

are uniformly integrable with respect to u, and

() sup  |§(12"/p))( BO, 8))pl., O)l., 6, B p() <o
6, )00 x Q@

and  sup U@ [P, B, &) (., 6)q(., 6, Bd p(.)} < o0
(6, Nebo X G

' @ 04(, 0.0 4,
Lo ()]
and (ii) 0o g[f {0’ 1P~ 6) > K} (., 6) #

(R0 D g s 0 08 Kor oo

(D3) For any (0, G) in 6% &, there is My, g € M, such that

g 0,F) qlx, 0, My q) O in Sxix 8.
Q(x, 0, G) - q(x, 0, G) ; fOl.‘ a].l (x,‘ 0, ) in

‘Clearly, assumption (D2) implies assumption (B2). From assumption

(D3) and relation (5.3) we have § = p/p 50 that assumptions (D2) and (D3)
together imply assumption, (B3s). ‘Hence we get the required efficiency of Z,

and T () in both of the set-ups under assumptions (C1) (a), (D2) and (D3)
Note that in. this case Z‘\-— Z, and TY(Y) = T, @)

Let us note the followmg -

Remark 5.1. If assumption (D2) holds and equation (3.1) with ¥ =

?'|p, has a unique solution (the latter holds for Examples 9.2-9.5 of Lindsay

(1980) which includes Example 1.1) 6, (say), then part U(III)B) of

Lemma 3.1 (eqmvalently, that of Lemma 4. 1) holds with 7',(y) replaced by Gn,

in other words, B is UAN(I) Wlth AV V( . g&), guaranteemg assumptlon

(C1) (a) with U, = 8, (whlch in turn, 1mp]1es T,,(z/r) = n)

We are now going to check assumptions (C1)(a), (D2) and (D3)
for Example 1.1: In view of Remark 5.1, it is enough to check assumptions
(D2) and (D3). We have verified aséumptlon (D2) for more general case of
Euclidean S and expon.entlal » 9 prov1ded assumptlons (a), (b)* and (d)—(f)

of Remark 3.4, with & x & and Cyo (® x B) replaced by © and O (8), res-
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pectlvely, hold for p and ‘assumptions (a), () and (f) of this remark hold
for g.” A proof of assumption (D3) is given in Lindsay (1980, § 8.1—8.2).

Exampl,,e 1.1 can algo be handled in a slightly different way, vide
Pfanzagl (1982). Pfanzagl assumes the existence of a partially sufficient
statistics #(2) of £. Instead of assumption (D3) he assumes the completeness
Of ¢ with respect to the family {Poa:te ._,} for all 6.

Note that in this case 8, is given by (6.3) and the functions of N o,¢ depend
on x only through t. One can use the latter fact and sufficiency of ¢ to con-
cinde that ‘

P, 00p(., 0)eNig X0, O,
Therefore,

V=@ + ¥ .o (5.4)
where ; denote the optimal kernel in the mixture model induced by the
marginals (Pf, q) of & .

' Therefore, using Lemma 2.1 for the margmal model, one observes that,
under assumptions (A2)-(A4)

paa,{z/rg (-, 6, M} =0 ae [Pl ¥ (6,6, @)

Hence, by completeness of ¢,
| Vi, 6, @) = 0 8.0, [P b]"v 6, &)
ie. Yut(.), 6, @) =0 ae. [Poa]’v‘((?G)
proving, in view of (5.4), that z,/r _'p '|p.

- Note that for any & in © one can eas1ly weaken the condition of complete-
ness of {Py,: £e T} by Ly-completeness of it, in other words, it is enough
to assume that for any 4 in @ and funetion ¢ of £, -

P e LYP 0,8 ¥ €
¢ =0 ‘a.e[Pa,Q].V_' £
(see also Definition 5.12 of van der Vaart (1987, 1‘)_7))-

If, in the above, one allows ¢ to be a I-dimensional real~v<'ector depending
on 6, ie, ¢t =1{x,0), essentially the same calculations imply that the
optimal kernel is L

only if

F=wi+ B (a2 ){(50) % (5 t]t))
 —a result due to va-n:—.der.. Vaart (1087).
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Our calculations are somewhat different from the above authors (ie.
Pfanzagl and van der Vaart). Assumptions needed for applying Theorems
3.2, 3.3, 4.2 and 4.3 for Pfanzagl’s case are (Cl)(a) and (D2) whereas those for
van der Vaart’s case are (Cl) and an obvious generalisation of (D2). In this
connection, it may be pointed out that van der Vaart’s method, based on a
generalisation of Pfanzagl’s model, is a powerful one yielding a solution for
Examples 1.1, 1.2 as well as Example 9.6 of Lindsay (1980, 656-657) and
the symmetric looation-scale model of Bickel and Klaassen (1986). However
his L,-oompleteness condition does not apply to Example 9.4 of Lindsaj
(1980) mentioned earlier in this section. His estimate is different from oun
and requires fewer regularity conditions.

Appendix C*
We shall need the following auxiliary result.
Lemma C.1. Let (Y, p) be a compact metric space. Let # denote the seb of

all Borel probability measures on Y. Let &y, &, ..., £, be n independent Y -valued
random variables with &; following the distribution Ps. Then for all € >0,

{P"}f:z:‘,.eﬂ“ ( tle‘ Py ) ({d(Fm Fn) > 6})—) 0 as n— o0

where P, denote the measure ;1"—- > Pi on P and d denote the Prohorov melric
(0 |
on # as defined in (10) of Section 2.
Proof. TFirst let us observe that for any function f in C(Y) and € >0,
sup (ﬁp,)({”fd(v,,—ﬁ,,n >e})s0asn00... (C1)
{Phiga®r =2 N
Next, we shall extend (C.1) to the following
For any compact subset & of ((Y) and ¢ > 0,
sup Il p sup | §fdF,—P,)| >¢ >0 88 n—> &
{Plicigne® (_"1 )<{ feg v }> .. (C2)
This can be proved as follows.

Let & be a given compact subset of C(Y) aﬁd € be a given positive real

number. Using compactness of & get hold of an (¢/4)-net {fy, fo ..., fa}
of & Then '

F_F ; 5
?:lg [fd(F, Pl < 6/2,+¥ gix.‘lf‘ J1d(Fo—P,)|

*Appendices A and B appeared in Part I, Febriiary 1982 issue of Sankhya.
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Therefore
ol LR ({mpis =P 1> <))
<{P\' lgs?f,, e}”h( ‘Ii P‘) ({112?x< k”ff d(Fn“‘j;n)l > 6‘/2})—40

as 71~ o0, by (C.1).
As & and ¢ were arbitrary, this proves (C.2).
Let us now consider the function ¢ : R — [0, 1] defined by,
1 ift<<0
dy= 4 1—t foLtg1 .. (C.3)
IL 0 if1gte

Then ¢ is bounded and uniformly continuous as it is a continuous func-
tion with a compact support.

For any ¢ > 0 and closed subset F of Y, we shall denote the function
d(., F)
¢ ( "_"Z—) from Y to [0, 1] by f. 7 and consider
& : = {fer: F a closed subset of ¥} e (C4)
Let us now observe that for any #, y m ¥ and closed subset F of it,
d(x, z) < d@, y)+dly, ) )
for allzin Y.
dy, 2) < dly, x)+d(z, 2)
Therefore taking the infemum over z in F and using the symmetry of d,
diw, F) < d(, y)+dy, F)
and dy. F) < diz, y)+d(x, F).
Hence ld F)—diy, F)| < d@, y)-
As 7, y and F were arbitrary this proves that the family of functions
{di., F) : F a closed subset of Y} e (C.5)

is equicontinuous on Y.

From now on we shall assume that ¢ is & preassigned positive number.

and

From (C.3)—(C.5) and boundedness and uniform continuity of ¢, we
can easily conclude that &, is uniformly bounded and equicontinuous.



152 J. BHANJA AND J. K. GHOSH

Therefore by Arzéla-Ascoli Theorem %, is compact. Henoe, by (C.2),

{Pth:?i)neﬂn( 1131 P‘> ({;;‘\g,z | [ d(P,—P,)| > 6})4—) 0 agn—00 ... (CH)

Let us now observe that the Prohorov metric d as defined in (10) of
Section 2 can easily be redefined using closed sets only, i.e., for any P, Qe?,

AP, Q) =inf {y > 0 : P(F) < QF")+y QF) < p(F")Jrnv’vL F, F dlosed),
Therefmje, for any P, Q 1n e
: d(P, Q) > ¢

== there is a closed subset F of ¥ (possibly depending on P, Q a
‘such that ' =

nd €)

P(F) > Q(F)+¢ or Q(F) > P(F*)+e (C.7)

===} there is a closed subset F c¢f Y such that

(C.4) (C.0) (C.4)
. [hedP 3 PE) > QEF)te > [fpdQte

4)

(c.0) ©.7) (o , .
or .[fc,FdQ = Q(F) > P(FB)-{—G = .ffe.FdP—{—é‘
‘4= there is a closed subset F of Y such that

| {f.,rdP— [f, rdQ| > €

== sup |[fHP—Q)| > e where &, is the family of continuous functions
f eFe- ‘ ’ .

defined by (C.4).
Therefore, for any P, @ in » and {Pg}; < i< » in #%,

(B P)car, @) > e < (1t Py ({ suplif dP—0)1 >e}) .. (©8)
=1 — b o8
Taking supremum over {Pi}ig;gn in #® we get for any P, @ in %,

fi p)ae,
{P‘}lss:?nem< =1 ‘)({( Q) > ¢})

{1_’_‘}1::13,.&;:" (‘fllp‘)({fselg'l[fd(P—Q)l>e}) . (C9

‘ "Lhe \resﬁ‘lt folldvﬁ_a ._from {C.6) and »(0.9') W1thP =F, and Q = F,,
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The following is an immediate corollary to the lemma.

Corollary C.1.1. Let (Y, p), #, (£, &, ..., &,) and d be as considered in
Lemma C.1: “Let P¥ denote the umform dzsmbutwn on 8, as deﬁned in Conven-
tion 1 of Section 4. Then for any € > 0,

wp (11 Py ) (2, FE) > ) dPy(m— 0

Pl gignen
as n—» 00,
Proof. ~ In view of Lemma C.1, it is enough to show that for any € > 0,
P{d(( PO PE)*) > €})—> 0 as n— 0. .. (C.10)

Fix fe C(Y). Let us denote [fdP; by as and ? 5 a; by a. Then
. =1

.
J {(n—~[n/2j) : fffdPﬂmT}gj > (Ifde)} aPy(m)

I{@f—m% z ﬂ(t)“miﬁd%(i)} dPy(m)
<4f {m - ,,(i)--a} dP¥(m)
< ot A1
< (n-[n/zl){n N (G11)

since the variance under sampling without replacement is less than the vari-
ance under sampling with replacement.

- By (C11) with arbitrary f, we note.that the following analogue of (C.1)
holds : namely, for any feC(X) and ¢> 0
, PU({) £ (B2 —PEY)| > €)= 0 as n—> 0. . (0.12)
(C.10) follows from (C.12) exactly as in Lemma C.I.-
P roof Of Proposition 4.1. The given expression
= sup Pn({d((G'o) (GE) ) > €})
{61 }1 <ig a€ =" . .
(where * denote the operation of randomisation as defined in Definition 4.1)

= su {d((GO)‘(GE))*)>€} (ﬂ)dpx(”)
{ﬁt}l <i

. sup’ "' ;(glae,ﬁ, gai@s, €5) > e aPim.

fedhy ¢ g 0B
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(where &; denote the degenerate distribution at {£})

Sup § ( i G,.m)({d(G?., @) > ¢}) dPim) —> 0
{o} 1< i nEG? $=1 ulk

a8 n—> oo by Corollary C.1.1 with ¥ = E and (hence) P = G.

Let ¥ be akernel. Fix 6, in © and triangular array {ntheis " 821 of
elements in E satisfying relation (4.4). The following are the Mqondjtions (1)~
(v)* and U(R)—U(wi)t, referred to in the discussion preceeding Lemma 4.1(t).

(i)t (a) Condition (i) of Section 3 holds, with G, replaced by Gaa oF G
uniformly with respect to n > 1 and

(b) J’{f,(’ 00: G)_f’ (" 00:

G,
F( By G a ()

— 0 as n— 0.
lo=6Q 4 OF Gl n

(i) The following two statements hold uniformly in n > 1

(a) thereis 8, > 0 such that condition (i) (a) of Section 3 holds with G,
replaced by G7,or GFy and

(b) (i) f{f/’(-ﬂ,G)"‘/’(-, 001 G__fm)}z f(':ou’g'?,ﬂ) d/"( . ) —— 0
a8 (0, ) —>(0,,6%,) and

—

(@) SC, 0, A=Y, B, G S, b Cn) diu () =0
a8 (6, @) —> (0, G2,).

(it Condition (iii) of Section 3 holds with (@,, Gy replaced by

nn?

(000 G.) OF (Gs G3.) 01 (B2, GE,) Or (Gps O

(iv)t (a) There is 8, > 0 such that condition (iv) (a) of Section 3 holds
with G, replaced by G

nn?

(b) condition (iv) (b) of Section 3 holds, with G, replaced by Grns
uniformly in » > 1 and

© {§¥(. B9, G, )"(., By, @) dp(.) : n > 1} does not contain zero
a8 a limit point.

(v)! there is 8, > O such that condition (v) of Section 3 holds, with G,
replaced by Gy uniformly in n'5 1,

b y G”jn’
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Let 8, > 0 be as considered in (ii)t, (iv)t and (v)!. As before, for any
condition C among (i))—(v)!, UC denotes the condition that condition C
holds, with 6,, 8 and ¢ replaced by 6,8’ and 0", respectively, uniformly
with respect to 6,6/ and 6 in B(6, &) G in BG,, &) and

{ént} 15 ign ina,(e,). The Condition U(vi)t is given below.

U(vi)t (a) sup sup
"2l (0,{E,;} 1sign ) €B(05,00) X tuf€n)

UL ioemmsrs @V @ 6, G f@ 0, G, ) dptm) [JO.Cnn ¥)->0
ag K— oo and (b) U(vi) (b) holds.
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