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SUMMARY. A characterization of the von Mises-Fisher matrix distribution, extending
a result of Bingham and Mardia (1975) for distributions on sphere to distributions on Stiefel
manifold, is obtained.

1. INTRODUCTION AND MAIN RESULT

Bingham and Mardia (1975)—hereafter, abbreviated to BM—proved
that under mild conditions a rotationally symmetric family of distributions
on the sphere must be the von Mises-Fisher family if the mean direction is
a maximum likelihood estimator (MLE) of the location parameter. In view
of Downg’ (1972) extension of the von Mises-Fisher distribution to a Stiefel
mainfold (for further references, see Jupp and Mardia (1979)), it has been
attempted here to extend the result in BM in the direction of Downs’ work.

Let Sap be the class of nx p (n < p) matrices M satisfying MM’ = IL,.
N
For X,, ..., Xy €Spp with X = I X; having full row rank, define the polar

twl

component of X as the matrix (XX')~#X(cf. Downs, 1972). Then the follow-
ing result, proved in the next section, holds.

Theorem. Let & = {p (X; A) = f[tr(AX')] | A € Snp} be a class of non-
uniform densities on Snp. Assume that f is lower semi-continuous at the point
n. Furthermore, suppose that for every positive integral N and for all random

N
samples X;, ..., Xy, with X = 2 X; of full row rank, the polar component of

t=]
X isa MLE of A. Then
p(X ; A) = K exp{ir(AX')}, X € Sup, (1.1)

for some constants A and K, both positive. A o _
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Remark 1. The class 3 considered above has the following property.

p(X; A) = p(XB; A) for all px p orthogonal matrix B with det (B) =1 that
satistics AB -= A. Because of this geometric consideration the matrix 4 can
be thought of as a location parameter for the class & Thus &Fis s

natural extension of the class congidered in BM.

Remark 2. The converse of the theorem is also true, i.e, if X has the
density (1.1), then for i.i.d. observations X, ..., Xy from p(X ; A) the polar

N
component of X = ¥ X is the MLE of A (cf. Downs (1972)).

(w]l

2. PrROOF OF THE THEOREM

For n = 1, our theorem follows from Theorem 2 in BM. Throughont
this scction, we therefore consider the case n > 2, and it appears that‘t‘hls
generalization is non-trivial cspecially for odd n. Observe that the condition
regarding the MLE of A is equivalent to the following : for every positive

N
integral N and every choice of matrices Xj, ..., Xy, 4 € Spp with X ==‘Zl X
of full row rank, the relation

N N N
I fier(AX)] > I flor(AX})] 2.)
=1

{=1

holds, where 4 = (XX')#X. The following lemmas will be helpful.
Lemma 1. For every positive integral N and every choice of matrices

N
Cy, ..., Oy, UeS,,, with C = X Cy positive definite, the relation
fm1

ﬁ fler(Co] > iﬁ fir(TC)] . @2

[=

holds.
Proof. Let L =(I,,0)¢ Spp. Then the lemma follows from (2.1) taking
X, =CL 1<i<N, and A = (U, 0) € Sup.

Lemma 2. For cach x¢[—n, n), f(n) > f(x).

Proof. Follows taking N =1, C, = I, in (2.2) and observing that for
each u e[—n, n], there exists U e S,y satisfying tr(U) = «.
Lemma 8. For each x ¢ [—n, n], flz) < oo.

Proof. In consideration of Lemma 2, it is enough to show that

fln) <o, e (23)
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Taking N =2, U= C;in (2.2), we get f{tr(C,)Ifitr(C,)] > fin)f{tr(C ()],
for every Cy, Cye S,, such that C,+C, is positive definise.  Henoe if (2 3)
does not hold then f(n) = oo, and for every C,, Cye 8,, such that €, : (') 1a
pogitive definite, one must have either (8) f(tr(C;(,)] = 0. or (b) f{tr(('))]
fTtr(Cy)] = co.

For real a, u and positive integral m, define the matrices

cosa sina Q. O
Ha=< ),Q..:’,.@".. One (u) (o' >

—sina  cosa u

Consider first the case of odd n. If n = 2m-1(m > 1) aed (2 3) doen not
hold, then taking Cl = Q:..(l), C, = :,(_,,(l).wﬂ/‘l - - n? (now that
then €}, C, ¢ S, and C,+4C, is positive definite), it follown from the discuwion
in the last paragraph that for each « ¢ (—m/2), 7/2). ecither (n) f(1 . 2m con 2x)
=0, or (b) f(1+2m cos a) = oo. The condition (h) cannot hold over a
set of positive Lebesgue measure. Hence (a) must hold almost evervwhers
(a.e.) over ae(—m(2, m[2), i.e., f(x) = O a.e.over xe(—(2m 1), (2m - 1)) and
& contradiction is reached in consideration of lower semicontinuity of f at the
point n( = 2m+1) (cf. (2.4) below). Similarly, for even n(— 2m, m > 1), if
(2.3) does not hold, then taking C; = Qu, Cy = Qu( . —7/2- a- n/2,
it follows as before that for each a e (—m/2, 7/2), cither () f(n cos 22) 0, or
(b) f(n cos &) = 0, and a contradiction is reached again by the lower wemi-
continuity of f at n.

Lemma 4. For each xe¢[—n, n), f(x) > 0.
Proof. TFirst note that
fln) > 0, .. (2.9)

for otherwise by Lemma 2, f(z) = 0 for each z¢[ —n, n], which is impossible aa
fis a density. Alsc, observe that for any given 8 ¢[0, 7], there exists 7 sotisfy-
ing (cf. BM)

(i) —10 < 9 < 0, (ii) cosf+2cos-g > O, (iii) sind+2siny =0.... (2.5)
Consider first the case of odd n. For n = 2m-+1(m > 1), define
8 ={0:6¢e[0,m], f(1+2m cos ) = 0}.

If 8 is non-empty, then for each 0 ¢ &, one can choose 7 satisfying (2.5) and
then employ (2. 2) with N = 3, C; = Qmg (1), C2 = C; = Qn,(1), U = Qone(1),
where o == —(8-+79)/2, to obtain f[1+2m cos(3(6—7))] = 0 ; but as in Lemma
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2 in BM, because of (2.4) and lower semi-continuity of f at #, this leads to a
contradiction, Hence &8 i8 empty and

f(z) > oforallz e[—(2m—1), 2m+1)]. ... (2.9

We shall now show that f(z) > 0 also for xe[—(2m+1), —(2m—1)). 1f
possible, let there exist z, e [—(2m+1), —(2m—1)) such that f(z,) = 0. Let
6(e[0, 7)) be such that cos 0 = (z,+1)/(2m), and corresponding to this 0,
find  satisfying (2.5). Taking N =3, C; = Qn(—1), Cy = Cy= Quy(1),
U= Q.p(l) in (2.2), and using Lemma 3, one then gets f(2m—1)
{fl1+2m cos (p—0)}}* == 0, which is impossible by (2.6). This proves the
lemma for odd n. The proof for even = is similar.

Lemma 5. For cvery positive integral N' and every choice of matrices
N’ .
Cp,.. Cy UcS,, with £ C; non-negative definite, the relation

f=1

1 furCo) > T feAUC]
holds.
Proof. In view of Lemma 1, it is enough to consider the case when ¢
= g C; is positive semidefinite. Obviously, then I4+vC is posifive definite
for cvery positive integral v.  In Lemma 1, now take N = 14+»N’, and choose

the Cy's such that onc of them equals I and the rest are given by » copies of

each of C, ..., CN. The rest of the proof follows using agruments similar to
those in Lemma 3 in BM.

We now proceed to the final step of our proof. For n = 2m-+1 (m > 1),
in Lemma 5 taking N' = N, C; = :no‘(l) (1< i< N), U= 0}, (1), where

N N
% cos G4 20, sinf; =0, .o (2.7)
=1 =1

it follows that for every positive integral N and for every «,
N N

III f(14+2m cosby) > 'Hl f(14-2m cos(6;—a)), whenever the 6y’s satisfy
Te= =

(2.7). Writing &(0) = log f(1+2m cos6), which is well-defined by Lemmas 3.4,

it follows that for each positive integral N and each o,

N N
% ko) > & Mb—a), e (2.8)
i=1 =1
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whenever the 0;’s satisfy (2.7). The relation (2.8) is equivalent to the relation
(4) in BM and hence as in BM, k(6) = a cosf+b, for every 6, where a( > 0)
and b are some constants. By the definition of A(f), one obtains

flx) = K exp(Az), for z € [—(2m—1), (2m+-1)] ... (2.9)

where K(>0) and A( >0) are constants. By Lemma 5, for every C, Ue S,,,,
SItr(C)1f1—1x(C)] > fltr(UC)1 f[—tr(UC)], so that f(x)f(—z) remains constant
over xe¢[—mn,n]. This, together with (2.9), implies that f(x) = K exp(Az),
for each xe[—n, n], where K, A are constants, both positive, the positiveness
of A being a consequence of the stipulated non-uniformity of f. This proves
the theorem for odd n. The proof for even x is similar.
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