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ABSTRACT

This paper mainly studies the E-optimality of block designs 

under a general heteroscedastic setting. The C-matrix of a block design
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under a heteroscedastic setting is obtained by using generalized least 

squares. Some bounds for the smallest positive eigenvalue of C-matrix 

are obtained in some general classes of connected designs. Use of these 

bounds is then made to obtain certain E-optimal block designs in various 

classes of connected block designs.

This paper is mainly concerned with the determination and

construction of some E-optimal block designs. In the usual setting of

block designs, consider a design d with v treatments, n

experimental units, and =  (n^y) the vxbd incidence matrix, bd

being the number of blocks in d and n^-j the replication number of

the ith treatment in the jth block of d , i =  1 ,2 ,...,v; j =  1 ,2 ,...,b^ .

The ith row sum of Nd , r^j , is the replication of the ith

treatment and the jth column sum of , k^j , is the size of the

jth block. Also, 2  rdi — n =  2  ^di • The fixed effects, additive
i j

statistical model assumed here for analysing the data obtained from a 

given design d specifies that the uth observation pertaining to the 

ith treatment in the jth block, yjju > can be expressed as

where p. is the general mean, tj is the ith treatment effect and 

is the jth block effect. Also ejju is a random variable having

1. INTRODUCTION

...(l.i)



expectation zero and variance-covariance structure as

Cov(eiju> ei'j'u,) =  a2wj ’ if J =  j' > » = > ' >  u =  u'

=  <7 2p , if j =  j' and either i ^  i or u 5^ u'

=  0  , if j *  j' . ...(1 .2 )

Here Wj , p and a 2 are constants such that Wj > 0  , |p| <; 1 , c 2 >  0,

p ^  Uj and p —Wj/tk^j—1) , j =  1.... . It is reasonable to

assume here that Wj’s are directly proportional to k^j’s. Here we 

shall deal with only those models for which this assumption is valid. 

Under this model the coefficient matrix of the reduced normal equations 

for obtaining the generalized least square estimates of linear function 

of treatment effects is

c „ -  £

where Ndj is the jth column of and R^j =  diag(ndj

It is seen that is symmetric, non-negative definite with zero row

sums and for connected designs Rank (Cd) =  v — 1 .

In this paper we shall only be concerned with designs which are 

connected. For given positive integers v , n , rp , km , let Dtv.n.rp.km) 

be the class of all connected block designs having v treatments, n 

experimental units, minimum replication of treatments, rp , and maximum 

block size, km . Similarly, D(v,n,rp)kj) will denote the class of all 

connected designs having v treatments, n units, minimum replication,



rp , and minimum block size, kj , Dtv.n.km), the class of all c o n n e c t e d  

designs with v treatments, n units and maximum block size, km a n d  

D(v,n,kj), the class of all connected block designs with v t r e a t m e n t s ,  

n units and minimum block size, kj.

A desien d* in a eiven class $  of competing designs is said to b e  

E-optimal in D  if and only if the smallest non-zero eigenvalue of C ^ *  i s  

at least as large as that of Cd for any other d G $ .  It is well k n o w n  

that d* is E-optimal if and only if it minimises the maximum v a r ia n c e  

of the least square estimators of normalized treatment contrasts.

A number of results are already known concerning t h e  

determination and construction of E-optimal block designs in v a r i o u s  

classes under the model where Wj =  1 and p =  0  (that is the u su slI 

homoscedastic and uncorrelated error model), e.g. see Takeuchi ( 1 9 6 1 ) ,  

Cheng (1980), Constantine (1981,1982), Jacroux (1980a,b,1982,19 8 3 a ,b ), 

where the class of designs considered have blocks of equal size, w h i l ^  

Lee and Jacroux (1987a,b,c), Pal and Pal (1988), Dey and Das (1 9 8 9 ) ,  

Gupta and Singh (1989) also considered the class of designs h a v i n g  

blocks of unequal size.

The assumption of constant variance tr2 may not always hold i f '  

the block sizes are widely different and the intra block variance 

dependent on block size. In such situations, one may assume art  

appropriate heteroscedastic model and use generalized least squares t o  

obtain the best linear unbiased estimators of treatment contrasts _ 

Recently some optimal block designs have been obtained under t h ^



heteroscedastic and uncorrelated error model (i.e. Wj =  kj and p =  0 ) 

by Gupta, Das and Dey (1991).

Although a considerable amount of work is available for 

particular values of p and Wj , viz., p — 0  and Wj =  1 , in the 

error structure, not much appears to have been done in the optimality 

of block designs for general error structure. The purpose of this paper 

is to study the E-optimality of block designs with unequal block sizes 

when p =  0  and Wj =  k*jja  ( j ^ l , . . .^ ) ,  a  G (0 ,oo] is a constant. 

In Section 2 , upper and lower bounds to the smallest non-zero 

eigenvalue of with d belonging to different classes of connected 

designs is obtained. Use of these bounds is made in Section 3 to derive 

several classes of E-optimal designs. Finally in Section 4 optimality of 

designs with equal or unequal block sizes when p £ (0 ,1 ) and Wj =  1 

are reported.

2. BOUNDS FOR *d1

In this section, we obtain some bounds for the smallest

positive eigenvalue of , with d belonging to different classes of 

connected designs.

W e consider p =  0. Also we assume that the variability of the 

observations obtained from a given block of the design d is an 

increasing function of the size of the block, i.e., Wj =  f(kj), where 

f(.) is an increasing function. In particular we consider the case where

1 /ct
CJj «■» kjjj , a. G (0,oo] is a constant.



Theorem 2.1 Let p =  0 , Wj =  ^dj01 ’ d e D(v,n,rp,km) with 

km <, a  + 1. Then

rp(km—l)v ..

£ ' ■<2'1) 

Proof Let Xj be a v-component column vector with ith entry equal 

to (1 — 1/v) and all other entries equal to —1/v . Then it is easy to 

observe that lv xj = 0  an(* x-C^Xj =  c^- where ls is an s- 

component column vector of unities and cdii is the ith diagonal 

element of . Thus,

^dl ^  xiCdxi/x ixi =  vcdii/(v- 1) • •(2-2)

Now from (1.3)

°dii kl/oc A  kl+l/a  
J 1 dj J 1 dj

The function (1 — ji-) , j — l,...,bj, d € D(v,n,km) has a

kJJ« kdj

maximum value (km — l)/km+1/a if km £  a  + 1. Therefore from

(2.3), we have

^  km — 1 ^  _ rdi(km ~ 1 ) ^  ^

dii ^  kl + l /a  £  ndU 1+1/ a  ‘ " (2-4)
J 1 km



Since (2.4) holds for all i =  l,...,v, (2.1) follows.

Theorem 2.2 Let d G D(v,n,km). Then

a >  KdpV -  .-(2.5)
^  *  km(wm-/>)’_

where Xdp is the smallest off-diagonal element of NdNd =  

p € (0 ,1 ) and wm =  f(km) , f(.) an increasing function.

Proof Following Jacroux (1980b), let

T xd =  km(Wm - p) Cd - xv(v-l)'1 (lv- Vhvl'v)

where Iv is the vth order identity matrix and x is a real number. 

The eigenvalues of T xd are zero and km(wm — p) Mdj — xv(v—1) ,

i =  l,...,v-l , where Mdl <£ Ui 2  ^  ^  ^d,v-l are the positive 

eigenvalues of Cd< If T xd =  ^xduw^’ then



bd

km(wm ~  2  w L p  n̂duj ~  FT nduj  ̂j=l J dj

, , \ ^  ^  "duj ndwj n .1 i v

-  - 0' u

bd

km(Wm p) 2  oj.1— p ("duj kj nduj  ̂ Xdp^v ^  ^  0  "  ^  
j-1 J dj

Thus, for x =  \jp(v—1), we get from (2.7) and (2.8)

txduu ^  0  for u =  1 .-.V

and txduw ^  0  for u w, u, #  =  l,...,v . ...(2.9)

The rest of the proof follows from Jacroux (1980b, p.663).

From Theorems 2.1 and 2.2, we have the following results.

CoroUary 2.1 Let p =  0 , Wj =  kdja  , d G D(v,n,rp,km) with 

km £  a+1- Then,

lf  \ip =  rP̂ km — l ) / ( v —1), then 

rpUcm— l)v
Udl =  (-- i fc l+ l /t t  and d is E-°Ptimal in D(v,n,rp,km).

CoroUary 2.2 Let p =  0, oJj =  k ^ a  , d g D(v,n,km) with 

km ^  a + 1 . Then,



., . ,, 1+1 / a  
*> ^dp m

where \dp is the smallest off-diagonal element of NdNd and r is the 

largest integer not exceeding n /v .

ii) If Xdp =  r(km — l )/(v —1 ), then

Remark 1 The above results are generalizations of those known in the

homoscedastic case. When a  -- ► oo , the results hold for the

homoscedastic and uncorrelated error model as considered by Lee and 

Jacroux (1987a,b,c), Pal and Pal (1988), Dey and Das (1989) and Gupta and

Singh (1989). For a  -- ► oo , the classes considered here are more

general than the ones considered by Lee and Jacroux (1987a,b,c) and Pal 

and Pal (1988).

Above we have developed bounds for with specified

maximum  block size km . Now we obtain bounds for where d

belongs to the class of designs with specified minimum  block size

_  f(km — l)v
and d is E-optimal in D(v,n,km).

Theorem 23  Let p =  0 , Wj =  kdja  , d e D(v,n,rp,kj) with 

kj ;> a  + 1. Then

rp(k1 —l)v 

“ dl £  (v- D k!+1/oi

..(2 .1 0 )



Proof On lines similar to Theorem 2.1, we have

bu

"dij
'dj

The function A - (1 — ) , j =  1.....bj> d S D(v,n,k,) has a.
C  k-J

maximum value 1 ) if kj ;> a  + 1. Therefore from

(2.11), we have

„  <  v(k l ~ 1} ^  n „  rdi(kl ~ 1)v (2 1 2 ) 
dl ( v - 1)k! +1^  jS  a ii ..............

Since (2.12) holds for all i =  1.....v, (2.10) follows.

CoroUary 2.3 Let p =  0 , Wj =  kdja  , d 6  D(v,n,kj) with 

kj ^  a  + 1. Then

r ^ - D v

“ dl *  ' 

where r is the largest integer not exceeding n /v .

...(2.13)

Theorem 2.3 and Corollary 2.3 give upper bounds for w hen

a  <; k j—1 . Thus, these bounds do not hold for the homoscedastic 

case. However, these bounds holds for situations where the variance is  

truely dependent on block size and a  is small, say, less than 3 .



Remark 2 It is to be noted that a design which is E-optimal in

D(v,n,kni) (D(v,n,kj)) is also E-optimal in D(v,b,kj.... kfe), the class of

all connected block designs having v treatments, b blocks and 

specified block sizes kj,...,k^ , provided the design belongs to 

D(v,b,kj,...,kb) with max(kj,...,kb) =  km (min(kj,...,kj)) =  kj). The 

class of competing designs considered here is very broad since it only 

specifies (apart from v and n) either the maximum or the minimum 

block size.

3. E-OPTIMAL DESIGNS

In this section we give some methods of constructing E-optimal 

block design under the heteroscedastic uncorrelated error model, i.e., 

the case p =  0  and Wj •= kdja  . j ”  l.—.bj .

Let dj be a Balanced Incomplete Block (BIB) design with 

parameters v , b , r , k , X , in short BIB(v,b,r,k,X), and the treatments 

be 0,l,2,...,v— 1 . This design has bk experimental units. Suppose 

n'(^ 1) more experimental units are available to the experimenter. The 

problem then is to derive an E-optimal design for v treatments and 

n=bk+n' experimental units. The cases (i) a  ^  k —1 and (ii) a  ^  k —1 

are dealt separately.

Case (i) : a ;> fc— 1
As a consequence of Corollaries 2.1 and 2.2, we have



Theorem 3.1 Let dj be a BIB(v,b,r,k,X), k <; a+1 and let 6 2  be 

any arbitrary design with v' < v treatments, n' experimental units 

and maximum block size ^  k . Then the design d* with n =  bk+n' 

experimental units and maximum block size km =  k, obtained by taking 

the union of d^ and d2  is

i ) E-optimal in D(v,n,rp,km) with rp =  r, km =  k.

ii ) E-optimal in D(v,n,km) if n' < v .

The above result is very general. To give some discrete 

structure to the design d* , we suggest specific d2 <

The design dj is having n' experimental units grouped into b' 

blocks, the blocks being of size atmost k, where, 

b' =  [n'/k] + 1 , if k / n '

=  n '/k  , if k | n' .

To the b blocks of d^ , let us add b' blocks in the following manner 

so as to get a design d* in b+b' blocks.

i) If n' < k , we just add one block of size n' having 

treatments with labels 0 ,l,...,n'—1 .

ii) If n' =  mk for some integer m (^ 1), we add b' =  m 

blocks, each of size k. The contents of first of these blocks are 

(0 ,1 ,2 ,...,k— 1 ) and rest of the blocks are obtained by ‘developing’ this 

block in steps of k, with elements reduced mov(v — 1 ).

iii) If n' > k but k K n' , let n' =  mk+c, 1 <. c <. k —1 . In this 

case, we construct m blocks, each of size k, as in (ii) above. The last 

block has size c and contains treatments (i+l,i+2 ,...,i+c), where i is



the label of the last treatment in the m-th block, the elements being 

reduced mod(v—1 ).

Another alternative is to take 6 2  as a BIB or PBIB design 

with v'(< v) treatments, b' blocks each of size k'(< k) where 

n' =  b'k'.

The design d* obtained from the above specific d2  is 

E-optimal in D(v,bk+n',r,k) and if n' < v is E-optimal in 

D(v,bk+n',k).

Case (ii) : a  ^  fc—1

Theorem 3.2 Let dj be a BIB(v,b,r,k,X), k ^  a+1, and d3  is an 

arbitrary design with v' < v treatments, n' experimental units and 

minimum block size ^  k, then the design d **  with n =  bk+n' 

experimental units and minimum block size kj =  k obtained by taking 

foe union of dj and dg is

i) E-optimal in DW.n.rp.kj) with rp =  r, kj =  k.

ii ) E-optimal in D(v,n,k^) if n' < v .

Proof It is easy to see that /* .** , — — r- . The result
d 1 (v—l)k

then follows from Theorem 2.3 and Corollary 2.3.

As in Case (i), here also we may consider specific dj . For 

ixample, dg can be taken as a BIB or PBIB design with v'(<  v) 

reatments, b' block, each of size k 'O  k).



Remark 3 Starting with a BIB design with block size k, if we have 

n' more experimental units, then depending on whether a  ^  k — 1 or 

a  <; k —1, we use Theorem 1 or 2 respectively. For a  ;> k —1, the 

arbitrary design d^ with km k is used and for a  <, k —1 , the 

arbitrary design d^ with k^ ^  k is used.

Remark 4 Gupta, Das and Dey (1991) have shown the universal 

optimality of variance balanced design for a  =  1 or oo . This can be 

generalized to any value of a £  (0,ooj . The universal optimality of

11n
variance balanced designs for Wj =  kj , a  £ (0 ,oo] will be reported 

in a separate communication.

In this section we shall consider the case for which p £ (0,1) 

and Wj =  1 , j =  l,...,bd , i.e., the homoscedastic and correlated error 

model. It is shown that under the above set up, the search for optimal 

designs under correlated error model reduces to that under uncorrelated 

error model.

From the expression given in (1.3) when Wj =  1 , j =  l,...,bd 

and p £ (0 ,1 ), we have

4. OPTIMAL DESIGNS UNDER 
CORRELATED ERROR MODEL

...(4.1)



where is the C-matrix of the design d under homoscedastic and

uncorrelated error model. Let D be the class of connected designs 

under study. Then from (4.1) we have

Theorem 4.1 For p =  0  and Wj =  1 , if d* € D is ^-optimal 

according to a non-increasing optimality criterion <t> , then d *  is also 

-̂optimal under the model with p € (0 ,1 ) and toj =  1 , j =  •

(An optimality criterion 4> is non-increasing if 0 (A) ^  0 (B), whenever 

A—B is non-negative definite].

Remark 5 The 0 -optimality criterion includes the A- , D- and 

E-optimality criterion. The various optinial designs in literature 

(including the ones in Section 3) obtained under the uncorrelated and 

homoscedastic error model are also optimal for p € (0 ,1 ).
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