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ON SHRINKAGE TOWARDS AN ARBITRARY ESTIMATOR 
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Abstract. Suppose we want to estimate the unknown mean 0 of a
multi-normal distribution with independent components having a common 

2
variance a . Several minimax estimators are known in this context. We 
consider a class of spherically symmetric estimators with random pivot 
of the following form

o Zr(l/2\\x-% \\2) 
d(X) = Qn +(l-------- --- -----) (X-6 ) ,

\\x~%0 II
/s ^2 2

where 6^ is another estimator of 0 and a is an estimator of a inde­

pendent of X. We give conditions on 0^ and r so that d is minimax under 
squared error loss. It is eozpected that d will improve upon X signifi-

A A
cantly in a region where Qq performs well. Now by choosing 0̂  a Bayes 
estimator under some prior it, we develop a concept of optimal shrinkage. 
The problem of selecting a good minimax estimator has already been 
emphasized by Berger (1982). Georde (1986a) gave a reasonable solution 
in some cases. Here we develop another way of looking at the above 
problem.
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1. Introduction
Beginning with the pioneering work of Stein (1956), a great deal of 

research has been done in minimax estimation of a multivariate normal 

mean. Suppose that

X - Np(0, I) , (1-1)

with unknown mean 9 - •••> ® ) ’ an<̂ variance a2 (may be

known). We consider the problem of estimating the mean vector 9 under 

normalized quadratic loss. The risk function of an estimator 

d: R? -* R? is given by

R(tf, d) - Etf(d(X) - »)'(d(X) - 9) a Eff||d(X) - fl||2 , (1.2)

where denotes the expectation under (1.1).

Let C be the class of estimators with everywhere finite risk. An 

estimator d* e C is called minimax if the following condition holds

sup R(9, d*) = inf sup R(0, d) . (1.3)
9 deC 9

The classical example of a minimax estimator for the above problem
is

dQ(X) - X .

The estimator dQ is not only minimax, it has other statistically 

appealing features as well. It is known to be the maximum likelihood



estimator and also the minimum variance unbiased estimator. It is now
easy to see that

R(0, dQ) - p .

Because d g  is minimax with constant risk, any other minimax estimator 

will have a risk not larger than dg at every 9 e bF . Thus the 

existence of other minimax estimators of 9 proves that d g  is 

inadmissible under (1.2).

Next suppose that we have several minimax estimators of 9 . The 

above fact asserts that each of them gives us some reduction in risk 

over d g  . But, which one do we choose? This issue has to be taken 

care of before we decide to use some minimax estimator other than d g  

for estimating 9 .

To fix idea, assume a2 - 1 and consider the family of estimators

d^(X) - fl - -- —  ] + (X . /t) +ft t fj, £ rP . (1.4)
| x  - »\\2

For p > 3 , it is known that each of these estimators is minimax. See 

Strawderman (1971). Also, it can be shown that for a fixed n ,

has significantly smaller risk than d g  only in a neighborhood of 

H . The risk reduction is almost insignificant if the true 9 is away 

from fi . Now, if we have any prior reason to believe that the true 9 

is close to some , it is natural to use a dM with /i lying in a

close vicinity of /ig .



Usually such a strong prior Information Is not available In 

practice. Thus, in general, the problem of selecting a good minimax 

estimator becomes quite involved.

The importance of this issue has been discussed in Berger (1982). 

Also, George (1986a, b) gives a reasonable solution to the problem of 

selecting a good minimax estimator in some cases of interest. Here we 

take the following approach.

Consider the class of estimators given by (1.4). Suppose that some 

kind of prior information is available for estimating S (may be an 

order relation among various components of 6 ). Let 6  ̂ denote an 

estimator that uses the available prior information. In case we have a
A

probabilistic prior ir , 9q might be the Bayes estimator of 9 .

Now as an alternative estimator of 6 we consider the following
A

adaptive linear combination of X and 9̂  for some r > 0 :

r(Vfe«X-»0l*)
d (X) - * + f l ---------*— 2--  J (X - « ) . (1.5)

° ||X - 9q\|* °

A

d^ has the property that it is closer to 9q than X when X is
A

close to . Thus, provided d* remains minimax it is obviously a 

reasonable minimax estimator.

George (1986a) solves the problem in a different manner. Suppose 

that we have a probabilistic prior * on . It was shown by George 

(1986a) that the following estimator

**<*> " / _AX)W (X)d*(M) (1 .6)



will be minimax under certain conditions for suitable choice of the 
weight function w^(X) .

When ir is a prior with support at finitely many points (1.6) 

reduces to the multiple shrinkage estimator introduced by George. The 

main result in this paper derives some conditions for which (1.5) is 

minimax.

The main result is given in Section 2. In Section 2.2, some 

applications are considered. In Section 3, we deal with the problem of 

shrinking towards a Bayes estimator and discuss an optimality criterion 

for optimal shrinkage. Finally, as concluding remarks, we discuss the 

problem of constructing Bayes minimax estimator. In section 2, we deal 

with the case where a2 is unknown. In the remaining sections a7 is 

assumed to be 1. However the results can be extended to the unknown 

a2 case under the assumptions of section 2 quite easily.

2. Shrinking towards an arbitrary estimator
In this section we treat the case where a2 is unknown. The 

observation vector X denotes the standard estimator of 8 . Let
A A A

- (0„,.... 9n )' be another estimator of 9 with continuously0 '01 Op
differentiable components so that

E --- ----  < <» for all it rP and p > 3 . (2.1)
* llx  - o0 \\2

A

Note that when - 0 , p must be at least 3 for (2.1) to be 

finite. We also need to assume that an estimator a2 (> 0 with 

probability 1) of a* is available which is independent of X with the 

following property:



0 < , inf 2 ^  . (2.1)
<j2>0 Ect4

Let J0(x) - [(j0>ki - ?<*>, 1 < i, k < p)] where ^  ^  ^
A 1

denote the Jacobian of B̂  . Now we state the main result of this 

section. A slight modification of the arguments given in Stein (1981) 

gives us the result. The proof is given In the appendix.

Theorem 2.1. Consider the estimator

a* r( V2 l|X - #0||2)
d (X) - » + fl - --------*--- y--  J (X - « ) (2.2)

° ||X - ®0||2 °

where r: [0, <*>) -+ R is a bounded almost differentiable function with 

derivative r' with respect to the Lebesgue measure. Without loss of 

generality assume that Jg(x) is symmetric and let and

\iin^0^X^  denote the maximum and the minimum eigenvalue of J0 , 
respectively.

If (I - Jq(x)) is non-negative definite for all x satisfying 

(2.1) d* (defined in (2.2)) has smaller risk than X for all i 

provided either

a) p > 2 + trace(Jg(x)) - 2 *m£n(Jg(x)) + £ f°r aH  x atl<i some 
e > 0 with r'(«) > 0 and 0 < r(*) < 2ep , or

b) trace(JQ(x)) > p-2 + 2 *max(J0(x)) + « for all x and some 
t > 0 with r'(>) > 0 and -2ep < r(*) < 0 .



If (I - Jq (x )) is non-positive definite for all x , the same 

conclusion as above holds tf we replace r' i 0 by r' £ 0 .

Remark 1. It can be noticed that shrinking towards arbitrary estimators 

sometimes has an overall shrinkage effect and sometimes an overall 

expanding effect. The overall effect is determined by the Jacobian of
A

the estimator 9q . We discuss some examples below which can be derived 

using the above result.

Remark 2. When a2 is known we can use the estimator o2 ■ ct2 to 

estimate ct2 . In that case e [as defined by (2.1)] turns out to be

1. We make use of this fact in the next example.

2.1. Some examples
Example 1. Let us first consider the classical situation where
A

8^ ■ 0 . Therefore, Jg is the zero matrix and the conditions of 

Theorem 2.1 can be easily verified to give us

, r(V2 «X«2) 
d°(X) - fl - -----------  JX (2.9)

IN I2

is minimax where p > 3 and r(*) is monotone nondecreasing with 

0 < r(•) < 2(p-2) . [Hence £ < (p - 2) works.] This has been obtained 

by Strawderman (1971). With the choice

2t if t <
r(t)

p-2 if t a ■



Equation (2.9) coincides with the positive rule estimator.
A

For the choice 9q - P^X , where Py is the projection on some 

smaller dimensional (d) subspace V of 8? , we can apply the Theorem 

2.1 to obtain

r (V 2 ||P / I I 2)
dY(X) - P.JC + 1 - -----------  P X (2.10)

r  IIP ±x«2 v1
V

(where P denote the projection onto the orthogonal complement of 
V

V ) is minimax if p > d + 2 and 0 < r(») < 2(p-d-2) with r' > 0 .

See Lindley (1971) and Sclove, Morris and Radhakrishnan (1972) for these 

types of shrinkage estimators.

Example 2. Next we consider a situation which is not so common in the 

area of shrinkage estimation. Suppose we have a vague prior information 

on 9 that each component is non-negative. Now from Katz (1961) it
A

follows that there exists an estimator 9q which is given componentwise 

by

— X^ + t(X.) , i-1, 2, . . . , p for some t: R -* R+ (2.11)

and 9q is componentwise admissible when the i-th component 9̂  is
restricted to 9. > 0 .l

A

We now consider i  ̂ of the form (2.11) and introduce a slightly 

different version of Katz' estimator. He considered

exp(- V2 *2) 
t(x) - —   . (2.12)

J exp( - V2 u2)du



A -2Unfortunately, ||X - 0q|| is not finite with this choice of t .
A

We choose a truncated version of the above estimator of the following

for some a > 0 . By making a large enough, we can make t look 

like t on an arbitrary large interval. Another possibility is to 

choose a Bayes estimator where the prior puts all of its mass on the 

positive orthant. For the choice (2.13)

t'(x) - t’(x) for x < a a

- 0 for x > a .

(Note that nondifferentiability at a single point does not change the 

almost differentiability.) From (2.12) it follows that

Hence by the Theorem 2.1 it follows that for p > 4 the estimator

form
t (x) - t(x) for x < a a

(2.13)

t(a) for x £ a

0 > t'(x) Z. -1 for all x . a

r( 1/2 S t*(X.)) 
____ .1-1 - f - t (X.) , i-1, 2.... pa x (2.14)

P



dominates X under quadratic loss. The performance of (2.14) is 

significantly better on some compact subset of the positive orthant and 

has finite risk for every 9 e 8? .

3. Shrinking towards Bayes estimators

When 9̂  is a Bayes estimator some extra simplification is 

possible. The classical James-Stein estimator shrinks towards the Bayes 

estimator under the point mass at 0 . Also the estimators suggested by 

Lindley (1962), Sclove, Morris, and Radhakrishnan (1972) are examples o£ 

shrinking towards Bayes estimators with lower dimensional generalized, 
priors.

Consider a prior with density jt(9) with respect to some a-finite 

measure v on B? . The (formal) Bayes estimator with respect to w 
is given by

f 0 exp(- V2 II® - X||*)*(0)dK*) IY(#*(5))
9 (X) - — .................. .... .... -ii-------- (3.1)

f exp(- V2 IÎ ' X||2)*(9)di/ Ix(w<*))

where for any integrable function h: RP -* Rp 

Ix(h> “ / h(tf)exp(- 1/2 11# - X||2)di/(0) .

A

We assume a2 — 1 hereon. The Jacobian of & turns out to beJT

* ( i )  a /  «ke x p (J 'X  - V2 ll®ll2) ’r(®)d*'
9 U^X) *“ Ay ““ ~ —--

i / exp(9'X - V2 lk||2)’t(®)dv

- Cov(9k> 0jx) . (3.2)



Some more calculations along this line yields

where
Cov(*i’ 9k*x) “ axTaxT “ *ii(X) > say- (3 5>i j J

vXX) - Vi ||x||2 + log Ejt(X + Z) (3.6)

where Z is a N(0, I) random variable under v . We can interpret 

^ as having two parts: first part coming from the likelihood and the 

latter from the curvature of the prior (vanishing if ir(6) « 1 ). 

Therefore we have

*ij(X) “ 5ij + 5X^X7 l0g E*(X + Z) ' 1 - l> j 5 p ’ (3 7)

Hence the Jacobian of 9 is given by

J (X) - I + H (X) - 2(?|X) (3.8)7T JT

where, H (X) - [(hT.(x))] with * J-J

hIi(x) “ ix7Sx7 loe E*(x + z) ' 
J i j

Hence we obtain from (3.8) that

tr(J ) - p + tr(H ) - p + V2log Ew(X + Z) , (3.9)ff fr



where V2 denotes the Laplacian.

The above arguments can be considered as more formalized version of 

Stein (1981). We present it in the form of a theorem below.

A

Theorem 3.1. Let 0̂  be the Bayes estimator (possibly generalized) 

under the prior it and let

mjf(X) - log E*(X + Z) (3.10)

with Z as in (3.6), Then,

i) If m is concave, an equivalent condition for (a) and (b) to jt
hold in the Theorem 2.1 are

(a)' V2m < 2 A . (H ) - e (3.11)it m m  *

for all x and some e > 0 with r'(») i 0 and 

0 < r(*) < 2« , and

(b)' V2m > 2 X (H ) + e (3.12)n max jr

for all x and some £ > 0 with r'(*) > 0 and 

-2e < r(*) < 0 , respectively.

ii) If m^ is convex, an analogous conclusion holds after replacing 

r’(•) > 0  by r'(•) s 0 in (3.11) and (3.12), respectively.

iii) Sufficient conditions guaranteeing (3.11) and (3.12) are

V2m^ < -2 - t (3.11)'



V2mw > £ ■ (3.12)'

respectively.

Proof. From (3.8) it follows that (I - Ĵ ) is non-negative or non­

positive according as is non-positive or non-negative. Since H 

Is the hessian matrix of m it follows in turn that (I - J ) is non- 

negative if and only if is concave. The remaining steps for 

proving (i) follow from (3.9). Similarly, we can prove (ii).

For (iii) , notice that by (3.8) is non-negative. So, it is

now an obvious fact that

-1 < A . (H ) < A (H ) < 0 . min t max jt

This completes the proof of the Theorem. ( J

Remarks. One implication of the above result is that it is not possible 

to shrink towards Bayes estimators which are too close to X . In the 

extreme case when tt(0) = 1 , the generalized Bayes estimator turns out 

to be X . It is obvious that we can not shrink X towards itself.

Also it can be noticed that the above results can not be applied 

for priors of the form

jr(0) - ||fl||a for large ||0 (3.14)



The difficulty arises due to the fact that H is neither positive nor7T
negative. It turns out that

H (X) - a||x|r2(I - — —  X X') (3.15)
llxt!2

for large ||x|| .

On the other hand for normal priors we can easily establish that 

(3.11) holds for p 2. 3 . Consider a prior of the form

jt(«) ~ exp(- ~ |M|2) (3.16)

for some d > 0 . Then it follows that

\ (x )  -  M l2 •

Thus, m (X) is concave. Also,

V2m • 2 A . (H ) - • -(P.-,2.)4 < 0
k  min jt 1+d

if p i 3 . Similarly, we can handle imaginary normal priors (i.e., 

d < 0) with (3.12). In the following proposition we develop a class of 

priors for which m is concave. Similar results can be obtained inIT
other situations.

Proposition 3.1. If the prior it has the following form



where m(») is a nondecreasing function and d > , d describedp-2 *
in (1.5) is minimax.

The proof is left to the reader.

Remark. A more careful analysis will give us a larger class of 

priors. But, the class given by (3.17) is large enough for all 

practical purposes. Also, by using expanding priors (i.e., m is 

convex) we can obtain another class of priors admitting shrinkage.

3.1. A concept: of optimal shrinkage
Let ir(0) be a prior density over RP and let 0 (- E(fl|x)) 

denote the corresponding Bayes estimator. For a class C of estimators 

we describe an optimality criterion below.

Definition 3.1. An estimator d e C is optimal minimax with respect to 

the prior n if

i) d is minimax.

ii) d has smallest Bayes risk among all other minimax estimators in 

C .

Next we define two classes of estimators for the multivariate 

normal mean problem. Let

r( V2 ||X - p\\2)
B - (d (X) - p(X) + [1 - ------------  [X - p(X) ] : for some

p'r L l|x-,||’
estimator p(X) and almost differentiable r(*)) .



B Is the class of all spherically symmetric estimators with random 

center p . However, we shall deal with the following subclass of B 

because it is more manageable. Moreover, it contains the commonly used 

shrinkage estimators. Define

B^- (d̂   ̂t B: r'(«) > 0  and r(*) is bounded by ,

where fq is defined in the statement of theorem 3.2. We state the 

result below.

Theorem 3.2. Let jt be a prior density such that m^ is concave and

£0 - W V X »  - > 0 •

Then the optimal minimax estimator in under * is given by
A

d̂  where 9 is the Bayes estimator under it and
V r0 *

rQ(t) - 2 min(t, eQ) .

Proof. Consider an arbitrarv element d e B . Let
P, r

I(r, p, 9) - R(X, 9) - R(d , 0) (3.18)P.r

- 2E» { i *  - oi*) llx - p II
r*( V2 ||x - p||2)

- V 2 ---------------- } •
l l x  - p ||2 1



If r is minimax, the right hand side of (3.18) is always non­

negative. Therefore, in order to find out an optimal shrinkage we have 

to maximize EjrI(r, p, 9) subject to the constraint (3.18) is non­

negative for all 9 . In this context, note that the global optimal 
solution is given by:

where r*(t) — 2t . Hence, the global solution cannot be minimax unless
A

sup ||x - | <  00 .
X

Now the reduction in the Bayes risk for d̂   ̂ is given by

E I(r, p, 9) fr

2 j- E [ <X ~ ' pl  r(V2»X - P«2)
9 «X - p\\2

r=( V2 |X - p||2) n 
l/o ---------------------------  l j r ( 0 ) d0  (3 .19)

llx - p\I2

- 2  J Ejr(Q|X) dm(X)

(by Fubini's Theorem) where

r2(V2 l|X - *>||2)
Q _ - UlSL.--el r ( V2 | x  - p| |2) - i/2 -

||x - p||2 ||X - P 2

and m denotes the marginal. So, to maximize (3.19) it is sufficient 

to maximize the posterior expectation of Q , which is given by



E(Q|X) - ' P) t(^|x - ,1*) • Vt1*;11 • il'1 • ‘3-2“>
||X - p\* llx - p||2

A

Sow denoting (X - 9̂ ) by D and (X - p) by U , respectively, we 

can rewrite (3.20) as

D'U , , r*( /2 lull2)
E(Q|X) - - O  r(V2 ||U||2) - l/2--- — ---  (3'2 5

Hull2 Hull2

D.p r(V2 N 2) x r2( V2 |1U|12)

~ lull Hull ' /2 H *

rC V2 »u«2)Next we maximize after fixing --------  at a fixed level r .
»«lleasy to see that (3.21) is maximized if

.J____ (3.22)
BUB ||D||

Thus we put -2- - -2- to obtain that for fixed r ,the maximum value
lu ll INI

of E(Q|X) is given by

E(Q|X) - ||d||t - 1/̂ t2 . (3-23)

For any p , the relation (3.22) implies that

p - p - X - aD a (3.24)



for some random a . Hence, d looks likeP.r

r (V2 M 2IMI2)
d - X -------------- D. (3.25)

l“ IN I2V r

Equation (3.25) follows from (3.22) and (3.24).

Since we restricted ourselves only to spherically symmetric 

estimators with random centers, it follows that (3.25) should be 

spherically symmetric about 8 in order to be a member of B . In 

that case we can claim, in view of (3.22), that the optimal shrinkage 

lies within the subclass

B — {dC : r is almost differentiable) . (3.26)7T 9 , r7T

Therefore (3.23) becomes

r ( /2 «D«2) . r2( /2 IID||2) 
e(q|x) - |D| — — —  - y2 — — —  • <3-27>

INI II ® II2
Now by assumption of the Theorem m^ is concave. Thus by (3.11) we

have the optimal choice of r to be

r(t) - 2 min(t, ê ) (3.28)

where

£0 - 2 inf [2 W V x)) ' V2m*(x)1X



This choice of r is optimal in the class of estimators

- (d̂  r'(*) > 0 and 0 < r(») < £q ) . [)

3.3. Bayes nininax shrinkage estimators

In this section we shall investigate the Bayes property of the 

shrinkage estimators studied in earlier sections.

Suppose that p is the Bayes estimator with respect to a mixture 

prior jr of the following form

w(0) -  J" ^ ---- H)/l-a }h(l-a)g(/j)dadji
7 a

where the mixing parameters (<*, a) c R? x  [0, 1) have density 

h(l-a)g(/i) and <j> denotes the N (̂0, I) density. So, we have

p (X ) -  E ( f l | x )  ( 3 .2 9 )

- E[(l-a)/i + ax|x]

- X - E[E{(1-a)(X - p)\n, X)|X] .

Now it is well known that the conditional distribution of (1-a) given 
{H, X) is proportional to

®*P(- V2 (l-a)||X - /i||2)h (̂l-a) (3.30)



for some . Hence we have

E[(1-«)|M i X] -
r ( V2 l|x - H I2 )

llx  - / i| |2
(3 .31 )

for some r . Therefore, by (3.31) we have

P(X) - X - e [ (3.32)

This form of shrinkage estimators are very similar to ones suggested by 

George (1986a) . One problem with these exact Bayes estimators is that 

they can be hard to compute. The proposed estimators in the earlier 

sections can be thought of as approximations to exact Bayes estimators 

where we substitute an estimate E(/i|X) to obtain

**E(/i|x) r ‘ '̂ le resu^ts this article show that such approximations 
are quite reasonable from minimax point of view.

Acknowledgement: I would like to thank Professor Glen Meeden for his 

comments on an earlier version of this article and also the referees for 

their suggestions which improved the presentation of this article 

significantly.



APPENDIX

Proof of Theorem 2.1. Let T - ||x  - 0g||2 ■ Then d* can be written i 

* r( V2 T)
d*(X) - X - a* -- ---  (X - 0O> . (2.3)

Next, by direct expansion of the loss function we obtain

r ( V2 T) (X - J )'(X - 6) ,
R(d*. ») - R(X, 9) - -2[E ------------ --------  J[Ea2]

r r2(l/2T) *
+ K  ~~ a —  ][Eg<1 (2-4)

using independence of X and a2 . Since r is bounded, Cauchy- 

Schwarz inequality asserts that

r( V2 T)(X - 0n)’(X - 9) .
E ---------5----------  < K | < «> (2.5)

by assumption (provided p S 3 ).
A

Also, by assumption r(V^T)(X - $q) is almost differentiable, so 

using Stein's identity (viz. Stein (1973)) (2.4) can be rewritten as



R(d*, 0) - R(X, 0)

r’( V 4 D }  - *oi> V » k  ' W ' S l  - ' » >
- -2 Ea2E ------- ----------- !=i--------------------T

p i . ;<;> 2<xi - *oi> v s  • :ok><sH  - >$“ >
+ t ( ^ T > z  --- =2i------------ !=!— = ---------------

i - i  1 1

- 2 ^ 2 Ea« E{r2( V 2 T) i } (2.6)

(Here 5^ denotes the Kronecker function ( 6^ ” 1 if k - 1 , 0 

otherwise).) After some algebra, (2.6) simplifies to

R(d*, 0) - R(X, 0)

- -2[Ect2 E(r'( V2T)U'(I - JQ)U + | r(VfeT)[p - tr(JQ)

A
- 20'(I - J0)U]} - V2 E r2( 1/2T) | ^  ] (2.7)

where, U - T* (x - 0Q) so that ||u|| - 1 and tr(JQ) denotes the 

trace of Jq .

Next consider the case where (I - Jq) is nonnegative definite.

Observe that U'(I - JQ)U < 1 - ‘ Thus’ ^
p > 2 + tr(J.) - 2 X . (J„) + « for all x and 0 S r(») < 2e with 0 m m  0
r' i 0 (a.e. Lebesgue measure) the right hand side of (2.7) is always 

negative. (This follows after observing that 

E r2(|) | s sup r(t) Er(1/̂ T) | .) Hence



R(d*, fl) < R(X, fl) for all $ . (2.8)

In a similar manner we can write

U'(I - Jft)U i 1 - A (Jn) . 0 max 0

Therefore, if tr(J„) > p-2 + 2 A (Jn) + € for all x , (b) holds for 0' v max O'
some r < 0 with r' > 0 and |r| bounded by 2ep .

The other conclusions hold analogously. Hence the Theorem. [1
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