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ABSTRACT. A number of tests of the proportional hazards hypothesis have been proposed
in the past. In rccent vears. researchers have proposed tests geared specially for the
alternative hy pothesis of “increasing hazard ratio”, keeping in mind the case of crossing
hazards. This alternative may be too restrictive in many situations. In this paper we develop
a test of the proportional hazards model for the weaker “increasing cumulative hazard
ratio™ alternative. The work is motivated by a data analytic example given by Gill &
Schumacher (1987) where their test fails to reject the null hypothesis even though the faster
ageing of onc group is quite apparent from a plot. The normalized test statistic proposed
here has an asymptotically normal distribution under either hypothesis. We also present two
graphical methads related to our analytical test.
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1. Introduction

The proportional hazards (PH) model has played an instrumental part of data analysis in such
areas as survival analysis, reliability, economics, demography and environmental studies. The
validity of the PH assumption in a two-sample problem may be checked through one of the
traditional graphical methods proposed by Cox (1972), Kay (1977), Andersen (1982), Arjas
(1988) ete. (see Senguptu (1995) for a review). Several analytical tests are also available, see
Schoenfeld (1980), Andersen et al. (1982), Wei (1984), Nagelkerke et al. (1984), Breslow
et al. (1984) and Ciampi & Ftezadi-Amoli (1985). Gili & Schumacher (1987) and Deshpande
& Sengupta (1995) proposed analytical tests of the PH hypothesis against the alternative of
“increasing hazard ratio”, which may account for the “crossing hazards” phenomenon.

If Fy and F, are two life distributions on the positive real line with hazard rates 4, and A,
and cumulative hazard functions /1, and A,, respectively, then the condition A, /1, increasing
is equivalent to the composition 4, o A, ' being convex on [0, o). Using this equivalence, Lee
& Pirie (1981) suggested the plotting of an estimator of A; (e.g. the Nelson—Aalen estimator)
against that of A,. It is expected that the graph would be approximately convex when the hazard
rat1o 1s increasing, and a straight line when the ratio is constant.

The “increasing hazard ratio” alternative may be too strong in some cases. Consider the
situation where the hazard rate A, has jump discontinuities. The ratio Ay/A; cannot be
increasing unless A, also has a jump of adequate size at every point of discontinuity of A,. On
the other hand, the consistency of an “omnibus” test is not guaranteed. It would be nice to have
atest which is consistent for a weaker alternative hypothesis.

A weaker form of relative ageing is represented by the condition “A, o A5 Vis star-shaped”,
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that is, A; o A;" intersects any straight line passing through the origin at most once and from
below. Convexity is a special case of star-shapedness. Sengupta & Deshpande (1994) showed
that the above condition holds if and only if the cumulative hazard ratio (CHR) A,/A; is an
increasing function. Thus, the plot of /A, against A, is star-shaped if and only if A;/A, is
increasing. The empirical plot of Lee & Pirie (1981) should also be approximately star-shaped
when the CHR for the two groups is increasing. Such a phenomenon is indeed observed in the
case of the Veterans’ Administration data (Detre et al., 1977). The plot given by Gill &
Schumacher (1987) (with the coordinates interchanged) is star-shaped, but not convex. Hence, it
is not surprising that the analytical tests proposed by Gill & Schumacher (1987) failed to reject
the PH hypothesis in favour of the increasing hazard ratio alternative. Perhaps a test designed
for the increasing CHR alternative would have been able to reject the PH hypothesis.
In this paper we propose a family of tests for the null and alternative hypotheses

Ho: M)/ Ax(f) = a for all >0, for some a >0,

Ay A (£)]A(1) is a non-constant increasing function of ¢ over [0, ).

(The word “increasing” would mean *“non-decreasing” throughout this paper). The family
of statistics presented here are consistent for testing .#, vs .%,. The asymptotic dis-
tribution of a suitably normalized form of the test statistic is standard normal both under
Hy and %,. While the results are obtained in the general context of comparing two
counting processes, the case of censored survival data is given special consideration.

2. Development of the test statistic

Let Ni(f) for i=1,2 and t € [0, co) represent two components of a bivariate counting
process. Let the Doob—Meier decomposition of the processes be of the form

dM (1) = dN(t) — Yi(1) dA(e), i=1,2

where A(), i=1,2 are deterministic functions on [0, cc) and Y;(:),/=1,2 are non-
negative processes which are predictable with respect to the filtration on which the
martingales on the left hand side are defined. The above coincides with the “multiplicative
intensity” model of the compensator process (see Aalen, 1978). When N«(t) corresponds to
the number of failures or deaths up to time ¢ in the ith group consisting of individuals
with i.id. life distributions, A,(#) is the cumulative hazard rate corresponding to this
distribution. In general, N;(f) may be the number of type i transitions in a Markov chain,
Yi(#) the number at risk for type i transition and A;(¢) the integrated transition rate.

Under .77}, it is expected that A,(y)A,(x) — A;(x)A2(y) would be non-negative for all x <y
and positive for some x << y. If the ratio A, /A is a fast increasing function, the above difference

would be generally large. This fact may be used to define a measure of non-proportionality of
the cumulative hazard functions,

g(w) = ”0 W OM0) — M0 drds,

where w(x, y) is a positive weight function and 7 is a large positive number such that
Ajr)<oc for j=1,2 The idea is similar to that of Deshpande & Sengupta (1995), who
considered a measure of non-proportionality of the hazard rates. The double integral may
be reduced to products of single integrals by choosing the weight function w(x, y)=
ki(p)ka(x) — ki(x)k2(»), ki(-) and ky(-) being positive weight functions with an increasing
ratio. With this choice, the above measure simplifies to

q(ky, ka) = t1t2y — tiata1,

@.1
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where

1, kL (sh1,(s)ds, i=1,2,j=12

Ju

Clearly, ytk,. k) is positive under .#, and zero under .#,. Therefore a consistent
estimator of this difference can serve as a test statistic for the problem at hand. Suppose
for j  1.2..1,01) be the Nelson-Aalen estimator of /,(¢) given by J(; dN (s)/ Y (s), where
the reciprocal of V(s) is defined to be 0 whenever Yi(s) is 0. Let K;(-), i = 1, 2 be right-
continuous functions with left limits (rcll) converging in probability to k() i=1, 2,
respectively. We define the test statistic as

Onins DiTar o Tl

where 7, [ K(siAd(syds i =1,2.j =1, 2. 1t is shown in the appendix that a consistent
estimator of the vanance of the test statistic under the null hypothesis is

var(Qu,as) I Ty = T TV~ Tn TV + Tn T Va, (2.2)

where

Fy [ l K (DK () (s A Ddsde, i=12,j=1,2,

and

o [' dN(s) 4 dNa(s)
Jo o M)

Note that the form of (x x, 1s similar to the statistic proposed by Gill & Schumacher
(1987). In fact. if the cumulative hazard functions are replaced by the corresponding hazard
rates. g(k). k2) becomes a measure of non-proportionality of the hazard rates. The family
of statistics given by Gill & Schumacher (1987) may be motivated by this measure,
although they did not mention it. An important difference between these two families is
that the tests proposed here are not functions of the ranks alone; the actual lengths of time
between successive jumps are made use of.

The weight functions Ky(1) and K3(7) may be chosen so that K;(f)/K,(¢) is an increasing
function. in order to make sure that k,(1)/k,(1) is increasing. Gill & Schumacher (1987) have
indicated several choices of weight functions for their family of statistics. Some of the choices
are suitably normalized versions of

K. (1) = (1))

Ki(1) = Yy YY) + Ya(n)] ™'

K (1) = Y (DYDY (1) + Ya(n)]'S(r)
Ka(1) = YO Ya(n[Yi(0) + Ya(0] ' [S(5]'2

where S(1) is the Kaplan—Meier estimator computed from the combined sample. One may
choose any pair of weight functions from the above that have an increasing ratio. All these
weight functions are predictable, and hence satisfy the conditions of Gill & Schumacher
(1987). Being rcll, these may also be used in the test statistic proposed here. In fact, the
usable class of weight functions is larger here, because predictability is not required. For

instance, one may replace the Kaplan—Meier estimator in the expression of K.(f) or K (1)
by a smoothed cstimator.
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3. Consistency and asymptotic normality

The form of the test statistic Ok k, 1s similar to that of Gill & Schumacher (1987).
However, here Tj; is not a stochastic integral but rather an ordinary Sticljes integral of a
stochastic process. Therefore we take the following route to obtain the convergence results:
(a) we show the convergence of the integral 7;; from that of the corresponding integrand
(obtained from standard martingale convergence results); (b) subscquently we obtain the
convergence of the test statistic by arguing that it is a constant function of the Tjs.

The first step comes from the following theorem.

Theorem 3.1

Let K, and X, be vector stochastzc processes with sample paths in D[0, oc)” and
D[0, o0)? such that K, 2k and X, —4X where Kk is a deterministic function in C[0, 00)?

and X is a stochastic process with sample paths in D|0, x)i. Then for every positive
constant T,

T P T
J Ka(1) @ Xn(H)dt 5 J k(1) ® X(1) dt.
0 0
(In the above, “®” indicates the Kronecker product.)

Proof. See the appendix.

In order to study the convergence of Ty, i =1, 2, j=1, 2, we replace K,(7) andA Xa(H)
in the above theorem by (Kj(f): Kx(#)) and a suitably normalized version of (A(¢)~

Ay(f): /Iz(t) - Ax(?))’, respectively. (Here the prime (') denotes the transpose of the vector in
question.) The latter process can be written as

(4«:) -mm) _ Ly @amis |
Ay (1) — Ax(D) Jo Y7 (s) dM(s)
We denote this vector martingale by M(¢). Further, let

LK) N0 N (MOY g (4O
KO = (ch))’ kKO = (k:(-))’ 40= (Am)’ 40= (A”i(-))
where K;(-), ki(-)A;(-) and /i,-(-) for i = 1,2 are as defined in section 2. Finally, let T =

(T T12T21T22)' and t= (#1t1281122)". Notice that the dependence of each of these

quantities on » is suppressed here for notational simplicity. The convergence of the integral
takes place as indicated below.

Corollary 3.2

Suppose there is a positive sequence {a,}, approaching infinity as n goes to oo, such that
the following three conditions hold for j =1, 2:

,(u) 2 [P dA(u)
a J V() L ) Vs e [0, ], 3.1
JY (u)I( Y% >£)dA,(u)—>0 Ve>0, 3.2)
J

\/—j I(Y(w) = O)dAj(u)—>0 3.3)
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where v, and v, are bounded on [0, 1) Then

T [l\‘(n Adnde -t 34
0

T ka Andr ot 3.5)
n

T

vauldT T u,,[ Kin - M(mlréj k(1) o W(¢t) dt, 3.6)
Jo )

(

where W) i a vector of two independent Gaussian processes Wi(-) and Wi(-) with zero

. . . T - . .
mean. independent mcrements and variance function .[0 v 'dA(s), i = 1, 2, respectively.

Proof. The defimtion of M) implies that its components are orthogonal martingales with
variation processes [0 Y(s)ydoA,(s). j = 1. 2. Therefore the conditions (3.1)—(3.3) ensure, by a
version of Rebolledo’s martingale central limit theorem (see th. IV.1.2 of Andersen ef al., 1992),
that

Va, Mty Wi,
The results (3.4). (3.5) and (3.6) follow from theorem 3.1 by replacing X,(7) with A(¥),
A(r) and |/, M1y, respectively.
Remark. The stronger condition

Y -
sup |/ vr,(l)E ~0as n — x, j=12 3.7

0- - 1| Un
implics the conditions (3.1) -(3.3).

The second step in the asymptotic argument is similar to that of Gill & Schumacher (1987).
The results (3.5) (3.6). coupled with the version of the delta-method given by Gill &
Schumacher (1985) imply that

Ok, K, L gtk k),

Vi Qu = gtk K= [ [eomn - dowson
0
where
ety = tak (1) — tizka(1),
d(t) = ty k(1) — tiyka(0).

The limiting distribution is therefore Gaussian with zero mean, while the variance is given

by

J:J;[C(t)c(s) Vi(s A 1) + d(t)d(s)Va(s A O]ds dt,
where

=48, i
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Under the null hypothesis, the ratio A5(-)/A1(-) is a constant ¢, which can also be called
the hazard ratio. Further, c(-)/d(-) is also equal to 0 under .7, Thus an alternative
expression for the asymptotic null variance is

var (v/a, 0k, k,) = J J A(DHASOVI(s A+ 8 "Va(s A D] dsdr
0Jo

T SAL
J Jc(t)d(s)J {‘MZ(“’ +‘M““’] dsdt

0 yi(u) ()

ll

= Iy faUyy — L0y — 102012 + 112022,
where

T T SNt
by = J J ki(t)kj(S)J dlow) + A ds dt, i=1,2j=12
o Ly Y2(a)

This variance is estimated cons1stently by a, times the expression given in (2.2), as shown
in the appendix, provided Yi(f)/a,- —»y (t) pointwise on [0, t]. Since g(K,, K3) =0 is zero

under . %, and positive under .# |, the normalized statistic can be used for a one-sided
test.

4. Graphical methods

The following three graphical procedures are of special interest here:

(a) the plot of A1(#) vs A(1), proposed by Lee & Pirie (1981),

(b) the plot of (Al(t) — /iz(t))//iz(t) vs t, due to Dabrowska ef al. (1989) and

(c) the plot of the log cumulative hazard difference log (/i,(r)) —log (/iz(r)) against ¢,
suggested by Dabrowska et al. (1992).

A monotone trend in any of the last two plots suggests a monotone CHR of the two
samples, while no trend corresponds to the PH model. Plot (a) is expected to be close to a
straight line in the PH case and star-shaped when the CHR is (monotone) increasing. Thus,
all the three plots are expected to bring out monotone CHR-type departures from the PH
model, although they have so far been used to look for monotone hazard ratio.

The above plots can be quite unstable. Plots (b) and (c) can have wild fluctuations for small
values of 7 (see Dabrowska et al., 1989), while plot (a) may lack precision for large values of ¢.
GS suggested a modification of plot (a), replacing A (1) with AX(1) = [} K(s)dAs), i = 1,2,
where K(-) is a predictable weight function (see section 2). This modification can also be used
in plots (b) and (c). The modified plots have the same characteristic features when the hazard
ratio is constant or monotone, but such a feature no longer exists for monotone CHR.

To overcome this problem, we propose two graphical tests based on the estimated functions
TX(1) = J, K(s)Ads)ds, i = 1,2, where K(-) is a rcll weight function. The plot of TX(z)/
T¥(r) against  is expected to be like a horizontal straight line when the PH model holds. On the
other hand, a monotone ratio of the cumulative hazards of the two populations is expected to
produce a monotone trend in the plot, irrespective of the choice of the weight function. Since
0x = TK(n)/ T¥(1) is a consistent estimator of the hazard ratio in the PH case, the horizontal
straight line passing through the right end-point of the graph serves as a reference corresponding
to the PH hypothesis.

The other suggested plot is that of TX(-) against Tf (-). This graph is expected to be close to a
straight line when the PH model holds and approximately convex or concave when the CHR is
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monotone. The straight line joining the origin with the end-point of the graph (75 (z), TX(7)),
may serve as a reference for the PH hypothesis. The two suggested plots are expected to be
smoother and more stable than their unweighted counterparts.

S. Data analysis

The analyne and graphical procedures proposed in sections 2 and 4 were used to analyse
the ovartan cancer data set reported by Fleming et al. (1980), which describes the number
of davs from trcatment to progression of discase. Here, groups 1 and 2 consist of 20
patients with high-prade tumor (stage HA) and 15 patients with low-grade tumor (stage 1I),
respectively. The statistic (g, 4, (after normalization) is 2.258. The corresponding two-
sided p-value s 0024, suggesting an increasing trend of the ratio A,(£)/A2(f). This
supports the findings of Gill & Schumacher (1987) and Deshpande & Sengupta (1995) that
the hazard ravio v ancreasig.

The plot of _1cor 100y vso roshown in Fig. 1 has by and large an increasing trend, but the
fluctuations are substanual. Figure 2 shows the plot of TlK”(t)/Tf”(t) against ¢ which was
suggested i section 4 This graph is smoother and more clearly suggestive of an increasing
trend of the CHR

The plot of ,l‘:"u) xSy ,1?"(1) shown in Fig. 3 is approximately convex, indicating an
increasing havard ratio. However, the plot of Tf”(t) against Tf”(t) shown in Fig. 4 is smoother
and clearly comvex, suggesting an increasing CHR.

6. Concluding remarks

The role of the werght functions in the family of tests proposed here is crucial. An
interesting question that can be posed in this connection is: “Can the weight functions be
chosen “optimally " according to some chosen criterion?” We have no clear answer to this
question as yet I a sequence of alternative hypotheses converging to .#/ at a suitable rate
is considered. o can be shown that the asymptotic relative efficiency is of the form
U fngtnrdil | L fead L sidsdi. where I(e) is the probability limit of the ratio of the
weight functions. ¢(r) is a function determined by Ai(f) and Ay(f), and W(¢, S) is a
positive defimite function of two variables, also determined by A,(¢) and A5(f). A function
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Fig. 1. Plotof Ay(1)/A>(1) vs 1 for the ovarian cancer data.
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Under the null hypothesis, the ratio A(-)/A;(-) is a constant 6. which can also be called
the hazard ratio. Further, ¢(-)/d(-) is also equal to ¢ under .#,. Thus an alternative
expression for the asymptotic null variance is

var(\/EQKIKZ) = J J cA(DAd(HBVisAn+ 0 Ia(s A D) ds dr
0Jo

= jtJ c(t)d(v)J dAxu) + da ds dt
0 () ) |

= htnUy — ity — Hyfnln + Hiipbn,

where

T T SAL dAz(U) d/]l ) ) ]
- . . ' =1,2.j=12
0y J J kDR S) Jo [ ,Vl(u) i) ] s . l 2

This variance is estimated con51stently by a, times the expression given in (2.2), as shown
in the appendix, provided Yi{1)/a,- Z vi(1) pointwise on [0, ). Since ¢(K, Ky) = 0 is zero

under . 7%, and positive under .%, the normalized statistic can be used for a one-sided
test.

4. Graphical methods

The following three graphical procedures are of special interest here:

(a) the plot ofAl(t) vs Az(t) proposed by Lee & Pirie (1981),

(b) the plot of (Al(t) - Az(t))//lz(t) vs t, due to Dabrowska er al. (1989) and

(c) the plot of the log cumulative hazard difference log (A(1) — log (A2(1)) against ¢,
suggested by Dabrowska et al. (1992).

A monotone trend in any of the last two plots suggests a monotone CHR of the two
samples, while no trend corresponds to the PH model. Plot (a) is expected to be close to a
straight line in the PH case and star-shaped when the CHR is {monotone) increasing. Thus,
all the three plots are expected to bring out monotone CHR-type departures from the PH
model, although they have so far been used to look for monotone hazard ratio.

The above plots can be quite unstable. Plots (b) and (c) can have wild fluctuations for small
values of ¢ (see Dabrowska et al., 1989), while plot (a) may lack precision for large values of ¢.
GS suggested a modification of plot (a), replacing /ii(t) with A f( n= IO' K(s) dA (), i=1,2,
where K(-) is a predictable weight function (sce section 2). This modification can also be used
in plots (b) and (c). The modified plots have the same characteristic features when the hazard
ratio is constant or monotone, but such a feature no longer exists for monotone CHR.

To overcome this problem, we propose two graphical tests based on the estimated functions
k() = Jo' K(s)/i,-(s) ds, i = 1,2, where K(-) is a rcll weight function. The plot of T,K(t)/
TX(¢) against ¢ is expected to be like a horizontal straight line when the PH model holds. On the
other hand, a2 monotone ratio of the cumulative hazards of the two populations is expected to
Qroduce a monotone trend in the plot, irrespective of the choice of the weight function. Since
O = T{‘(r)/ Tf (7) is a consistent estimator of the hazard ratio in the PH case, the horizontal
straight line passing through the right end-point of the graph serves as a reference corresponding
to the PH hypothesis.

The other suggested plot is that of 7X(-) against Tf (-). This graph is expected to be close to a
straight line when the PH model holds and approximately convex or concave when the CHR is
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monotone. The straight line joining the origin with the end-point of the graph (TZK(t), le(t)),
may serve as a reference tor the PH hypothesis. The two suggested plots are expected to be
smoother and more stable than their unweighted counterparts.

5. Data analyvsis

The analyvuic and graphical procedures proposed in sections 2 and 4 were used to analyse
the ovarian cancer data set reported by Fleming et al. (1980), which describes the number
of days from treatment to progression of disease. Here, groups 1 and 2 consist of 20
patients with high-grade tumor (stage 1A) and 15 patients with low-grade tumor (stage II),
respectively. The statistic Oy, x, (after normalization) is 2.258. The corresponding two-
sided p-value is 0.024, suggesting an increasing trend of the ratio A(f)/A2(#). This
supports the findings of Gill & Schumacher (1987) and Deshpande & Sengupta (1995) that
the hazard ratio is increasing.

The plot of . 1,(7) .1:(1) vs. 1. shown in Fig. 1 has by and large an increasing trend, but the
fluctuations are substantial. Figure 2 shows the plot of T]K”(t)/Tzk”(t) against ¢ which was
suggested in section 4. This graph is smoother and more clearly suggestive of an increasing
trend of the CHR. )

The plot of ,lf"u) Vs, Af"(l) shown in Fig. 3 is approximately convex, indicating an
increasing hazard ratio. However, the plot of T17(1) against T, " () shown in Fig. 4 is smoother
and clearly convex. suggesting an increasing CHR.

6. Concluding remarks

The role of the weight functions in the family of tests proposed here is crucial. An
interesting question that can be posed in this connection is: “Can the weight functions be
chosen ‘optimally” according to some chosen criterion?” We have no clear answer to this
question as yct. If a sequence of alternative hypotheses converging to .#/ at a suitable rate
is considered. it can be shown that the asymptotic relative efficiency is of the form
Ly [ dil/ [0 [ 1)W1, syds di. where /(1) is the probability limit of the ratio of the
weight functions. g¢{7) is a function determined by A(f) and A,(#), and W(t, S) is a
positive defintte function of two variables, also determined by A(f) and A,(¢¥). A function
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Fig. 1. Plot of/i.(r)//iz(t) vs ¢ for the ovarian cancer data.
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I(7) that maximizes this expression would lead to a suitable weight function. Unfortunately
a closed form solution to this problem is not available. This is in contrast to the similar
problem handled by Gill & Schumacher (1987), where the “optimal” solution could be
obtained in closed form through the Cauchy - Schwartz inequality.

A small-scale simulation was performed to explore the role of the weight functions in the
two-sample testing problem. The two samples were generated from an exponential distribution
and a piccewise exponential distribution, respectively. Several combinations of weight functions
were tricd out. Out of these, the combination Y (1) Ya(t)exp[—¢/T,] and Y () Y2(¢), where T, is
the total time on test staustic for the combined sample, yielded the highest power. The former
weight function could not have been used for the family of tests proposed by Gill & Schumacher
(1987). since 1t 1s not predictable. This underscores the wide scope of the class of rcll weight
functions considered here.

The analytical test proposed in section 2 can easily be adapted to the competing risks
situation. where the hazard rates under consideration are the cause-specific hazard rates for two
risks. The presence ot other nisks can also be accommodated.

The test can be pencralized in two ways. First, the effect of covariates can be taken into
consideration in a manncr similar 10 Breslow (1974) and Dabrowska et al. (1992). The null
hypothesis would then be equivalent to checking the proportionality of the effect of a binary
covariate (such as a group indicator or a discretized covariate), assuming the other covariate
effects to be proportional. (An extension to the Cox regression model with continuous covariates
along the hines of 1in (1991) may not be possible). The other generalization may involve the
cumulative y-rate functions considered by Dabrowska er al. (1989), which includes as a special
case the cumulative hazard function and the odds ratio function.

A nice feature of the graphical methods suggested here is that they produce smooth plots,
even for small sample sizes. Thus the user need not be wary of reading too much from the shape
of the plot.
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Appendix
Proof of theorem 3.1

Consider the function #4: D[0, oc)? X D[0, o0} — D[0, co)™ defined by h(k, x)(#) =
k(?) @ x(¢). It is easy to show that / is continuous at all points (k, x) such that k is rcll and x
is continuous. The probability that (k, X) does not belong to the continuity set of & is
the same as the probability that X does not belong to D[0, oc)? — C[0, oc)?. The assumptions
of the theorem ensures that this probability is zero. Therefore K,(-) @ X, (- )—» k() ®X(:) by
virtue of the continuous mapping theorem.

Now consider the function f: D[0, c0)?? — RP4 defined by f(x) = jor x(1) dt. To show that f
is continuous, let x, — X in D[0, 00)?¢ and notice that every component of f(x,) converges to
the corresponding component of f(x) by the dominated convergence theorem. Since the domain
and range of fare spaces equipped with product topologies, this implies that f(x,) converges to

f(x). Therefore f is continuous and the result of the theorem follows from the continuous
mapping theorem.

Consistency of the variance estimator (2.2)

Assuming that Yi(1)/a, '—/;y,»(t) for i =1, 2 pointwise on [0, 7], we have a, V(r)f» v(f) in
D[0, o) under the usual Rebolledo conditions, where

_ ! d/]z(u) d/l1(u)
v Jo[ yi(u) * yz(u)]'

Let us also assume that K ,-f» k; for i=1,2, and that each of the functions v, k; and k>
is continuous. In view of (3.5), we only have to show that a,,V,-jﬁv,-j, i=12 j=12.
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We write v, as 'k, ¢p(k,. 0)). where y and ¢ are functions from D[0, co) X D[0, c0) to
R and D0, ~ ). respectively, defined as

y(k. 1) [ Ak (s) ds,

Juo
oLk, D [ K les ~ 1) ds.
Ju

In such a case a, ), y(K,. @(K,. a,V)). The convergence of a,V; to v; in distribution
is proved bv showing that @A, a,,V)—/vq)(kj, v). Since the limit of convergence in
either step is deterministic. we can invoke the continuous mapping theorem and show
that the functions @ and ¥ are continuous at the limit points. To show the continuity of
@, let (k. 0,) be a sequence in D[0, x) X D[0, o) converging to (k;, v). Thus kj, — k;
and v, -~ v in D[O. x). Since k; and v are assumed to be continuous, prop. 1.17(b) of
Jacod & Shiryayev (1980, p. 292) ensures that for each ¢ sup,<|kjq(s) = k{s)] — O and
sup,- |v.ts)  vls) -- 0. Note that ¢(k, v) € C[0, o0). It follows that for s € [0, 1],

[Pk e U S) Lk, OXS)

l [kutte,s Ay —ols A D) + (s A k() — k()] dt
JO

< sup [uads) o)) ‘ [k (D|dt + T sup |0(s)|- sup [ku(s) — k;(s)]-
Jo s€[0,1]

w [tr) scitr]

Thus ¢(k . v,) converges to @ik, v) locally uniformly. Therefore ¢(k,,, v,) converges to
@(k,. v) in D[O. ~). and ¢ is continuous at (k;, v). The continuity of ¥ at (k;, o(k;, )
is proved in a similar manner.
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