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1. Introduction

The Bayesian probability of error (P,) is an optimum measure of effectiveness of a set of features selected
for the purpose of pattern recognition. Owing to the difficulty involved in computation (or estimation) of
P,, various probabilistic separability criteria have been suggested in the past as indirect measures of feature
effectiveness [1, Ch. 7). The generalized separability measures (L,, 0 < o < o), suggested by Lissack and Fu
[2]. are one such series of feature effectiveness measures defined in terms of the difference between the a pos-
teriori probabilities of pattern classes.

It is worth noting that both the upper and the lower bounds to P, in terms of a measure are indicative
of how closely the measure approximates P.. If the resulting upper bound is sufficiently low, then the set
of features under consideration are ‘acceptable’. On the other hand, a sufficiently high lower bound leads
to a ‘rejection’ decision. Difference between the upper bound and the lower bound is an indicator of the
overall closeness of a measure to P,. In this letter some results are proved from which one can know the
magnitude of the looseness of the existing P, bounds provided by L,.

2. Error bounds in terms of L,

Suppose the a priori probabilities of the two classes w,; and w, are m; and n,, respectively (0 < 7y,m, < 1,

‘m, + 7 =1). Let p(x |w,) and p(x | ;) be the class-conditional probability density functions of the feature
: vector X, assumed to be continuous, in the two classes ; and w,, respectively. Then the Bayesian error prob-
ability [1, Ch. 2] is given by

P, = f min[r, p(x|w,), mop(x |@,)] dx (1)

Qx
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and the generalized seperability measure proposed by Lissack and Fu [2] is defined by
L, = '( | Py, | x) = Pl [0)|*p(x)dx, 0<a < Q)
2y

where P(e, | v). i = 1,2 is the a posteriori probability of w; given X = x, 2 denotes the sample space of X
and

PUx) = myp(x | y) + Tap(x|0) 3)
denotes the misture density of X

1t can be scen that L, is a straightforward generalization of the Kolmogorov variational distance [3] defined
by

K=} ,[ [myp(x | ) — maplx fw,)|dx @
2y

and. for » = |, the measurc L, reduces to 2K. In this case,

I,=2Kk=1-2P, )

Lissack and Fu (2] obtained the following error bounds. For0 <a < 1,

Pa—

L)< Pos Y- (La)' ©)

andforl < x < 1,

Y- (L)' < P <A — L) O

3. Looseness of error bounds

As indicated above, for a = 1 the lower and the upper bounds coincide. An increase or decrease in the

value of x loqscns the bounds. From the following theorem one can obtain information about the magnitude
of the loosening of the bounds depending on the value of «.

Theorem. (i) For a given o > 1 the maximum value of 6 ( = upper bound — lower bound) is given by

1 - - - —
(smax = I{a We-1 _ o al( 1)}.

®)
(i) And the value of d,,,, increases with increase in o.
Proof. (i) Forx > 1,
6= 41— L} — 31 — (L") = L] — L) o
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Differentiating § with respect to L, one gets

do
aL—=%{(1/0!)[Lm]”"'_1 -1} (10)

Equating the above expression to zero leads to
Ly=oa~%@"0, (11)
It is easy to see that

d?

a3 <0 (12)

Thus, the maximum value of é occurs at the value of L, given in equation (11). Putting this value of L, in
(9) gives

Sy = %{[a ~ale= D)la _ o=l DY = Ly~ Ma= 1) _ g —afle= DY
(ii) Differentiating J,,,, with respect to «,

démax =l a_l/(,_l) loga _ 1 _a—a/(zl—l) loga _ 1
do 2 (@—1)? (a— Da (@—1)2 a—1

=1 log a g~ Ua=1) _ g-a@=1) | 4 1 a—a/(a—l)_la—l/(“‘” . (13)
2 (ax—1)? a—1 o

Using the identity a/(c — 1) = 1 + 1/(¢ — 1) in (13) leads to

Domax _ 1 logat a—l/(a—n(l_l)_;_L -va-v_1 ~ie-y
do 2 (a = 1)? o a—1]a o
1{ lo 1
=) B2 v -l (19)
2{(x—=1) o

It is easy to see that the expression in the right hand side of (14) is positive. Hence the desired result is
proved. [

For a given « > 1 the upper and the lower bounds of P, corresponding to the maximum difference between
the two bounds are given by

PY=4(1—aoe" 1) (15)
and

Pr=1(—qg D) (16)

Figure 1 shows how the values of PV and PL vary with «. It may be noted that as a increases from 1 to
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Figure 1. Looseness in probability of error (P,) bounds given by L, for different values of o0 2> [.

o the maximum difference between the two bounds increases from 0 to 0.5. This shows how the bounds
loosen with increasing «. With increasing « the computation of L, becomes more demanding. Therefore. it
appears that there is no advantage in going for high values of 2. The bounds corresponding to L, (x = 2)
are tighter than most of the existing bounds associated with the other two-class measures. As can be seen
from Figure 1 the maximum difference between the two bounds in this case is 0.125. L, has the advantage
over L, in that L, involves the operation of raising P(w, | x) — P(»,]x) to the power of 2 which is mathemati-
cally more handy to deal with than the difference operation involved in L.

It is easy to verify that, following a similar procedure as in the theorem above, for 0 < z < 1, the maximum
difference between the two bounds increases from 0 to 0.5 with decrease in the value of « from 1 to 0.

4. Concluding remarks

The maximum difference between the upper and the lower bounds to P, in terms of L, monotonically in-
creases from 0 to 0.5 as the value of « increases from 1 to oo or it decreases from 1 to 0. L, is directly related
to P,. In a two-class pattern recognition problem, therefore, it makes no difference whether we use P, or
L,. Mathematical treatment of L, is more convenient than that of L,. Moreover, L, has computational ad-
vantage over other L,’s (a # 2). As a result of closer relationship with P, and computational advantages, i
feature evaluation L, and L, are favoured over other L,’s.
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