
Genetic modelling of complex human disorders
Swapan K. Nath* and Partha P. Majumder
Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 035, India
♦Present address: Department of Genetics, Case W estern Reserve University. Cleveland. Ohio, USA

Understanding the genetic bases of complex human 
disorders is one of the major challenges in human 
genetics today. Because there are various sources of 
complexity, including genotype-environment inter­
actions, teasing apart the various causes of these 
disorders may not be straightforward. Genetic model­
ling of data on families with these disorders provides 
useful insight into the roles of various putative causal 
factors. In this paper, we provide two models -  epistatic 
and heterogeneity models -  for complex disorders and 
develop methodology of analysis of family data under 
these models.

The tremendous progress in human molecular genetics 
made within the last decade has considerably eased the 
task of localization and cloning of genes controlling 
single-locus traits/disorders in humans. Presently, the 
limiting factor to localization of genes controlling such 
disorders is the availability of multicase families. How­
ever, for disorders such as hypertension and diabetes 
which do not exhibit single-locus inheritance patterns, 
the challenge now is to identify the various causal 
factors and to localize the underlying gene(s). Since 
highly polymorphic DNA markers at a reasonable density 
are currently available on human chromosomes, it is 
now possible to study cosegregation of these markers 
with the trait/disorder even without a tentative model 
of inheritance for the trait/disorder. However, such efforts 
may not be cost-effective, and in any case ‘before 
undertaking DNA studies . . .  one would ideally like to 
infer as much as possible about the genetic basis of a 
trait on the basis of the pattern of disease incidence in 
families and populations’1.

The purposes of this paper are to: (i) describe some 
cardinal features of a complex disorder, (ii) briefly discuss 
some important sources of complexity, (iii) describe some 
plausible genetic models for complex disorders, (iv) provide 
some statistical properties of these models, and (v) describe 
statistical methodology for analysing nuclear family data 
under these models. The emphasis is on theoretical de­
velopments; no application of the theory is provided, but 
references to applications are given.

W hat a com plex disorder is and the need for 
modelling

Genetics o f many human disorders are com plex in nature 
in the sense that they exhibit consistent and significant

familial aggregation, and have a genetic com ponent in 
their aetiologies, but do not exhibit simple M eiidelian  
patterns of inheritance. Often no single pattern  of 
inheritance can explain all observed types of aggregation 
of such a disorder in families. For example, a com plex  
disorder that shows a high degree of familial aggregation 
but is not inherited in a simple Mendelian fashion, m ay 
result from epistatic interactions of alleles at tw o  or 
more loci. Even when only two recessive loci ep istatically  
interact in the pathogenesis of a disorder, the vast 
majority of families ascertained through an affec ted  
proband have no other affected member. For exam ple , 
when the population prevalence of a two-locus recessive  
disorder is 1/I0(X), about 78% of nuclear fam ilies and 
about 65% of three-generational extended fam ilies of 
the proband are simplex3. These figures increase to  abou t 
82% and 78%, respectively, when the prevalence 
decreases to 1/1()()(X). Segregation analysis o f  su ch  a 
multilocus recessive disorder may result in incorrectly  
inferring that the disorder is incompletely penetrant w ith  
a large proportion of sporadics2. A recent study3 has 
shown that for the purpose of detecting linkage, m is- 
specification of the two-locus model by a single-locus 
model does not affect the expected maximum lod-score  
substantially. However, model mis-specification leads to 
loss of power of detecting linkage and to biased estim ates 
of the recombination fraction and other segregation 
param eters'7. Further, no single-locus trait can f it  the 
recurrence risks in relatives when the true m odel of 
inheritance is oligogenic*. For a two-locus trait, 
two-trait-locus, two-niarker-locus linkage analysis can 
provide substantially more linkage information than  
standard one-trait-locus, one-marker-locus analysis9. Id e n ­
tification of the correct genetic model of a d isorder by 
segregation analysis is, therefore, not only useful b u t is 
also necessary for both genetic counselling and lo ca l­
ization of genes.

Sources o f complexity

The complexity of a genetic disorder can arise in  a 
variety of ways. For example, a disorder m ay be 
determined by the joint action of genes and environm ent 
such as insulin dependent diabetes mellitus (ID D M )!  
This disorder has a variable age at onset. It aggregates 
in families, but does not segregate in a simple M endelian  
fashion from parents to offspring1011. There are also  
possible environmental effects or effects of other loci



(e.g. HLA) on the expression of this disorder. Although 
no claim is made that the following list is mutually 
exclusive or exhaustive, some of the more common 
causes of complexity of a disorder are:

Variable age at onset. All individuals with the appro­
priate genotype do not manifest the disorder either at 
birth or at the same age later in life. The classic example 
is Huntington’s disease for which the age at onset ranges 
from 6 years to 75+ years with a mode between 41 
and 45 years12.

Reduced penetrance. Some individuals with the appro­
priate genotype manifest the disorder while some others 
do not. Such reduced penetrance may be due to random, 
stochastic factors or due to modification of the susceptible 
genotype(s) by other gene(s)".

Phenotypic heterogeneity. All individuals of same geno­
type do not manifest the same phenotype. Phenotypic 
heterogeneity can, however, be artifactual. For example, 
o ne  of the difficult aspects of studying the genetics of 
psychiatric disorders relates to phenotype definition. 
Because of the large number of both major and minor 
psychiatric diagnoses, a primary problem in conducting 
genetic studies of psychiatric disorders is knowing which' 
ones to include as affected, and which ones to exclude14. 
Inability to define the phenotype homogeneously may 
g iv e  a false indication of phenotypic heterogeneity.

Allelic/genetic heterogeneity. Different alleles either at 
th e  same locus or at the different loci, give rise to the 
sam e phenotype. In classical terms, the former type is 
know n as intra-locus heterogeneity and the latter type 
is  known as inter-locus heterogeneity. An example of 
intra-locus heterogeneity is cystic fibrosis (CF). Of all 
C F  patients, 70% carry the same mutation, the AF508 
m utation15, a deletion of a specific codon that causes 
th e  CF protein to lack an amino acid phenylalanine at 
am ino  acid position number 508. Additionally, more 
th a n  300 mutations of the CF gene have been reported. 
T h e  phenotypic effects of some of these mutations can 
b e  distinguished, while of some others seem indistin­
guishable. For example, the M348K mutant allele, which 
is  characterized by a T to A substitution at nucleotide 
position  1175 in exon 7 of the CF gene leading to a 
m ethionine to lysine amino acid substitution, is reported 
to  have a phenotypic effect that is indistinguishable 
f ro m  that of A F508 (ref. 16). Neurofibromatosis (NF) 
i s  a  disease for which there is inter-locus heterogeneity. 
N F  can be of two types17. The most common form is 
th e  von Recklinghausen type (NF1), which is linked to 
m arkers on chromosome 17 (ref. 18). The other rare 
fo rm  is acoustic type (NF2), which is linked to markers 
o n  a different chromosome 22 (ref. 19).

Involvement o f multiple loci. The disorder is determined 
by the joint action of genes at more than one locus. 
The genetic mechanism for a specific form of prelingual 
deafness may be cited as an example. This disorder 
manifests itself only in individuals who are recessive 
homozygotes at two involved loci20.

Environmental influence. Environment, together with 
genotype, jointly influence the manifestation of the dis­
order. Coronary heart disease (CHD) can be cited as 
an example. The contribution of genetic factors to the 
development of CHD has been estimated21,22. From these 
studies it appears that there is no single gene locus 
responsible for CHD. Rather, different environmental 
and genetic factors jointly act and interact in a highly 
complex fashion in the pathogenesis of CHD.

Problem s in the analysis o f  fam ily data o f a 
com plex disorder

Methods of segregation analysis of family data for 
determining the mode of inheritance of a disorder are 
well established when the disorder is primarily deter­
mined by alleles at a single locus23. Suitable modifications 
have also been made to take into account incomplete 
penetrance, variable age at onset, etc. However, when a 
disorder is not transmitted in a simple Mendelian fashion, 
that is, when the observed segregation probability/ratio 
(which is defined as the conditional probability of an 
affected offspring given a parental mating type) is vastly 
different from that expected under a one-locus model, 
the disorder is usually described as ‘polygenic’ (meaning 
that the disorder is determined by alleles, each with a 
small undetectable effect, at a very large number of 
loci, which act additively to produce the disorder phe­
notype). Heritability of the disorder is then estimated. 
However, with the identification of single genes in the 
so-called complex disorders, the concept of polygenic 
inheritance is now beginning to be challenged24. A recent 
example is Hirschsprung disease, a complex disorder 
hitherto considered to be of polygenic origin. Patients 
with this disease suffer from severe constipation and 
abdominal distension due to congenital megacolon. A 
gene for this disease, which was traditionally assumed 
to be polygenic, has now been successfully localized to 
the peri centromeric region of the short arm of chromo­
some 10 (ref. 25). Thus, there is an increasing realization 
and documentation of the fact that many, so-called 
complex disorders may really be due to effects of genes 
at one or a small number of loci. Having rejected the 
single-locus model of inheritance, no attempt is usually 
made to analyse the data under multilocus models, 
assuming the involvement of a small number of loci. 
This is because of the intrinsic problems associated with 
multilocus models. For example, under a single locus



model, if the disorder is recessive, then in a family, 
ascertained through an affected child, if both parents 
are normal, then both of them are obligate heterozygotes. 
This fact simplifies family data analysis to a great 
extent, because in all such families, the segregation ratio 
is 1/4. Such simplicity vanishes even when two unlinked 
biallelic4oci, with alleles (A,a) and (B,b), are considered. 
In this case, each normal parent can be of one of the 
genotypes AaBb, Aabb, aaBb. Thus, a normal x normal 
mating type may be any one of the genotypic matings 
AaBb x AaBb; AaBb x Aabb; AaBb x aaBb; Aabb x Aabb; 
AabbxaaBb; aaBbxaaBb with segregation ratios 1/16; 
1/8; 1/8; 1/4; 1/4; 1/4, respectively. This heterogeneity 
of mating types and segregation ratios introduce con­
siderable complexity in deriving the likelihood function 
of a set of phenotypic observations on members of a 
family, and in carrying out computations. Further, because 
of the small family sizes of humans, low segregation 
ratios imply that in a large proportion of families only 
one affected member (the proband) is usually observed. 
This, in turn, creates problems in data analysis because 
the members in these families appear as sporadic (non- 
genetic) cases and/or the normal individuals mimic 
incompletely penetrant cases. To avoid the confusion 
regarding whether the affected individual in a single-case 
family is genetic (but, chance isolated) or sporadic, it 
may be n'ore practical to select multicase families. 
However, even though such a selection procedure en­
riches for segregation at a few loci, these segregants 
will be at multiple, independent loci26. This implies that 
there will be an intrinsic heterogeneity among such 
families which will adversely affect linkage-mapping 
efforts. Variable age at onset adds further complexity, 
because in this case an individual may be of the ‘affected 
genotype’, but may not have expressed the disorder at 
the time of study.

Developm ent o f multilocus m odels

A number of human disorders and congenital mal­
formations show strong familial aggregation but do not 
conform to the expected recurrence risks in sibs, or are 
not transmitted from parents to offspring in a simple, 
single locus, Mendelian fashion. Various models have 
been proposed to describe the way in which gene(s) 
affect the liability of individuals to a disorder. They 
range from models of the effects of alleles at a single 
locus to multifactorial/polygenic models representing the 
effects of genes at many loci and the effects of envi­
ronment. The multifactorial model, while descriptive, 
sheds very little light on possible underlying biological 
mechanism. Thus, extending simple single locus Men­
delian models to more than one locus represents the 
next logical step for exploring possible genetic mecha­
nisms for diseases which show strong familial aggrega­

tion. However, inherent in analysing models based on 
two loci is the question of the biological and statistical 
aspects of interactions between alleles at the different 
loci. Straight additivity is rarely a good assumption for 
any biological mechanism, while epistatic interaction 
represents a plausible mechanism for many disorders.

To the best of our knowledge, the first two-locus 
model proposed for a human disorder — psoriasis, a 
dermatological disorder -  was by Steinberg et al.21. They 
performed a simple-minded analysis of data from various 
mating types and concluded that recessive alleles at two 
unlinked, autosomal, biullclic loci interacted in the mani­
festation of the disorder, and that individuals who were 
recessive homozygotes at both loci were affected. 
Although psoriasis has a variable age at onset, this fact 
was not rigorously incorporated in Steinberg et al.’s 
analyses.

I.i:* considered the two-locus recessive homozygosis 
model and derived many useful theoretical results that 
included showing that Snyder’s ratios can be generalized 
in a straightforward manner to multiple loci. These 
results are useful for analysing nuclear family data for 
a disorder that is expressed at birth, provided that 
families are ascertained randomly or through an affected 
parent. He also provided further generalizations and 
results21'. However, in practice, for recessive disorders, 
sampling through an affected offspring, not random 
sampling, is the generally adopted strategy.

Merry et a l" ' performed a theoretical study of a 
two-locus model for a familial disease. They derived 
conditions for the existence of a stable equilibrium and 
showed that it could be used to explain a wide range 
of disease frequencies and patterns of inheritance. How­
ever, even though this study considered some diseases 
with variable ages at onset, the theoretical investigations 
were carried out without taking ages at onset into 
account.

A simple graphical method for testing two-locus models 
was proposed by GreenbergM. However, the testing 
procedure described by the graphical representation is 
not a test of significance or fit in the statistical sense. 
It is rather a test of the consistency of the model with 
biological parameters, namely, the gene frequencies at 
the two loci. A maximum likelihood test of the two-locus 
model for coeliac disease was subsequently developed32, 
but are not directly applicable to a disorder with a 
variable age at onset.

Recently, Neuman and Rice* have derived formulae 
for the recurrence risk to various classes of relatives in 
terms of penetrances and gene frequencies for two locus 
models.

Methods for segregation analyses of data on ascertained 
families in respect of multilocus recessive homozygosis 
models, have primarily been developed by Majumder et 
al.203i. Further generalizations and applications have also



been made, and properties derived'4 v\ These methods 
developed are applicable to disorders which are expressed 
at birth or which have variable ages at onset.

Multilocus models with special reference to 
the multilocus recessive model

Models considered

Many of the challenging problems in the study of 
hereditary disorders involve use of mathematical/statis­
tical modelling to describe the transmission of a disorder 
within families. Many complex disorders have not been 
amenable to genetic analysis under the assumption of 
single locus or multifactorial models. The observed 
familial risks are often inexplicable under any single 
locus or multifactorial models and also segregation analy­
sis has often not been decisive*. Consequently, interest 
has turned to the consideration of the properties of 
oligogenic models, i.e. genetic models involving a small 
number of genes.

It is known that the number of possible models for 
a multilocus system is large17, which precludes the 
exhaustive investigation of all possible models. To 
understand the behaviour of oligogenic models, we shall 
first consider the simplest case -  two autosomal, biallelic, 
unlinked loci. Locus 1 has alleles A and a with fre­
quencies p t and ( = | - / » ) ,  respectively; the two 
alleles at locus 2, B and b. have frequencies p, and 
<72(= 1  - P2), respectively. It is assumed that the under­
lying population is in Hardy-Weinberg equilibrium with 
respect to each of the two loci and that there is no 
linkage disequilibrium between the loci. We also assume 
that penetrances are equal (say /  for epistatic models) 
for all at-risk genotypes and that only those individuals 
with an at-risk genotype may become affected (i.e. no 
phenocopies). In heterogeneity models, the penetrance 
(say g ) of a genotype with respect to both loci is 
computed from marginal penetrances: g = f) +f1~ f ]f 2, 
where / ( and f 2 denote the marginal penetrances at loci 
1 and 2, respectively. The genotypes and their corre­
sponding population frequencies for the general two 
locus model are given in Table 1. The notation used 
to denote penetrances of the corresponding two-locus 
genotypes is given in Table 2. Now for example, consider 
a disorder that expresses itself in an individual if either 
(s)he is a recessive homozygote at each of the two loci 
(epistatic model) or is a recessive homozygote at any 
one of the two loci (heterogeneity model). The pene­
trances o f the genotypes for these models are: epistatic: 
hi = h 2= ... = ^ 8 = 0, h9= f;  heterogeneity: h^=h2 = 
K  = hs = 0 ’ h 3 = h(,=f 2 ' hj = h*=f>' h 9  = S- In this study, 
we have focused on the epistatic and the heterogeneity 
models.

M odel I. An individual is affected if the individual 
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is a recessive homozygote at all the loci involved in 
the pathogenesis of the disorder. The loci are assumed 
to be autosomal, unlinked and biallelic. For example, 
if the disorder is caused by the action of L  unlinked 
loci and at each locus there are two alleles-A ,a; B,b; 
C,c; etc. (a,b,c, . . .  denoting the recessive alleles) -  
affected individuals are of genotype aabbcc . . . ;  indi­
viduals of all other genotypes are phenotypically normal. 
Thus, of the 3L genotypes, only 1 genotype gives rise 
to the affected phenotype; individuals of the remaining 
3^—1 genotypes are phenotypically normal.

Model II. An individual is affected if the individual 
is a recessive homozygote at any one of the L  loci 
involved. In this case, of the 3L genotypes, 3L- 2 L 
genotypes lead to the affected phenotype; the remaining 
2L genotypes lead to the normal phenotype. Thus, for 
L = 2, individuals of genotypes AAbb, Aabb, aaBB, 
aaBb, and aabb are phenotypically affected, and those 
of genotypes AABB, AABb, AaBB, AaBb are pheno­
typically normal.

Population prevalence

Consider a disorder determined by the epistatic action 
of recessive alleles at multiple unlinked loci (Model I). 
Suppose, q. denotes the frequency of the recessive allele 
at the biallelic locus i (i = 1 , 2 , . . . ,  L) in a population. 
If the population practises random mating, then the 
prevalence (<5) of the disorder in the population is:

* = T 1 4 -
i= 1

Table 1. Two-locus genotypes and their frequencies in a 
population in Hardy-W einberg equilibrium

Locus 2

Loci BB Bb bb

AA AABB AABb AAbb

(p ]p I) (2P?P2?2) (Pfa2)
Locus 1 Aa AaBB AaBb Aabb

(2Pi9iPf) (4p,?iP292) (2p,<7,<?2)
aa aaBB aaBb aabb

(^ P 2) (2q\p2q2)

Table 2. Penetrances o f  two-locus genotypes

Locus 2

Loci BB Bb bb

AA K hi hi
Locus 1 Aa h K

aa hi K h9



If q = g  (for all i=  1, 2, 3 , ,  L), then, 

d = q7L, [0<<5, ^<1] .

For a disorder which is due to recessive homozygosity 
at any one of the L  loci involved (Model II)

8 = i - n  <•-«?>

If 4, = q (for all 1= 1, 2, . . . ,  L), then,

<5 = [1 - (1  [0<<5, q<  1],

For Model I, the prevalence, for a fixed value of the 
allele frequency q, decreases sharply with the increase 
in the number of loci L. For Model II, however, the 
prevalence increases with the increase of the number of 
loci. The prevalence, for a fixed value of L, increases 
with increase in the allele frequency q for both models. 
We also note that for both models the prevalence is 
exactly same when L = 1.

For a recessive disorder, it is of interest to examine 
its characteristics in an inbred population. Suppose, a 
population practises inbreeding and the inbreeding 
coefficient is F(F > 0). Then, at the rth locus 
(i = l , 2 , 3,.  .,  L), the frequency of the recessive 
homozygote will be q.F + q2(\ -  F) for Model I and 
\ - [ \ - { q . F + q 2( \ - F ) } }  for Model II. If q = q  (i =
1, 2, 3 , . . . ,  L), then, prevalence of a disorder for Models 
I and II will be:

d = [qF + (?{\-F )}L

and,

<5 = 1 -  [1 -  {qF + q \ \  -  F)}]l  •

As is expected, for fixed values of q and L, prevalence 
increases with increase in the population inbreeding 
coefficient F. Further, the rate of decrease in population 
prevalence under Model I, or the rate of increase in 
population prevalence under Model II, with increase in 
L  for a fixed value of q is dependent on the value of 
the population inbreeding coefficient, F.

M ethodology for analysis o f family data

Data pertaining to phenotypes, ages, etc. on members 
of families are statistically analysed for parsimonious 
model selection. Under each plausible model, likelihood 
of the data on a set of families is evaluated. As has 
been mentioned earlier, families are generally ascertained 
through the presence of an affected individual, who is 
called the proband. Such non-random ascertainment of 
families necessitates appropriate corrections in the like­

lihood function. In this section, we shall derive the 
likelihood functions of data on various types families 
under different non-random ascertainment schemes.

Likelihood o f  a norm al x norm al fa m ily  
ascertained through an a ffected  offspring

To determine the likelihood of a normal x  normal family 
ascertained through an affected offspring, we first note 
that each of the normal parents must either be hetero­
zygous at each of the L loci or recessive homozygous 
at all L loci except at least one. This is because, to 
produce an affected (aabbcc . ..  ) offspring, each parent 
must be capable of transmitting an abc . . .  gamete, and 
the reason why neither parent can be recessive homo­
zygous at all the L loci is that each parent is known 
to be phenotypically normal. Hence, for any such family 
in which the father is heterozygous at i loci and the mother 
is heterozygous at j  loci, the mating frequency, M . is:

('.) (i.)/ /<♦/**-<-
M  =■•J

z , = i , 0  (') h ‘*> r 2L- ' - ‘

The probability 0 that this family produces an affected 
offspring is:

0 = —  .<i 2'*'

Now, the probability, a , that a family with r affected 
offspring will have at least one proband is38:

a  = 1 -(1  - n ) ',

where n  denotes the conditional probability that an 
offspring is a proband given that (s)he is affected, which 
we assume is independent of the parental mating type.

The probability, t*"1 (r = 1 , 2 , -----.r), that a family o f

yth type (that is, in which the father is heterozygous 
at / loci and the mother is heterozygous at j  loci) of 
size s will have r affected offspring is:

T® = e r{\ -  o y - r.ij v ij

Therefore, the probability, that a family of yth type 
of size s will have r affected offspring and will be 
ascertained is:

r=  1,2,3.........*

Hence, the probability, of a family of j/th  type o f 
size s having at least one affected child and being 
ascertained is:



«,<#>= i - ( !  -  .70 ys ^  »/
rm I

It, therefore, follows that the probability that a family 
of size s will have at least one affected offspring and 
will be ascertained is:

L L  i t

I  w  n  - o
1 = 1  > *  I 1 * 1  y -  I

The likelihood, L  , of an ascertained family of size s 
having r affected offspring is:

Under single ascertainment, a ~ m . Hence, L  reduces
to:

V V
r s

V V \  /

z f= iz;yt=l (!')(',) 2" ' ,'1' " (2 " ’ -  1 p'*’

e ;=i i ;

where p = 1 -  q.
Although the above equation looks formidable, it can 

be considerably simplified because several mating types 
have the same values of i and j, and consequently the 
same value of 0 . This is exemplified in Table 3.

While the above likelihood equation has been derived 
for unrelated parents, extension to the situation when 
the parents are related is straightforward. The likelihood 
function remains valid; the only modification that is 
necessary is in the mating probabilities. These changed 
probabilities can be derived using the I-T-0 method39.

For the two-locus model, the unconditional mating proba­
bilities as given in Table 3 for unrelated parents change to:

when parents are an uncle-niece pair;

class 1: p2q2( \ /2  + 2pq)2 ;

class 2: />V(1 +4/?g)(l +2q);

class 3: 2pq*{[(\ +q)( 1 +4#) + p (l + 2q)2]/4)\

when parents are a pair o f first cousins:

class 1: 1/16 + 3piqi( l /2  + 3pq)\

class 2: p2q \ \ / 4  + 3q/2  + 3pq(l + 6#)];

class 3: pq*[( 1 +q) + I2pq(l + 3q)]/A.

Incorporation o f  variable age a t onset

Preliminaries and notations. Under the multilocus 
models considered, an individual of a given phenotype 
may potentially be of any one of several genotypes. 
For example, under Model I, a phenotypically normal 
individual can be of any one of 8 genotypes (AABB, 
AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb) if two 
loci are considered, while under Model II, such an 
individual can be of any one of 4 genotypes (AABB, 
AABb, AaBB, AaBb). Although under Model I, an 
affected individual is necessarily of genotype aabb if 
two loci are involved, under Model II such an individual 
can be of any one of 5 genotypes (aaBB, aaBb, aabb, 
AAbb, Aabb). Late age at onset adds to the list of 
potential genotypes of normal individuals. For example, 
under Model I, a normal individual may also be of 
genotype aabb but may not have manifested the disorder 
at the age at examination.

When two loci are involved, we present in Table 4, 
the list of various possible genotypic matings, mating 
probabilities, phenotypic mating types and segregation 
probabilities, separately for Models I and II. While 
listing the phenotypic mating types in this table, the 
possibility that an individual may be of the susceptible

T a b le  3. Parental gcnotypic mating classes, segregation probabilities and mating frequencies for Model I with L =  2

Class
Genotypic mating 

Father x  Mother

No. o f heterozygous loci Probability of 
affected 
offspring

M ating probability for class 

Unconditional Conditional
Father

(0
Mother

(j)

1 AaBb x  AaBb 2 2 1/16 16p V I?

2 AaBb x aaBb 2 I 1/8 3 2 p Y 2pq
aaBb x  AaBb 1 2 1/8
AaBb x  Aabb 2 1 1/8
Aabb x  AaBb 1 2 1/8

3 aaBb x  aaBb 1 1 1/4 16 p V d2
aaBb x  aaBb 1 1 1/4
Aabb x  aaBb 1 1 1/4
Aabb x  Aabb I 1 1/4



genotype (e.g., aabb under Model I ) but may not have 
manifested the disorder because of late age at onset has 
not been taken into account. This possibility introduces 
a complexity. For example, under Model I, when variable 
age at onset is considered, the genotypic mating

T able 4. Genotypic and phenotypic mating types, their prob­
abilities and segregation probabilities when two loci are involved

Segregation
prob. Phenotypic mating

--------------------- type
SI. Genotypic Mating Model Model -------------------------------
no. mating type prob. I 11 Model I Model II

1 AABB x  AABB P8 0 0 Nor x  Nor N o rx  Nor
2 A A B B xA A B b V <? 0 0 Nor x  Nor N o rx  Nor
3 AABB x  AAbb 2 p Y 0 0 Nor x  Nor Nor x  Aff
4 AABB x  AaBB V <? 0 0 Nor x  Nor Nor x Nor
5 AABB x  AaBb 8 p V 0 0 Nor x  Nor Nor x  Nor
6 AABB x  Aabb 4 p Y 0 0 Nor x  Nor N o rx  Aff
7 AABB x  aaBB 2p V 0 0 Nor x  Nor Nor x  Aff
8 AABB x  aaBb 4 p V 0 0 Nor x  Nor N o rx  Aff
9 AABB x  aabb 2 p V 0 0 Nor x  Aff Nor x  Aff

10 AABb x  AABb 4 p Y 0 1/4 Nor x  Nor N o rx  Nor
11 A A B bxA A bb 4p Y 0 1/2 Nor x  Nor N o rx  Aff
12 AABb x  AaBB 8 p V 0 0 Nor x  Nor Nor x  Nor
13 AABb x  AaBb 16 p V 0 1/4 Nor x  Nor Nor x  Nor
14 AABb x  Aabb B pV 0 1/2 Nor x  Nor Nor x  Aff
15 AABb x  aaBB 4/>V 0 0 Nor x  Nor N o rx  Aff
16 AABb x  aaBb 8p V 0 1/4 Nor x  Nor N o rx  Aff
17 AABb x  aabb 4PV 0 1/2 Nor x  Aff N o rx  Aff
18 AAbb x  AAbb p V 0 1 Nor x  Nor A ff x  Aff
19 AAbb x  AaBB 4p V 0 1/2 N o rx  Nor Aff x  Nor
20 AAbb x  AaBb 8pV 0 1/2 Nor x  Nor Aff x  Nor
21 AAbb x  Aabb 4P V 0 I Nor x  Nor Aff x  A ff
22 AAbb x  aaBB 2 P V 0 0 Nor x  Nor Aff x  Aff
23 AAbb x  aaBb 4 p Y 0 1/2 Nor x  Nor A ff x  A ff
24 AAbb x  aabb 2p V 0 1 Nor x  Aff Aff x  Aff
25 AaBB x  AaBB 4p V 0 1/4 N o rx  Nor N o rx  Nor
26 AaBB x  AaBb 1 6 p V 0 1/4 Nor x  Nor Nor x  Nor
27 AaBB x  Aabb 8 p V 0 1/4 Nor x  Nor Nor x  Aff
28 AaBB x  aaBB 4 p V 0 1/2 N o rx  Nor Nor x  Aff
29 AaBB x  aaBb 8 p V 0 1/2 Nor x  Nor Nor x  Aff
30 AaBB x  aabb 4 p Y 0 1/2 N o rx  Aff Nor x  Aff
31 AaBb x  AaBb 16 p V 1/16 7/16 Nor x  Nor Nor x  Nor
32 AaBb x  Aabb 16 p V 1/8 1/2 N o rx  Nor N o rx  Aff
33 AaBb x  aaBB 8p V 0 1/2 Nor x  Nor Nor x  Aff
34 AaBb x  aaBb 16p V 1/8 5/8 Nor x  Nor Nor x  Aff

35 AaBb x  aabb 8 p V 1/4 3/4 Nor x  Aff Nor x  Aff

36 Aabb x  Aabb 4 p Y 1/4 1 Nor x  Nor A ff x  Aff

37 Aabb x  aaBB 4 p Y 0 1/2 N o rx  Nor Aff x  Aff

38 Aabb x  aaBb 8 p V 1/4 3/4 N o rx  Nor Aff x  Aff

39 Aabb x  aabb 4p<y7 1/2 1 Nor x  Aff Aff x  Aff

40 aaBB x  aaBB 4 4A 0 1 N o rx  Nor Aff x  Aff

41 aaBB x  aaBb 4 p Y 0 I Nor x  Nor Aff x  Aff

42 aaBB x  aabb 2 P Y 0 1 Nor x  Aff Aff x  Aff

43 aaBb x  aaBb 4 p Y 1/4 I Nor x  Nor A ff x  A ff

44 aaBb x  aabb 4p<?7 1/2 1 Nor x  Aff Aff x  Aff

45 aabb x  aabb ■7s 1 1 A ff x  Aff Aff x  Aff

AABB x aabb may phenotypically either be normalx 
affected or normal x normal.

For the formulation of likelihood of phenotypic 
observations on offspring given the parental phenotypic 
mating type, the following further preliminaries and 
notations are in order.

1. For a particular phenotypic mating type, several 
genotypic mating types are possible. If  the mating 
involves parent(s) who is (are) phenotypically normal, 
then the current age(s) of the parent(s) also need to be 
taken into consideration while enumerating the possible 
genotypic matings. We shall denote as g  and gm, the 
current ages of father and mother respectively.

2. We shall denote as. ;  =Prob (an individual of age 
x is phenotypically normal given that (s)he is of the 
susceptible genotype(s)}. These probabilities are esti­
mated from age at onset data of affected individuals. 
In practice, it may be necessary to form age-groups to 
avoid vagaries of small sample sizes. When age groups 
are formed, c will denote the above conditional prob­
ability for an individual belonging to age-group 
/ ; / =  1,2........ G.

3. We shall denote as: /<t = Prob (genotypic mating 
type is k given the phenotypic mating type and 
age(s) of the phenotypically normal parent(s)}; 
k = 1, 2,. . . ,  K = number of genotypic matings for a 
specified phenotypic mating. These are calculated 
straightforwardly from the mating probabilities given in 
Table 4. However, these probabilities need to be mul­
tiplied by appropriate ;  values in specific cases. For 
example, under Model I, given a normal x affected mat­
ing, K should equal 8 (corresponding to serial numbers 
9, 17, 24, 30, 35, 39, 42 and 44 of Table 4) if the 
disorder expresses itself at birth. However, when the 
disorder has a late age at onset, a normal x  affected 
mating may also be of type aabb x aabb (serial number 
45 of Table 4. Thus, K = 9. The mating probability of 
the aabb x aabb mating given that the phenotypic mating 
type is normal x affected, and that the normal individual 
belongs to f'th age group is q*zr  The conditional prob­
abilities, /<t’s, are obtained by dividing the unconditional 
probabilities by the sum of the unconditional probabilities 
of all genotypic matings corresponding to the given 
phenotypic mating.

4. We shall denote as: 0k = Prob (offspring is of a 
susceptible genotype given that the parental genotypic 
mating is of type k). For example, under Model 1,
0 =Prob {offspring is of genotype aabbcc . .  . given that 
the parental genotypic mating is of type /t}. But under 
Model II, 0k = Prob (offspring is of AAbb or Aabb or 
aaBB or aaBb or aabb given the parental genotypic mating 
of type £}. These are also given in Table 4.

5. Consider an offspring of age * in a family in 
which parental genotypic mating is of type k. The 
probability of this offspring being phenotypically affected



is and of being phenotypically normal is

6. For a particular nuclear family, we shall denote 
as: n. = total number of offspring in age-group i\ 
m= number of affected offspring in age-group i; 
(n -  m.) = number of normal offspring in age-group i.

Likelihood function fo r  a normal x  affected  
family, ascertained through an affected parent

The data comprise numbers of affected offspring 
belonging to each of the G age groups; that is, m. and
n. -m;  i = 1,2........ G. Given that parents are
normal x affected, one can enumerate all possible geno­
typic matings that can give rise to a normal x affected 
phenotypic mating, under either Model I or Model II. 
Suppose K such genotypic matings are possible. For 
each genotypic mating, k, the conditional mating prob­
ability can be worked out as indicated in the previous 
section after taking into account the age of the normal 
parent. For a given genotypic mating, k, the likelihood 
of phenotypic observations of offspring belonging to 
age group i is:

m
\  7

[0*0 -z,)r II -^(1 ■

Thus, the conditional likelihood function of phenotypic 
observations on all offspring given the parental mating 
type is:

m
V /

[0,(1 -  j)I". | I - 0 t( l - 2 , . ) ] V

Likelihood function fo r  a normal X normal 
fam ily, ascertained through an affected offspring

In comparison with the previous case, a normal x affected 
family ascertained through an affected offspring raises 
two problems. First, the ages of both normal parents 
have to be considered in determining /tk's. For example, 
under Model I, for L = 2, a normal x normal mating may 
actually be of type aabb x aabb. That is, both parents 
can be of the susceptible genotype (aabb), without 
manifesting the disorder at the time of data collection. 
The unconditional probability of this genotypic mating 
will be q*Zfy when the parents belong to age groups
i and j  (i,j = 1, 2 , . .  . ,  G). Second, while no correction 
for bias of ascertainment was required in the previous 
case (normal x affected family ascertained through an 
affected parent), when a family is ascertained through 
an affected offspring, the likelihood has to be corrected

for ascertainment-bias. The likelihood function, L ,  can 
be written as:

L -  [a ■ f(n, m)]/B(n, m),m ’

where the form of the function C(n, m); n and m being 
vectors, is the same as the likelihood function of the 
previous case. [Of course, enumeration of genotypic 
matings and calculation of conditional mating prob­
abilities will correspond to a normal x normal phenotypic 
mating rather than a normal x  affected mating.] If 
m = E c , m. denotes the total number of affected off-t=l I
spring in the family, then = Prob (a family with r 
affected offspring will have at least one proband) 
= 1 -  (1 - n ) m, where n  denotes the probability of ascer­
tainment. Thus, the numerator of L , a  ■ ((n, m), denotes 
the likelihood that in a family with n. offspring there 
will be m. affected in age group i{i = 1 , 2 , . . . ,  G), and 
that such a family will be ascertained. The denominator 
of L , /?(n, m), denotes the probability that a family with 
n. offspring in age group i has at least one affected 
offspring and is ascertained. This term is obtained as:

A ". m) = X «  Z
.....y

(£n 
X r  =r

I (n, 1)

where

N=  X  «,.•
1=1

When, 7i ~ 0, the likelihood function simplifies to:

L  = r - [(n, m)//? (n, m), 

where

N

/?(n, m) = £  r ■ ]T An, I),
r* 1

and the range and constraints of the second summation 
are those of /i(n, m) given earlier.

Computations o f  likelihood functions: Some 
com ments

The number of possible genotypic matings, K, for a 
given phenotypic mating type increases drastically with 
increase in the number o f loci, L. For a fixed value of 
L , K is also much larger if a disorder has a variable 
onset age compared to one which is expressed at birth. 
Thus, for a disorder with a variable onset age, the
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number of terms to be summed in the likelihood function 
is usually large. However, several genotypic matings 
have the same segregation probability, as is evident 
from Table 4. Considerable computational simplification 
is obtained by pooling all genotypic matings with the 
same segregation probability. When this is done, the 
number of terms to be summed in the likelihood function 
reduces to the number of distinct values of the segregation 
probability.

When data on a number of nuclear families of a 
specific mating type are available, the joint likelihood 
is the product of likelihoods of individual families. Here 
again, considerable computational simplification is 
obtained by pooling data of all families in which the 
normal parent(s) belongs to the same age group(s).

Discussion

Starting with an overview of the development of multi- 
locus models, we have focused on two models for 
complex human disorders -  epistatic and heterogeneity 
models. We have provided the methodology for calcu­
lating the likelihood of data on families for each of 
these models. Because we have considered the practical 
situations that the disorder may have a variable age at 
onset and that the families from which data are collected 
may be ascertained through affected individuals, the 
proposed methodology should be widely applicable. 
Based on the value of the likelihood function of data 
on a set of families, model selection can easily be made. 
Although, in this paper, we have provided no application 
of the proposed methodology, this can be found in Nath 
et al,35 and Nath36.
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