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Abstract: A method for coding of binary image contour using Bézier approximation is proposed. A set of key pixel (guiding
pixels) on the contour is defined which enables the contour to be decomposed into arcs and straight line segments. A set of
cleaning operations has been considered as an intermediate step before producing the final output.

The quality of faithful reproduction of the decoded version has been examined through the objective measures of shape com-
pactness and the percentage error in area. Finally, the bit requirement and the compression ratios for different input images

are compared with the existing ones.
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L. Introduction

Image coding is a technique which represents an
image, or the information contained in it with fewer
bits. Its objective is to compress the data for reduc-
ing its transmission and storage costs while preserv-
ing its information. Various techniques such as spa-
tial domain methods, transform coding, hybrid
coding, interframe coding etc. where both exact (er-
ror-free) and approximate (faithful replica) coding
algorithms for binary and graytone image have
been formulated are available in [1-8]. Approxi-
mate coding of graytone contour for its primitive
(lines and arcs of different degree of curvature)
extraction using fuzzy sets is described by Pal et al.
[4-5].

Bézier approximation technique [6,7] which uses
Bernstein polynomials as the blending function
provides a successful way to approximate an arc
(not having any inflexion point) from a set of
minimum three control points. The approximation
scheme is simple and useful for its axis independen-
ce property. It is also found to be computationally
efficient.

The present work attempts to formulate an algo-

rithm for approximate coding of binary images
based on Bézier approximation technique. A con-
tour is first of all decomposed here into a set of arcs
and line segments. For this, a set of key pixels are
defined on the contour and the vertices of Bézier
characteristic triangles corresponding to an arc are
coded. Regeneration technique involves Ber-
senham’s algorithm [8] in addition to the Bézier
method. During the regeneration process, key
pixels one considered to be the guiding pixels and
their locations are therefore in no way disturbed. In
order to preserve them, and to maintain the connec-
tivity property some intermediate operations e.g.,
deletion and shifting of undesirable pixels generated
by Bézier approximation, and insertion of new
pixels are introduced in order to have better faithful
reproduction.

Effectiveness of the algorithms is compared with
two existing algorithms based on contour run
length coding (CRLC) [9] and discrete line segment
coding (DLSC) [10]. The compression ratios of the
proposed methods are found to be significantly im-
proved without affecting the quality much when a
set of images is considered as input. The compact-
ness and the difference in area between the input
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and output versions keeping the locations of the key
pixels the same are also computed to provide a
measure of the error.

2. Bézier approximation technique
Bernstein polynomials

The Bernstein polynomial approximation of de-
gree m to an arbitrary function F: [0,1] — R is de-
fined as

Blf(0) = 3. f(i/m) dua(®)

where the weighting functions ¢, are, for fixed ¢,
the discrete binomial probability density functions
for a fixed probability,

my . .
¢,-m(t)=<i)c'(1—t)'"“', i=0,1,....m (1)

where

m\ m!
(i)”(m—i)!i!‘

The remarkable characteristics of the Bernstein
polynomials are the extent to which they mimic the
principal features of the primitive function fand the
fact that the Bernstein approximation is always at
least as smooth as the primitive function f where
‘smooth’ refers to the numbers of undulations, the
total variation etc.

Bézier curves

This class of curves was first proposed by Bézier
[6,7]. The parametric form of the curves is

X= Px(t)’ (23.)
Y = P(0). (2b)

Let (xO’yO)’ (xlayl)’- -‘a(xm’ym) be (m + l) or-
dered points in a plane. The Bézier curve associated
with the polygon through the above points is the
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vector valued Bernstein polynomial and is given by

P(t) = iqﬁim(t) X, (3a)
i=0

Py1) = i Pim(1) ¥; (3b)
i=o0

where ¢,,(t) are the binomial probability density
functions of (1).
In the vector form, the equations (3) are

Py =(9) and v»=<Xi>
Py(t) ' Yi

so that

PO = 3 nl0) e @

The points vg,V,,...,V, are known as the guiding
points or the control points.
From equation (4) it is seen that

P0)=v, and P(l)=v,

Thus the range of ¢ significantly extends from 0 to
1. The derivative of P(z) is

P@)= —m(l — )™ v,
m=-1/m - .
+ Z(){ltn 1(l_t)m i
i=1\ 1
—(m =) =™ T
+mt™ " 1y,

Now P'(0) = m(v, — vo) and P'(1) = m(vy, — Vpp— 1)-
Thus the Taylor series expansion near zero is

P(t) = P(0) + t P'(0) + higher order terms of ¢
Vol —mty + -

and an expansion near one is

P(t) = P(1) — (1 — t)P’(1) + higher order
terms of (1 — 1)
v {l —m(l =0} +m(l — )y, ;.

It is now clear that as ¢ — 0 the Bézier polynomial
lies on the line joining v, and v, and for ¢t — 1 on
the line joining v,, _, and v,,. This means that these
lines are tangents to the curve at v, and v,,.
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Also since Y /o ¢;,(f) =1 the Bézier curve lies
inside the convex hull of the control points.

For cubic Bézier curves, m = 3. The control poly-
gon then consists of four control vertices vg, v;, v,,
1. The Bernstein polynomials for this case are

bos) =1 —-03=—1>+3t2 -3t + 1,
$1.5(0) =3t(1 — )% =33 — 61> + 3,
¢y.3() = 3t3(1 — 1) = — 33 + 3¢,
b3,5(0) = 17,

ind the corresponding Bézier curve is

P() = (1 — 1)*vy + 3t(1 — 1)y,
+ 3121 — f)v, + t3v,. %)

Though the cubic Bézier curve is widely used in
computer graphics [11] we have used here its qua-
dratic version to make the procedure faster enough.

For the quadratic Bézier curve, m =2 and the
control polygon always consists of three points. The
Bernstein polynomials in this case are

bo2(t) = (1 — 1) =1 -2t 412,
G120 =2(1 — )t = 2t — 22,

$22(0) =12,
Thus

Yo
P(@t) = [¢02.012.022] | ¥
Vs

Yo

=[t?t 1][c] | v,

V2

where the coefficient matrix

1 -2 1
= | -2 2 o
1 0 0

In the polynomial form the Bézier curve is

P(t) = t2(vo + vy — 2v,)
+ H2v; — 2vg) + V. 6)

This is a second degree polynomial and can be com-
tuted in a much faster way than in the Horner’s
process {11].
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Bresenham algorithm

The underlying concept of the Bresenham algo-
rithm for generating the points for a straight line
segment restricted to an octant, given its two end
points, lies in checking the proximity of the actual
line to the grid location. Let (x,y,) and (x,,y,) be
the two points through which a discrete straight line
segment is required. For this, the intercept of the
line segment with the line at x=1x, + 1, x; +
2,...,x, are considered. If the intercept with the line
at x = x, + liscloser to the line at y = y, + 1, then
the point (x; + 1,y; + 1) better approximates the
line segment in question than the point (x; + 1,y).
This means if the intercept is greater than or equal
to half the distance between (x; +1,y) and
(x; + 1,y, + 1) then the point (x, + 1,y, + 1) is se-

; Yes
I >AaX End
No
Plot(x,y)
Xe—X 4+ 1
<o Yes €2 + 2aY
] e | + 1
No
Xe—Yy+ 1 +
C«— B4 24X

Figure 1. Flow chart for Bresenham’s algorithm for generating
straight line in first octant.
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lected for approximation otherwise the point
(x; + 1,y) is selected. Next, the intercept of the line
segment with the line at x = x; + 2 is considered
and the same logic is applied for the selection of
points.

Now, instead of finding the intercept an error
term, e, is used for the selection purpose. Initially
e = — } and the initial point (x, y,) is selected. The
slope of the line, Ay/Ax is added to e and the sign
of the current value of e = e + Ay/Ax is tested. If it
is negative, then the point is selected along the hori-
zontal line, i.e. x is incremented by one and y re-
mains the same. The error term is then updated by
adding the slope to it. But if the error term is posi-
tive (or two), then the point is selected along the
vertical line, i.e. both x and y are incremented by
one. The error term is updated by decreasing one
from it.

For integer calculation, e is initialized to
€ = 2Ay — Ax because 2Ay — Ax = 2eAx = & (say).
The details of the algorithm for the first octant is
given in the flow-chart as shown in Figure 1.

3. Key pixels and contour approximation
A. Key pixels

In the analytic plane the contour of an object ex-
hibits sharp maxima and minima and these points
can be detected almost accurately without much
difficulty. However when the contour is digitized in
a two-dimensional array space of M x N points or
pels or pixels, the sharpness in the curvature of the
contour is destroyed due to the information loss in-
herent in the process of digitization. The error is
known as the digitization error. Consequently it be-
comes rather difficult and complicated to estimate
the points of maxima and minima. An approximate
solution to this problem is to define a set of pixels,
we call key pixels which are close to the points of
maxima and minima.

For example, consider a function f(x) in the dis-
crete plane. When f(x) is constant in an interval
[k1.k,], the corresponding analytic function f,(x)
may exhibit local maxima and minima (or global
maximum or minimum) anywhere within the inter-
val as shown in the Figures 2(a) and 2(b).
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Figure 2. Possible behaviour of f,(x) when f(x) is constant. (2)

Considering local maxima/minima of £,(x). (b) Considering glo-

bal maximum/minimum of £,(x). M denotes the position of the
key pixel.

If we get a pixel either direct-connected or out-
ward corner-connected to the end pixels of the in-
terval [k,,k,] such that both the values of f(x) at
these pixels are either greater or smaller than its val-
ue in the interval, then we assume a point of maxi-
mum or minimum to exist at the mid-point of the
interval, i.e. at x = (k, + k,)/2 if (k, + k;) is even
and at x = (k; + k, + 1)/2 if (k, + k;) is odd. Let
us consider this point or pixel in the discrete plane
to be a key pixel. Another example for the existence
of a key pixel shown by B is depicted in Figure 3
for which f(x) is not constant over an interval.

B. Definition

A function f(x), constant in [ky,k,], in the dis-
crete plane is said to have a key pixel P at x =¢
(where ¢ = (ky +k,)/2 or (k;+k,+1)/2 cor
responding to even and odd values of (k; + k3))
provided there exist §,, d,€{0,1} such that in both



Volume 8, Number 4

the intervals [(k, — &),k ] and [k,,(k, + 95)]

either flc) > f(x)
or flc) < f(x).

When k; =k, = ¢, the definition is applicable for
Figure 3 where 0, = 6, = 1.

It is to be noted here that the above definition
worresponds to the Figures 2 and 3 where key pixels
lie on a horizontal sequence of pixels for the interval
ki, k5] of x. Similarly, key pixels can also be defined
for a vertical sequence of pixels for the interval
ks, k] of y.

C. Contour approximation

Letk,,k,,...,k, be p key pixels on a contour. The
segment (the Geometrical Entity, GE) between two
key pixels can then be classified as either an arc or
astraight line. If the distance of each pixel from the
line joining the two key pixels is less than a pre-
specified value, o, say, then the segment is consid-
tred to be a straight line (Figure 4(c)); otherwise it
san arc. The arc may again be of two types, with

. dll the pixels either lying on both sides (Figure 4(a))
or lying on the same side (Figure 4(b)) of the line
loining the key pixels. Let us denote the GE in Fig-
ure 4(c) by L (line) and that in Figure 4(b) by CC
lcurve). It is therefore seen that the GE in Figure
{a) is nothing but a combination of two CC’s
Mmeeting at a point Q (point of inflexion).

Therefore, the key pixels on the contour of a two-
lone picture can be used to decompose the contour
into two types of GE’s, namely arc and line.

Let us now consider Figure S where the curve CC
n Figure 4(b) is first of all enclosed within a right

B RS

B |
<

O
f
x

Figure 3. Position of the key pixel when k; = k, = c.
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K] Kj K]

Kj+1 Kj+1 Kj+1
(a) (b) (c)

Figure 4. Types of GE. (a) Arc with inflexion point. (b) Arc. (¢)
Straight line.

triangle ABC where AC (the line joining k; and
k;. ) is the hypotenuse and AB and BC are the
horizontal and vertical lines respectively. It is
proved in Appendix A that the arc CC will always
be confined within a right triangle ABC. A line DF
is then drawn which is parallel to the hypotenuse
AC and passes through the pixel E of maximum dis-
placement with respect to AC. Thus, the subtrian-
gles ADE and CFE, so constructed, may be taken
as the characteristic triangles to approximate the
curve CC by quadratic Bézier approximation tech-
nique.

The preservation of the information of Bézier
characteristic triangles with the help of key pixels
forms the basis of the underlying concept of the pro-
posed coding schemes.

4. Coding schemes
In the proposed method, two points (namely, E

and C) are only stored to preserve the characteristic
triangles corresponding to an arc when its starting

Figure 5. Bézier characteristic triangles for the arc AEC.
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point A is known beforehand. The point D or F
need not be stored because they can automatically
be obtained from the aforesaid points. For example,
D is the point of intersection of the horizontal line
through A and the line through E and parallel to
AC. It is to be noted here that the end point of GE
is the starting point of its following GE.

Regarding straight lines, it is obvious that, only
one point needs to be stored when the starting point
is known.

The algorithm for key pixel extraction is shown
in Appendix B.

Bit requirement

Let there be p different contours in a binary
image of size M x N where M =2™ and N =2".
The contours may be of two types; either closed or
open. If n, and n; are respectively the number of key
pixels (including the end pixels for open contour)
and points of inflexion on a contour, then the
number of arcs and straight lines (segments) is
(m. +n; —1). Of them, let n, be the number of
straight line segments. For closed contours the ini-
tial key pixel is the same as the final key pixel.

The codeword, s, of a GE is variable in length.
s consists of two subwords s, and s,. s; always rep-
resents identity (arc or line) of the GE while s, de-
notes its description. When the GE is an arc, s,
gives the vertices of the characteristic triangle (for
example, 4,E,C in Figure 5). For a straight line
segment, s, indicates the end points of the line seg-
ment. It is obvious that the current end point is al-
ways the starting point of the succeeding GE. The
bit pattern representing a contour is therefore as
displayed in Figure 6.

ry r r3 —

[Type of contour] [Number of GE] [Starting point]

51 o S2
[Identity of GE] [Description of GE]

Sy — S,

[Identity of GE] [Description of GE]

Figure 6. Bit pattern.
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Types of contours (open or closed) can be repre-
sented by a single bit.

In the worst case, all the GE’s may be straight
line segments and the number of key pixels may be
MN. Thus it needs (m + n) bits to represent the to-
tal number of GE’s in a contour.

Identity of GE (arc or line) can be represented by
a single bit.

Given a starting point of the contour, we need
two points for describing an arc and one point for
a straight line. Each point can be represented by
(m + n) bits.

Therefore, for describing an open contour con-
sisting of ((n, + m;, — 1) — n,) arcs and n, lines we
need

T,=m+n)+2(m+n)((n+nm—1) —n)
+ (m + n)n,

bits where the first term corresponds to the starting
point. For a closed contour, the amount of bits re-
quired is T, = T, — (m + n) since the last key pixel
(end point) corresponds to the starting point.

From Figure 6, it is therefore seen that T, (or T)
gives the bit requirement for s,’s only. The total re-
quirement considering the remaining entities of Fig-
ure 6, will therefore be

Btolal=fx-i_lg—*—’})_*_5

where
o= requirement corresponding tor, = |,
B = requirement corresponding to r,
= (m + n),
y = requirement corresponding to s;’s
= +n—1),
o0=T,orT,.
5. Decoding

The coded binary string output corresponding ¥
the method is shown in Figure 7. (m + n) indicate
the word length for the number of GE’s wheress
(m) + (n) denote the co-ordinates of a point.

Decoding of the string of Figure 7 is based on th®
following notations.

The first bit (/,) indicates the type of contour (i¢-
I, = 0 for open and 1 for closed). The next sequenc
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l; ) I Ly ls
(m +n) (m)+(n)  (m)+(n)
Iy Iy ls Iy
(m)+®m  (m)+ ()

ly ls le
(m) + (n)

Figure 7. Coded binary string output.

I, of (m+ n) bits represents the number of GE’s
present in the contour. The first m bits of the se-
quence /5 denote the value of the ordinate whereas
the remaining n bits give the value of the abscissa
of the starting point. Similarly, the co-ordinates of
the first key pixel is given by the sequence I,. Bit I5
says whether the GE between the points repre-
sented by /5 and /, is an arc or a straight line. I5 = 0
for line and 1 for arc. If there is an arc, then the fol-
lowing sequence I, is considered to indicate the
point E (as in Figure 5); otherwise, the sequence /g
will be absent.

As soon as an arc or line is reconstructed, the pre-
ceding key pixel point becomes the new starting
point.

The point designated by the following sequence
[, then represents the new key pixel for further re-
construction.

The procedure for decoding continues until the
number of GE’s, as represented by the sequence I,,
is exhausted. After that, a new contour is started
with the first bit as /.

6. Regeneration technique

During the decoding procedure, if the GE be-
tween two key pixels is found to be a straight line,
then it is generated by the Bresenham algorithm as
mentioned in Section 2. If the GE is an arc, the
Bézier characteristic triangles are first of all con-
structed in order to generate its quadratic approxi-
mated version.
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Recursive computation algorithm

The algorithm for computing the values of 2nd
order Bézier approximation curve using a forward
difference scheme is described below. Let

y=at? +bt+c

be a polynomial representation of the equation (6)
where the constant parameters a, b and c are deter-
mined by the vertices of the Bézier characteristic tri-
angle.

Suppose, a number of points (values of y) on the
arc are to be evaluated for equispaced value of the
independent variable ¢.

The usual Newton’s method of evaluating the
polynomial results in multiplications and does not
make use of the previously computed values to
compute new values.

Assume that the parameter ¢t ranges from 0 to 1.
Let the incremental value be g. Then the cor-
responding y values will be ¢, ag? + bq + ¢, 4aq* +
2bq + ¢, 9aq® + 3bq + c,.... Let us now form the
difference table (see Table 1). Observe that

A%y; = 2aq®
and

Vit2—2YVj+1+y;=2aq*>  forallj>0.

This leads to the recurrence formula y, = 2y, —
y, + 2aq® that involves just three additions to get
the next value from the two preceding values at
hand. Thus one does not need to store all the points
on the curve.

Table 1
Difference table for recursive computation of points of Bézier
curve

! y Ay Aly
¢ aq* + bgq 2aq?
ag*+ bg+c 3aq® + bq 2aq?
2q daq? +2bg + ¢ Saq® + bq 2aq?
3q 9aq® + 3bg + ¢ Tag* + bq
4q 16aq? + 4bq + ¢
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7. Implementation strategies

After coding a single pixel width contour input,
the regeneration algorithm as described before is
used to decode and result in its approximated ver-
sion (output). During regeneration. the outer con-
tour is only traced using Freeman's chain code
(clockwise scnse) assuring the positions of key
pixels on it. In other words. key pixels are consid-
ered to be the guiding pixels (being important for
preserving the input shape) during reproduction.

It is to be noted that due to the approximation
scheme. sometimes the following undesirable situa-
tions may arisc:

(1) The regenerated contour may not have single
pixcl width.

(2) The key pixel may become an interior pixel of
the contour.

To overcome these situations we trace the con-
tours from the ordered regenerated data sct, con-
sidering the following operations.

A. Deletion of pixels

During the contour tracing if a pixel on the con-
tour finds more than one neighbour in its 8-neigh-
bourhood domain, then the exterior pixel on the
contour is kept while deleting the rest (pixels on the
interior contour). But if there is a key pixel falling
in such neighbourhood, then the key pixel is re-
tained as the contour pixel and the rest are deleted.
This cnables us to keep the key pixel always on the
contour, thus making the approximation of the in-
put better. Figures 8(a) and (b) depict the situations.
Considering ‘¢’ to be the current pixel and ‘p’ the
previous pixel, the contour (clockwise) is ‘a’ for a
situation as shown in Figure 8(a) but if the situation
is as in Figure 8(b) the next pixel on the contour is
then k (the key pixel).

P Y

o o o®
=~ o ®

C
€

(a) (b

C
€

Figure 8. Deletion of pixels: (a) in absence of key pixel, (b) in
presence of key pixel.
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d d ¢
c k - k
b b
a a
(a) (b)

Figure 9. Shifting of pixels: (a) contour before shifting, (b) con-
tour after shifting.

B. Shifting of pixels

Suppose a GE is generated and a key pixel is
reached. Now during the generation of a following
GE, its first data point may make the preceding key
pixel lie on the interior contour. For example, con-
sider Figure 9(a). Here a b k is part of the GE
which is already generated. Now generating the
next GE: k ¢ d,..., the first move from k to¢
makes the key pixel (k) lie on an interior contour.

In such cases, the data point c is shifted as shown
in Figure 9(b). This preserves connectedness of the
pixel ¢ with both the GE’s and also ensures single
pixel width of the contour.

C. Undesirable loop

Sometimes in the vicinity of key pixels an unde-
sirable loop (contour with a single pixel hole) may
appear due to the approximated generation proc-
dure. For example consider Figure 10. Here GE'
a k; k, kj are already generated. The next mov
from k; to b creates an undesirable loop having sit-
gle pixel hole.

To overcome this situation, the pixel b is shifted
along with an insertion of a new pixel ¢ (as show?

d d
C c ¢
b - b
ky ks ki  k;
a k, a k,
(a) (b)

Figure 10. Undesirable loop: (a) before cleaning, (b) after clea™
ing.
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in Figure 10(b)). Since the shifting of b alone loses 8. Results and discussion

the connectivity property between k 3 and the subse-

quent pixels, it necessitates an insertion of a new Figures 11(a), 12(a) and 13 show the digital con-
pixel whose location is governed by the concept of tours of three different figures, namely, butterfly,
minimum connected path. chromosome and numeral-eight, which were con-
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Figure 11. (a) Butterfly input. (b) Regenerated version. (c) Regenerated version before cleaning.
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Figure 12. (a) Chromosome input. (b) Regenerated version.

sidered as input to the proposed coding schemes.
The key pixels and the points of inflexion as de-
tected on the input patterns are marked by ‘3" and
‘X’ respectively.

In Figure 13, the input image contour is repre-
sented by the pixels marked ‘5’ and ‘0’ along with
‘3’ denoting its key pixels. The output correspond-
ing to the butterfly and chromosome images are
shown in Figures 11(b) and 12(b) respectively. The
output version corresponding to the numeral-8
contour is marked by ‘5’ and ‘¥’ in Figure 13 super-
imposing on its input. This superimposed diagram
facilitates one to examine the visual proximity be-
tween the input and output versions. It is to be not-
ed in this connection that the positions of key pixels
in both input and output remain unaltered.

246

For coding the input patterns, the numbers of
GE’s in the butterfly, chromosome and numeral-3
were found to be 27, 19 and 16 respectively. Out of
these figures the numbers of arcs were 9, 16 and 16.
The contour of the numeral-8, as expected, has the
minimum number of GE’s and has no straight lin¢.

As a typical illustration, the effectiveness of the
cleaning operations (Section 7) performed on tht
generated points is demonstrated only for the bul’
terfly image. Figure 11(c) shows such an interm¢
diate state beforing producing its final decoded out
put. Here, 0 denotes a pixel deleted and X
corresponds to the position where a pixel is inserted
to keep connectivity.

In order to study the efficiency of the codiné
schemes, the bit requirements for different input im’
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Figure 13. Numeral-8 input and its regenerated output together.

ages and their relative compression ratios are com-
pared with those in the CRLC and DLSC methods.
it is shown in Table 2 that in the proposed tech-
nique, the bit requirements are significantly less. It
is obvious that the numeral-8 image consisting of
few large arcs only provided higher compression
ratio. The butterfly image on the other hand, has
the largest number of GE’s and thus provides
lowest compression ratio.

As the coding schemes are approximate the re-
generated image deviates from its original version.
To observe the deviation of regenerated image qual-
ity through an objective measure we have calculat-

Table 2
Bit requirement

November 1988

Bit requirement Ore % Orer %
(rel. (rel.
Figure CRLC DLSC Proposed CRLC) DLSC)
method
Butterfly 799 531 435 183.67 122.06
Chromosome 1175 603 452 259.95 13340
Numeral-8 2085 1169 474 43987  246.62
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Table 3

Error in regeneration

Figure % Error in area Compactness
Proposed Original Generated
method figure figure

Butterfly 8.63 0.024635 0.025393

Chromosome 6.8 0.016061 0.016672

Numeral-8 2.92 0.014728 0.014589

ed the error in area and the shape compactness. For
the calculation of the area and the perimeter of the
contour we have used the technique proposed by
Kulpa [12]. Since the key pixels are always on the
contour and the generated arcs are between them
and restricted by the respective Bézier characteristic
triangles, the maximum error for an arc is the area
of its pair of Bézier characteristic triangles. Also, for
the above constraint the shape compactness can
provide a good measure of the distortion intro-
duced into the decoded images. Table 3 shows both
the percentage error and the compactness of figures.
It is thus seen that the decoded image in each case
is a faithful reproduction of its input version. Here
too, the butterfly/numeral-8 contour having the
largest/smallest number of GE’s incurred highest/
lowest % error in their regeneration.

Finally, it is to be mentioned here that since the
regeneration procedure uses the quadratic Bézier
approximation technique, the decoded image dis-
play is very fast.
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Appendix A

Proposition 1. /n the discrete plane all the pixels on
an arc between two key pixels remain always on or
inside a right triangle with the line joining the key
pixels as the hypotenuse. The other two sides of the
right triangle are the horizontal and the vertical lines
through the key pixels.

Proof. When the key pixel is on the horizontal line
at x = c it follows from the definition of key pixel,
that

either f{c) > f(x)
or flc) < f(x)

in both the intervals [k, — 8;,k,] and [k,,k, + 3]
where f(x) is constant in [k, k,] and 6,,6,€{0,1}.
Thus

(1) Pixels at k, and k, are either corner connected
or direct connected or its combination to the neigh-
bouring pixels outside the interval [k, k,].

(2) When k| = k, = ¢, the key pixel will have at
least one corner connection to its neighbouring
pixels.
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c B

A

Figure Al. An arc with its associated right triangle.

Similar arguments hold when the key pixel lies on
a vertical line.

Let ANB be the arc with 4 and B being two suc-
cessive key pixels as shown in Figure Al. Now a
pixel on the arc can go outside the line AC or BC
if and only if (1) there exists a sequence of collinear
pixels such that its end pixels are either corner con-
nected or direct connected or its combination, or
(2) there exists a pixel which has at least one corner
connection with its neighbouring pixel.

Both these conditions lead to the existence of
another key pixel outside the line AC or BC. This
is a contradiction.

A ppendix B
Algorithm for extraction of key pixels

{P;}f_, are the contour points in the binary

PATTERN RECOGNITION LETTERS
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4 3 2
5 ° 1
6 7 8

Figure BI. Directional codes with respect to @.

image and {(x;y;)}/=, are their position co-ordi-
nates. Since, for a closed contour, there is a possi-
bility of missing the first key pixel we need to exam-
ine a few more points after the starting point is
reached so as-to enable one to get the same back.

Step 1. Set i« 1, count « 1.

Find the initial direction code between P; and
P, ., according to Figure B1. Let it be d;.

Step 2. Increment i — i + 1; if i = n go to Step 7;
otherwise find the directional code between P; and
P,, ;. Let it be d,.

Step 3. If d, = d, go to Step 2; otherwise if d; div
2=0andd,div2=0orif|d, —d,| =3 or 5 then
return (x;, y;).

Step 4. Increment i — i+ 1; if i = n go to Step 7;
otherwise find the direction code between P; and
P;, ;. Let it be dj.

Step 5. If dy = d, then count « count + 1 and go
to Step 4; otherwise if [d; —ds| =0 or 1 then set
count « 1, d, «+d5 and go to Step 2 else do Step
6.

Step 6. If count div 2 = 0 then return (x; - count/25
Vi - count/2) OtheTWise return(X; - count iy 2+ i - count div 2)-

Step 7. Stop.
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