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A bstract: A n expression is obtained  for m axim um  difference between the upper and the lower bounds to Bayesian probability 
of e rro r  in term s of the generalized separability  m easures of Lissack and  F u  (Z.J. The expression gives the m agnitude of looseness 
of e rro r  b o u n d s for different values of a.
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1. Introduction

The Bayesian probability of error (P e) is an optimum measure of effectiveness of a set of features selected 
for the purpose of pattern  recognition. Owing to the difficulty involved in com putation (or estimation) of 

- P e, various probabilistic separability criteria have been suggested in the past as indirect measures of feature 
effectiveness [1, Ch. 7], The generalized separability measures (La, 0 <  a <  oo), suggested by Lissack and Fu 
[2], are one such series of feature effectiveness measures defined in terms of the difference between the a pos­
teriori probabilities of pattern classes.

It is w orth noting that both the upper and the lower bounds to P e in terms of a measure are indicative 
of how closely the measure approxim ates P e. If the resulting upper bound is sufficiently low, then the set 
of features under consideration are ‘acceptable’. On the o ther hand, a sufficiently high lower bound leads 
to a ‘rejection’ decision. Difference between the upper bound and the lower bound is an indicator of the 
overall closeness of a measure to P e. In this letter some results are proved from which one can know the 
m agnitude of the looseness of the existing Pe bounds provided by L a.

2. Error bounds in terms of La

Suppose the a priori probabilities of the two classes and w 2 are n l and n 2, respectively (0 <  n 1,n2 < 1, 
jjj +  ?t2 =  1). Let p(x \u ) l ) and p(x\co2) be the class-conditional probability density functions of the feature 
vector X, assum ed to  be continuous, in the two classes and co2, respectively. Then the Bayesian error p rob­
ability [1, C h. 2] is given by

P . = m in f^  p(x  | co^, n2p(x  | co2)] dx (1)



and the generalized seperability measure proposed by Lissack and Fu [2] is defined by

L,  = | PU»\ I ■*) -  PU»2 1x ) IX * )  dx ' 0 <  a <  co (2)

».v

where / ’(<>, j v), i = 1.2 is the a posteriori probability of a>; given X  = x, Q x denotes the sample space of X  
and

/>( \ ) = n ,/>( v o , ) +  V | c>2) (^)

denotes the mixture density of X.
11 can be seen that L,  is a straightforward generalization of the K olm ogorov variational distance [3] defined

bv

K = \ |  | n,p( \  11» , ) -  n 2p(x | m 2) | dx (4)

"v

and. for 7 = 1 .  the measure L,  reduces to 2K. In this case,

/., = 2K =  I -  2 / \ .  (5)

Lissack and Fu (2] obtained the following error bounds. For 0 <  a <  1,

: ! i - I M 1" !  (6)

anil for 1 < r < /  ,

i l l  - U . J 1-’ ! < / \ < i ; i  - Z . . } .  (7)

3. Looseness of error bounds

As indicated above, for a =  1 the lower and the upper bounds coincide. An increase or decrease in the 
value of i  loosens the bounds. From  the following theorem  one can ob tain  inform ation about the magnitude 
of the loosening of the bounds depending on the value of a.

Theorem, (i) For a given a >  1 the maximum value o f d {  = upper bound -  lower bound) is given by

^a x  =  M *‘ 1/,I_1,- a - ^ - 1>}. (8)

(ii) And the value o f  <5max increases with increase in a.

Proof, (i) For a > 1,

a = ii 1 -  L.) - M l -  IL J 1'*} =  -  La}. (9)



D ifferentiating d with respect to L „ one gets 

ALa

Equating the above expression to  zero leads to 

L x = - 1'.

It is easy to see tha t 

d 2<5

d L 2
< 0 .

(10)

(11)

(12)

Thus, the m axim um  value of S occurs at the value of L a given in equation (11). Putting this value of L x in 
(9) gives

<5max =  *{[« -  ‘/(° “ u]1/a -  a -  -  »>} =  |{ a  -  1/(“ - «  -  a - " 1J}.

(ii) Differentiating <5max with respect to  a,

log a 1_  i j a -  i/(«- i) 
da 2 (a — l ) 2 (a — l)a

— a -  a/(or -  1) 1log «_________
(a — l)2 a — 1

1 f log a

2 (_(a — l)2
+  ■

a — 1
(13)

Using the identity a /(a  — 1) =  1 +  l/(a  — 1) in (13) leads to

d<5max I f  log a
da 2 [(a  — 1) 

1 f log a

i)(i _A) + _L
a a — 1

1

a

2 j ( a - l ) 2
l/(a- 1)

( 1 - - )a
(14)

It is easy to  see tha t the expression in the right hand side of (14) is positive. Hence the desired result is 
proved. □

F or a given a >  1 the upper and the lower bounds of P e corresponding to  the maxim um  difference between 
the two bounds are given by

(15)

and

(16)

Figure 1 shows how the values of P y and P1; vary with a. It may be noted that as a increases from 1 to
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Figure 1. Looseness in probability of erro r (Pe) bounds given by L 2 for different values of a >  I .

cc the maximum difference between the two bounds increases from 0 to 0.5. This shows how the bounds 
loosen with increasing a. W ith increasing a the com putation of L a becomes m ore demanding. Therefore, it 
appears that there is no advantage in going for high values of a. The bounds corresponding to  L 2 (oc =  -) 
are tighter than  most of the existing bounds associated with the other two-class measures. As can be seen 
from Figure 1 the maximum difference between the two bounds in this case is 0.125. L 2 has the advantage 
over L i  in that L 2 involves the operation of raising P((i>i | x) — P(co2 (x) to the power of 2 which is m a th em ati­
cally m ore handy to deal with than the difference operation involved in L x.

It is easy to verify that, following a similar procedure as in the theorem above, for 0 < a < 1, the m axim um  
difference between the two bounds increases from 0 to 0.5 with decrease in the value of a from 1 to  0.

4. Concluding remarks

The maximum difference between the upper and the lower bounds to P e in terms of L x m onotonically in- 
creases from 0 to 0.5 as the value of a increases from 1 to oo or it decreases from 1 to 0. /. , is directly related 
to  P e. In a two-class pattern recognition problem, therefore, it makes no difference whether we use P e or 
L j. M athem atical treatm ent of L 2 is more convenient than that of L t . M oreover, L 2 has com putational ad­
vantage over other L^'s (a #  2). As a result of closer relationship with P e and com putational advantages, in 
feature evaluation L x and L 2 are favoured over other L x's.
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