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An efficient partitional clustering technique, called SAKM-clustering, that integrates
the power of simulated annealing for obtaining minimum energy configuration, and the
searching capability of K-means algorithm is proposed in this article. The clustering
methodology is used to search for appropriate clusters in multidimensional feature space
such that a similarity metric of the resulting clusters is optimized. Data points are
redistributed among the clusters probabilistically, so that points that are farther away
from the cluster center have higher probabilities of migrating to other clusters than those
which are closer to it. The superiority of the SAKM-clustering algorithm over the widely
used K-means algorithm is extensively demonstrated for artificial and real life data sets.
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1. Introduction

Simulated annealing (SA)*1%:18:21:22 j5 4 recent technique for finding good solutions
to a wide variety of combinatorial optimization problems. It mimics the principles
of the annealing procedure which is a physical process where a crystal is cooled
down from the liquid to the solid phase. If the cooling is done slowly enough, the
energy state of the crystal at the end will be very close to its minimum value.
Simulation of this physical cooling may be done with the Metropolis algorithm. It
generates sequences of configurations in the following way: given a current configu-
ration C; with energy E;, the next configuration C; (with energy E;) is generated
by applying a small perturbation in C;. If (E; — E;) is less than or equal to 0, then
C; is accepted as the current configuration. Otherwise, it is accepted with a prob-
ability exp(—Ek'L;TEi), where T and kg represent the temperature and Boltzmann’s
constant respectively. If the lowering of the temperature is done slowly enough,
the crystal reaches thermal equilibrium at each temperature. In the Metropolis al-
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gorithm this is achieved by applying sufficiently large number of perturbations at
each temperature.

The SA process may be viewed as a graph with an energy F assigned to each
node. Here, the nodes are called states, the arcs represent moves from one state toa
neighbouring state, and the energy is equivalent to cost. The algorithm starts from
a random initial configuration at high temperature. It then proceeds by generating
new candidate states and accepting/rejecting them according to a probability which
is a function of the current temperature and energy difference. The temperature is
gradually decreased towards a minimum value, while the system settles down to a
stable low energy state.

Clustering!»%%1%:23 is an important unsupervised classification technique where
a set of patterns, usually vectors in a multidimensional space, are grouped into
clusters in such a way that patterns in the same cluster are similar in some sense and
patterns in different clusters are dissimilar in the same sense. For this, it is necessary
to first define a measure of similarity which establishes a rule for assigning patterns
to the domain of a particular cluster centre. One such measure of similarity, that
has been adopted in this article, is the Euclidean distance D between two patterns
x and z defined by D = ||x — z||. Smaller the distance between x and z, greater is
the similarity between the two and vice versa. Another well-known measure that
can be found in the literature is Mahalanobis distance.!1:2®> One may note that an
exhaustive search in the feature space in order to provide the optimal clusters has
combinatorial complexity. Therefore, the application of SA, which is known to be
effective in large and multimodal search space, seems appropriate and natural.

Some clustering techniques that are available in the literature are branch and
bound procedure,!* maximum likelihood estimate technique,?? graph theoretic
approaches.! Branch and bound procedure uses a tree search technique for search-
ing the entire solution space in order to classify a given set of points into a fixed
number of clusters, along with a criterion for eliminating subtrees which do not con-
tain the optimum result. Here the number of nodes to be searched increases rapidly
with the size of the data. Therefore, a proper choice of the criterion for eliminating
subtrees becomes crucial.” The maximum likelihood estimate technique performs
clustering by computing the posterior probabilities of the classes after assuming a
particular distribution of the data set. In the graph theoretic approach, a directed
tree is formed among the data set by estimating the density gradient at each point.
The clustering is realized by finding the valley of the density function. It is known
that the quality of the result depends wholly on the performance of the estimation
technique for the density gradient, particularly in the low density area of the valley.
One recent attempt regarding the application of genetic algorithms (GAs)*8 to the
clustering problem may be found in Ref. 16. Here a partition of the data set is
encoded as a string whose length is equal to the size of the data set. Consequently
the method will fail to attain good results quickly for large data set since the string
length to be handled by GA becomes large. Extensive studies dealing with com-
parative analysis of different clustering methods suggest that there is no general
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strategy which works equally well in different problem domains. However, it has
been found that it is usually beneficial to run schemes that are simpler, and exe-
cute them several times, rather than using schemes that are very complex but need
to be run only once.

One such widely used and intuitively simple clustering technique is the K-means
algorithm,?3 which optimizes the distance criterion by minimizing the intra cluster
spread. Since our aim is to propose a clustering technique based on SA, a criterion is
required whose optimization would provide the final clusters. An intuitively simple
criterion is within cluster spread, which, as in the K-means algorithm, needs to
be minimized for good clustering. However, unlike the K-means algorithm which
may get stuck at values which are not optimal,!® the proposed technique should be
able to provide good results irrespective of the starting configuration. It is towards
this goal that we have integrated the simplicity of the K-means algorithm with
the capability of SA in avoiding local optima for developing a clustering technique
called SAKM-clustering algorithm (for simulated annealing based clustering using
K-means).

Experimental results comparing the SAKM-clustering algorithm with the K-
means algorithm are provided for several artificial and real life data sets. Since
our purpose is to demonstrate the effectiveness of the proposed technique for a
wide variety of data sets, we have chosen artificial and real life data sets with both
overlapping and nonoverlapping class boundaries, where the number of dimensions
ranges from two to ten and the number of clusters ranges from two to six.

2. Partitional Clustering

The problem of partitional clustering is formally stated as follows. Given n patterns
in an N-dimensional Euclidean space, RY, determine a partition of the patterns
into K groups, or clusters, such that the patterns in a cluster are more similar to
each other than to patterns in different clusters. There are two issues that need to be
addressed in the definition of the clustering strategy. The first problem to be solved
is how to translate in some mathematical formula the criterion that represents the
intuitive notions about cluster. One such mathematical formulation of the clustering
criterion is as follows.

Let the n points {x1,X2,...,Xn} be represented by S and the K clusters by
{Cl, Cz, C3, ey CK} Then

C;#0 fori=1,...,K
CiNC;=0 fori=1,...,K, j=1,...,Kandi#j, and
UiK=lci:S'

The second problem which needs to be focussed on is how to check, in reasonable
time, all possible partitions in order to find those that optimize the defined criterion.
It is shown in Refs. 1 and 20 that if exhaustive enumeration is used to solve a
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clustering problem with n points and K clusters, then one requires to evaluate

1 & .
=Y (-1)%m
K 2

partitions. For a data set of size 10 with 2 clusters, the value is 2° — 1 (= 511),
while that of size 50 with 2 clusters is 24° — 1 (i.e. of the order of 10'%).

Since enumerating all possible partitions is a combinatorial problem, heuristics
are applied for getting good solutions in polynomial time. In this article our aim is to
design a clustering technique which is simple and able to provide good solution fast
enough while being independent of the distribution of the data set. The principles
of the K-means algorithm are utilized for devising such a technique, along with
the capability of an annealing procedure for providing the requisite perturbation to
force the system towards a state with minimum energy. The steps of the K-means
algorithm?® are therefore first described in brief.

Step 1. Choose K initial cluster centers z1, 21, . ..,zx randomly from the n points
{Xl,X2, e ,Xn}.
Step 2. Assign point x;, ¢ =1,2,...,n to cluster C;, j € {1,2,...,K} iff

“Xi—Zj“<”Xi-Zp”, p=1,2v"':K7 and];ﬁp
Ties are resolved arbitrarily.
Step 3. Compute new cluster centres z},z3,...,2z} as follows:
1 ,
z = Yox;,  i=12,... K
z;€C;

where n; is the number of elements belonging to cluster C;.
Step 4. If 2z} =2;,i=1,2,..., K, then terminate. Otherwise go to step 2.

Note that in case the process does not terminate at Step 4 normally, then it is
executed for a maximum fixed number of generations.

It has been shown in Ref. 19 that K-means algorithm may converge to values
that are not optimal. Also global solutions of large problems cannot be found with a
reasonable amount of computational effort.2° It is because of these factors that sev-
eral approximate methods have been developed to solve the underlying optimization
problem. One such method using SA is described in the next section.

3. Clustering Using Simulated Annealing
3.1. Basic principle

The searching capability of simulated annealing has been used in this article for the
purpose of appropriately determining a fixed number K of cluster centers in R¥;
thereby suitably clustering the set of n unlabeled points. The clustering metric that
has been adopted is the sum of the Euclidean distances of the points from their
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respective cluster centers. Thus like K-means algorithm the simulated annealing
process tries to minimize the intra cluster spread.

Mathematically, the clustering metric M for the K clusters C1,Cs,...,Ck is
given by

K
M(C1,C,es C) =D > |Ix5 — 24]] .
i=1x;€C;
The goal of the method is to search for the appropriate cluster centers z1, zs, . .., Zx
such that the clustering metric M is minimized. In this article, we have used M
as the energy F associated with a particular configuration i.e. a partition of the n
points in K clusters.

3.2. SAKM-clustering algorithm

In the SAKM-clustering algorithm, the data points are initially assigned to KX
clusters known e priori, randomly, and the cluster centers are computed as in
K-means algorithm. Each element in a cluster has a certain degree of membership
to it which is inversely proportional to its Euclidean distance from the cluster center.
So elements that are at a larger distance from the centre are the fittest candidates
for redistribution to another cluster. We have redistributed an element z; in cluster
C; to cluster C, with probability
—[Dix — Diz]+

o (12021 »
where [z]+ = max(z,0), and D;, = ||z; —2x|| and k # j. T is a temperature sched-
ule, which is a sequence of strictly positive numbers such that Ty > T, > ... Ty = 0,
(limt — o0). The suffix ¢ of T indicates the number of generations through the
annealing process. The simulated annealing algorithm is shown in Fig. 1.

1. T = Tiax

2. Generate initial configuration (C) with energy E by randomly distributing the
points to K clusters.

. while(T > Tpyin)

for i =1 to Ny do /* Nr is the number of generations a temperature I' */

Evolve C' with energy E' from C by redistributing points in C following

equation 1

If(E'—E<0)C+C

Else C + C’ with probability exp(—%ﬁ

end for

Decrement T'

10. end while

obow

©®No

Fig. 1. Basic steps in SA.
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3.2.1. The temperature schedule

The asymptotic convergence (i.e. at t — 00) of the SA is guaranteed for a logarith-
mic annealing schedule of the form T; = T1/(1 + Int), where ¢ > 1 and T} is the
initial temperature. However, in practice, the logarithmic annealing is far too slow
and hence we have used a geometric schedule of the form T; = (1 — ) x Ty, where
o is a positive real number close to zero. As T3 — 0, no more perturbation of the
cluster configuration is possible and hence termination condition is assumed to be

reached. In practice, the state of the system configuration is found to be frozen well
before this.

4. Implementation Results

The experimental results comparing the SAKM-clustering algorithm with the K-
means algorithm are provided for three artificial data sets (Data 1, Data 2 and

Data 3) and three real life data sets (Vowel, Iris and Crude Oil) respectively. These
are first described below:

Artificial Data Sets:

Data 1. This is a nonoverlapping two-dimensional data set with two clusters. It has
10 points. The value of K is chosen to be 2 for this data set.

Data 2. This is a nonoverlapping two-dimensional data set with three clusters. It
has 76 points. The value of K is chosen to be 3 for this data set.

Data 3. This is an overlapping ten-dimensional data set generated using a triangular
distribution of the form shown in Fig. 2 for two classes, 1 and 2. It has 1000 data
points. The value of K is chosen to be 2 for this data set. The range for class 1 is

1.51

f(x)

0.5[
Class 1 Class 2

- . )
[ 05 1 15 2 25 3 35 4
X

Fig. 2. Triangular distribution along the X axis.
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[0,2] x [0,2] x [0,2]....10 times, and that for class 2 is [1,3] x [0,2] x [0, 2] .. .9 times,
with the corresponding peaks at (1,1) and (2,1). The distribution along the first
axis (X) for class 1 may be formally quantified as

fi(zg) =0 for z<0

fi(z) = for 0<z<1

filzg) =2—-z for 1<x<2

filz) = for =z >2.
Similarly for class 2

falz for <1

) =
fa(@) =2z -1 for 1<x<2
)

fa(z) =3—z for 2<x<3

fa(z) =0 for =>3.
The distribution along the other nine axes (Y;, i =1,2,...,9) for both the classes is
flyi) =0 for y <0
fy) =wi for 0<y; <1
flyi) =2 for 1<y; <2
f(ys) = for y;>2.

Real Life Data Sets:

Vowel Data. This data consists of 871 Indian Telugu vowel sounds.!” These were
uttered in a consonant-vowel-consonant context by three male speakers in the age
group of 30-35 years. The data set has three features Fy, F and F3, corresponding
to the first, second and third vowel format frequencies, and six overlapping classes
{é,a,i,u,e,0}. The value of K is therefore chosen to be 6 for this data. Figure 3
shows the distribution of the six classes in the F; — F3 plane.

Iris Data. This data represents different categories of irises having four feature
values. The four feature values represent the sepal length, sepal width, petal length
and the petal width in centimeters.® It has three classes (with some overlap between
classes 2 and 3) with 50 samples per class. The value of K is therefore chosen to
be 3 for this data.

Crude Oil Data. This overlapping datal? has 56 data points, 5 features and 3 classes.
Hence the value of K is chosen to be 3 for this data set.

For K-means algorithm maximum of 1000 generations are allowed although it
was observed that in all the experiments the algorithm terminated much before
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Fig. 3. Vowel data in the Fy — F; plane.

that. The SAKM-clustering algorithm is executed for a maximum 200 generations.
The values of a and T are chosen to be 0.05 and 100 respectively. In a part of
the investigation, we have demonstrated the variation of energy with the number
of generations for several values of a for one data. The results of implementation
of the K-means algorithm and SAKM-clustering algorithm are shown in Tables 1-
6 for Data 1, Data 2, Data 3, Vowel, Iris and Crude Oil respectively. Although
both the algorithms were run for 100 simulations, for the purpose of demonstration,
results are provided for only five different initial configurations.

For Data 1 (Table 1), it is found that the SAKM-clustering algorithm provides
the optimal value of 2.225498 in all the runs. K-means algorithm also attains this
value most of the times (67%). However in the other cases, it gets stuck at a
suboptimal value 5.383132. For Data 2 (Table 2), SAKM-clustering attains the best
value of 47.616294 in all the runs. K-means, on the other hand, attains this value in
51% of the total runs, while in other runs it gets stuck at different suboptimal values.
For Data 3 (Table 3), the best values obtained by SAKM-clustering algorithm and
K-means algorithm are 1246.226685 and 1246.236680 obtained in 63% and 18% of
total runs respectively.

For Vowel (Table 4), the K-means algorithm attains the best value of
149912.625831 only once (out of 100 runs). The best value obtained by SAKM-
clustering algorithm is 149409.250128 (which is obtained in 18% of the total runs).
Notably, the latter always obtains values of M that are better than the best ob-
tained by the former. For Iris (Table 5) and Crude Oil (Table 6) data sets, the
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Table 1. M obtained by K-means and SAKM-
clustering algorithm for five different initial configura-
tions for Data 1 when K = 2.

Initial configuration K-means SAKM-clustering

1 5.383132 2.225498
2 2.225498 2.225498
3 2.225498 2.225498
4 5.383132 2.225498
5 2.225498 2.225498

Table 2. M obtained by K-means and SAKM-clustering
algorithm for five different initial configurations for
Data 2 when K = 3.

Initial configuration K-means SAKM-clustering
1 47.616294 47.616294
2 61.613329 47.616294
3 47.616294 47.616294
4 61.613329 47.616294
5 47.616294 47.616294

Table 3. A obtained by K-means and SAKM-clustering
algorithm for five different initial configurations for Data 3

when K = 2.
Initial configuration K-means SAKM-clustering
1 1246.239153 1246.235596
2 1246.239153 1246.226685
3 1246.236680 1246.231934
4 1246.239153 1246.226685
5 1246.237127 1246.226685

Table 4. M obtained by K-means and SAKM-clustering al-
gorithm for five different initial configurations for Vowel when

K =6.

Initial configuration K-means SAKM-clustering
1 149912.625831 149409.250128
2 150466.266983 149409.312288
3 149913.078096 149429.391189
4 150488.406180 149443.484103
5 150462.450107 149409.312998
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Fig. 4. Variation of energy with generations for Data 1.

Table 5. M obtained by K-means and SAKM-clustering
algorithm for five different initial configurations for Iris
when K = 3.

Initial Configuration K-means SAKM-clustering

1 97.621869 97.453773
2 98.406574 97.571774
3 98.177353 97.571774
4 97.896373 97.453773
5 98.219574 97.352772

SAKM-clustering algorithm attains the best values of 97.352772 and 279.45815C
respectively. The K-means algorithm, on the other hand, fails to attain these values
in any of its runs. The best that K-means algorithm achieved are 97.621869 (reached
25% of the times) and 279.743216 (reached 100% of the times) respectively.
Figures 4-9 demonstrate the variation of the energy values (in logarithmic scale)
with the number of generations for SAKM-algorithm for the above mentioned six
data sets respectively. All the figures show that in the initial stages the system
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Fig. 5. Variation of energy with generations for Data 2.

Table 6. M obtained by K-means and SAKM-clustering
algorithm for five different initial configurations for Crude
Oil when K = 3.

Initial Configuration K-means SAKM-clustering

1 279.743216 279.458150
2 279.743216 279.458150
3 279.743216 279.458150
4 279.743216 279.458150
5 279.743216 279.458150

is unstable indicated by the significant changes in the energy values. But after
some generations, the system slowly settles down to a more stable state, providing
small improvement in steps. Figure 10 shows the variation of energy values with
the number of generations for Data 2 for five different values of a respectively.
As is evident from the figure, the convergence of SAKM algorithm is dependent
on the value of a, which needs to be set appropriately for good performance of

the algorithm.
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Fig. 7. Variation of energy with generations for Vowel.
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Fig. 9. Variation of energy with generations for Crude Oil.
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Fig. 10. Variation of energy with generations for Data 2 with different alpha values.

5. Discussion and Conclusions

A simulated annealing based clustering algorithm, called SAKM-clustering, has
been developed in this article. The power of annealing procedure for providing stable
minimum energy configuration has been integrated with the principal of K-means
algorithm to search for appropriate clusters which minimizes the clustering metric
M. In order to demonstrate the effectiveness of the SAKM-clustering algorithm,
several artificial and real life data sets with the number of dimensions ranging from
two to ten and the number of clusters ranging from two to six have been considered.

The results show that SAKM-clustering algorithm provides a performance that
is significantly superior to that of the K-means algorithm for the overlapping and
complex data sets like Vowel. On the other hand, for simple data sets some marginal
improvement in performance is obtained over the K-means algorithm. Interestingly,
the K-means algorithm is sometimes found to get stuck at suboptimal values, even
for very simple data, while SAKM-clustering technique has the ability to overcome
this. Moreover since the proposed method is inherently very simple, it may be used
as an initial analysis tool for a wide variety of data sets in different domains.

The principal of SAKM-clustering algorithm may be extended to the case where
the number of cluster are not known a priori. In this case cluster indices like Davis
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Bouldin index, Dunn’s index and some recent generalized indices® may be used,
~hich can evolve the number of clusters automatically, while optimizing the cluster-
ing metric. Research in this direction is currently being carried out by the authors.
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