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Summary
The paper investigates non-negative quadratic unbiased (NnQU) esti­

mators of positive semi-definite quadratic forms, for use during the survey 
sampling of finite population values. It examines several different NnQU 
estimators of the variance of estimators of population total, under various 
sampling designs. It identifies an optimal quadratic unbiased estimator of 
the variance of the Horvitz-Thompson estimator of population total.
Key  words: Non-negative quadratic unbiased estimator; superpopulation model; 
biased non-negative variance estimator.

1. Introduction
Consider a finite population of N identifiable units labelled 1 Asso­

ciated with unit A: is a real quantity Yk, a realisation of a variable y  of interest. 
We want to estimate a quadratic function of Y,

f <Y > =  E £ w > = Y 'B Y . <u )
* i

where B =  (6^), is a symmetric N  x N  matrix of known elements b^, Y  = 
(Kj,. . . ,  YpfY and denotes summation over k =  1 , . . . ,N. To do this, we 
select a sample s by employing a sampling design with IIfc =  Pis)» n fcfc< = 

k' K s) 88 first and second order inclusion-probabilities respectively. 
Here p(s) is the probability of selecting sample s. Most of the quadratic forms 
of interest for estimation are variances of estimators of a function of Y  or some 
measures of variability between the Y; values in the population. Hence, we can 
assume that F  is non-negative definite (NnD). Moreover, there would be some 
ideal populations Y  =  W  for which F  becomes zero. For example, if F  is the 
variance of the Horvitz-Thompson estimator (HTE),

eHT =  X )
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of the population total T  =  E*Li and if samples are of equal size n, then 
Yk = n fc makes eHT = n for all samples. So, F  is identically zero when Y  = 
II =  (III ,... jDjv)*. Similarly, if F  =  (EOjfc -  Y )2)/N, the variance of the 
population, F  =  0 when all s are equal, i.e. Y  = al for some a.

In this article we consider non-negative unbiased estimation (NnUE) of 
F (Y )  and subsequently consider NnUE of the variance V(T) for different sam­
pling strategies with fixed sample size n. The present work generalises results of 
Vijayan (1975), Rao & Vijayan (1977) and Rao (1979).

2. Form of Non-negative Unbiased Estimators

Lemma 1. Let Q =  X 'A X  be a NnD quadratic form in X  =  (xi , . . . ,  xm)' with 
Q =  0 for X  = V  =  ( » i , . . . ,  vm)', A =  (a{j). Then AV =  0, i.e. ^  aijvj = 0 
for ail i =  1 , . . .  ,m.

Proof. Since A is NnD, there exists a matrix H such that A  = HH'. Thus

V'AV = (H'V)'(H 'V) = 0 = >  H 'V =  0 = >  HH'V =  0 = »  AV =  0.

Theorem 1. If F(Y ) =  =  0 for Y  = W  = (wt , . . .  ,w N)', for
known wi s , then

F ( Y ) =  -  Y ,  J 2  ba w iwj ( z i -  z i ) 2 ’  C2 -1 )
i < j

where zi = Yi/wi. Further, a non-negative quadratic unbiased (NnQU) estimator 
of F is necessarily o f the form

fs(Y)  =  -  £  S  ~ Zj)2, (2-2)
i , j £ s : i < j

where the summation is over all distinct pairs of units { ( i , j ), i < j }  contained 
in the sample s and

E (cy(a)) = *y (2.3)
In (2.3) and the rest of the paper, E denotes expectation with respect to the 
sampling design.
Proof. We can write F  as F  =  E i Yjj ^ijwiwj zizj- Since

t j

by Lemma 1,

buwi = -  bijwiwj (i =  !>•••’ N )• (2-4)



Hence from (2.4),

-  53 zi bi jwiwj  +  53 zizjbij w iwj = - 53 £  bijwiwj(z, -  Z j f .  
i j - j^ i  j - i f r  *<•?

If f s =  Y,ijes:i<j X) Cij{*)ViVj is a NnQU estimator of F  then

/ , (  w )  =  o,

since F (W ) =  0 and f s is non-negative and unbiased.
Hence, as before, f s(Y ) reduces to the form (2.2). The condition (2.3) is 

necessary for unbiasedness of / ( Y ).

Remark 1 . Some natural choices for ■(«) are

-  bi> C(2VS) -  h i  c(3)rs') -  biip(S 1 *’ J~) (o 5 )
1 j ~  M2p(s) ’ 1 > ~  { ) ~ p(s) ’ (2’5)

where Mt =  (» =  0 , 1 , . . . ) ,  and p(s | i){p(s | i ,j )  is the conditional proba­
bility of selecting s, given that i (i and j )  was (were) selected at first draw (first 
two draws) according to some unit-by-unit drawing sampling scheme. Recall 
that for every sampling design there always exists a draw-by-draw mechanism 
to realise the design (Hanurav, 1962).
Note 1. Following Rao & Vijayan (1977), we can show for n =  2  that any 
nonnegative unbiased estimator of F  is necessarily of the form (2.2). For n >
2, we can extend the theorem to the class of all polynomial estimators of F, 
following Vijayan (1975).
Note 2. Theorem 1 extends the results of Vijayan (1975), Rao & Vijayan 
(1977) and Rao (1979) on non-negative estimation of the mean square error of T 
where T  is the total £  Y{ written as MSE(T), to non-negative definite quadratic 
functions in survey sampling. We recall their results as follows.

Theorem 2. Let T = bsiYt (bst =  0 for i & s), be a linear estimator of 
T. If MSE(T) =  0 when Yi = cwt (i =  1 , . . . ,  N) and the w{s are some known 
constants and c is an arbitrary constant, then

MSE( f )  = -  53 53 wiwj(zi ~ zj ) 2dij > (2-6)
i< j

where z{ = YJw,, dtJ = E[(6S, -  1 )(bsj -  1)]. Further, a non-negative quadratic 
unbiased estimator o f MSE(T) is necessarily of the form

m(T) = -  53 5  ̂ wiwj ( zi -  zj?e i j ( s ) ,  (2-7)
( i ,j )€s :i< j



where
E ( e i j ( s ) )  =  d ij  (* <  j ) -  ( 2 -8 )

3. Different Forms o f  NnQU Estimators o f  V (T )

An investigation into different forms of NnQU estimators of V (T ),  where T 
is defined in Theorem 2 above, enables us to choose the estimator which is most 
preferable in some sense, say in the sense of having maximum stability (least 
sampling variance) or the largest probability of being non-negative or both.

When T = bsiYl is unbiased, dtJ from Theorem 2 equals E(6 S,6 SJ) -  1 =  
hij — 1, say. Then

n t )  =
*<i

where = w{w-(zt — z- )2. This leads to different forms of NnQU estimators of 
V  as

=  *>«(*) =  E E  ( M  =  0 , l , 2 , 3 ) ,  (3-1)

where = a -^ s )  and = h\f(s) (k = 1,2,3) are given at (3.3) below 
and

° m = W J j  “ d  ( 3 - 2 )

We obtain the quantities aW and (fc = 1,2,3) by substituting respectively
1 and hjj for b -  in (2.5), yielding

“ “ ^ I T T V  “ <2| = - -  ( « » >M2p(s) 7T{j p{s)

h») = T T in '  = ft(3) =  M ( »  I <•,i )  b)
} M2p(s) 3 ”  p(s)

Remark 2. In practice, many of the estimators vkt would coincide. Theorem  ̂
gives only necessary conditions for NnQU estimators of MSE(T). In fact, maitf 
of the estimators vk( may not be non-negative for all values of Y .

Remark 3. Writing = (h -  a) +  (a -  1 ) =  -t- b, say, i.e. b =  a -  1 for a 
some real constant, leads to different other forms of NnQU estimators o f  V {T ):

vkl{s\a) = b E E  9ij<*{k) - E E  (k =  0 , 1 , 2 , 3 ).

Optimum choice of a for a given vke may depend on its sampling variance.



From now on, we denote E  E i< j and E  E(ij)es:*<.? ^  E '  and E l i  re­
spectively.

Example 1 (Probability proportional to size with replacement (ppswr) sam­
pling). Let t { be the number of samples s 3 i, and define

r = ; E T ’ b-l = W '  *< = £ '  “ d V { f )  =to z—' Pi npi pi n*—' J J

We have, for example,

E 1 r \2 f 71 — 1 I
,(*< -  Zj) pipi \ n(n - i ) PiP. -  nM2p{s) J ’

E 1 t \2 f ^  j Tl — 1 1

-1 2  = £ > <  -  Z>^P<p’ { m ^ ( s) ~  ^ } -

where ni;- =  1 -  (1 -  ft )"  -  (1 -  Pj)n + (1 -  P; -  Pj)n. Rao (1979) considered the 
estimators v00 and v22.

Example 2 (Horvitz-Thompson estimation).

r — ^  b —  ̂ (?' r j  _ v ii ~ Xiiri
s 1 1 * J

Some forms o f v(eHT) are 

% 0 ,  „ 0 2 .  , 20 =  „2! = ( 7 „  =  ( *  -  * ) * ) ,

_  V- ' '  J _J_ _  K 5 1 h j)  \
V03 ~ 2^3  ‘^TTy V.Vj p(S) J ’

*10 = V23 =  -  — } ’

V " ' /  J<a I *»i) 1 \



Sen (1953) and Yates & Grundy (1953) originated the well-known estimator 
Rao (1979) considered the estimators v10 and v30.

Example 3 (Probability proportional to size without replacement sampling and 
Murthy’s estimator t M =  ]Cs[y,p(s | i)/p(s)])- When yf = cpt (i =  1 , . . . ,  N), 
V(Tm) =  0 and btj = [pis \ •);)(.! | J)/p(s)] -  1; otherwise,

s 3i , j

p(s | i)p(s | j)  
p(s)

Some of the estimators in the latter case are 

_  y-V PjPj  f  p(s | i)p(s | j )
°° t3P(s) \ E s>3i,jP(s ' I *M*' I J)

p(s | i)p(s | j )
p(s) } •

, _  v 4'/. PtP] f 1 v '11 *3 M-n(st) T~̂  ■ P{s 0 J,JM2p (s)i^  p(s')

V - V ' c p J 1 1 21 2 ^ 4 f a , )  j>

v3o p(s) p(s) ] ,

p(5' I *>(s' I i )  \D _ p(s I *»i) f i  v
“  L s c'ip'pi f a )  i 1 2 L,

1 s ' 9 « J
p(s')

Murthy (1957) proposed u30; Pathak & Sukla (1966) showed its non-negativity.

Example 4 (Midzuno strategy). Here samples are taken with probability pro­
portional to the sum of the sizes of the sample units. T = TR =  ( S s J/j) /  ( Pi) 
= E sy»/[^iP(s)] = T,s {yiP(s I *)/p(s)) since for the Midzuno scheme 
p(s | i)/p(s) = 1 /[Mj>(s)]. Also p(s | i ,j )  = (N  -  1 )/[Ml (n -  1)]. Hence 
here,

1 s'B  ! J  s

« io  =  v30 =  2
p(s | i)p(s | j )

M2p{s) p(s)2
X / N - 1 I V

. ^ U - l  * J J ’

]

’ n =  E ;
x i x j { N  -  l)X  

( n - l ) x s



Rao & Vijayan (1977) considered the estimators v10 (=  v30) and v22 (their es­
timators (2.13) and (2.11) respectively). They studied their stabilities and the 
probabilities of getting a negative value empirically. An investigation into the 
properties of some of the other estimators is in progress.

We have investigated empirically the performances of v01, v03 and v10 on 
21 natural populations for Horvitz-Thompson estimation. Most of the sample 
survey situations are covered by these populations. Murthy (1967) described the 
first eight of the populations and Rao & Vijayan (1977) described the rest. For 
simplicity we denote the estimators by vlf v2 and v3 respectively. We consider 
cases when the sample size n =  3, 4 or 5.

To save computer time, for the cases n =  4,5 we drew samples from modified 
populations, where the populations remained unchanged if N < 10 but were 
restricted to the first ten units if N > 10. We used Sampford’s (1967) procedure 
to draw the samples.

Tables 1, 2 and 3 give estimates of the probabilities pi of v{ taking negative 
values (given by the relative frequency of number of samples yielding negative 
variance estimates) for different populations for n — 3, 4, 5 (i =  1,2,3). Cx 
denotes the coefficient of variation of x (the auxiliary variable).

The tables give the relative efficiencies of the Yates-Grundy estimator v0 
(=  uoo) over v{, denoted by E0I E{ (i =  1,2,3), where Ei =  var(vj (i = 0 , . . . ,3 ) .

The tables also show the performances of biased non-negative variance es­
timators Uj, v2, v3. The estimator v* is obtained by modifying vi as in Rao & 
Vijayan (1977), namely

4. Empirical Study

{
when vi > 0 ,

gsX 2 when v{ < 0.



T a b l e  1
Probabilities and relative efficiencies o f v{ (v*), i =  1,2 ,3 ,  

for 21 real populations n =  3

Popl. Probabilities Relative efficiency Relative bias Rel. efficiency
no. N o . P Pi Vi H e 0/e 3 K *5 *5 e v e ; E l/Et

8 8 .056 .82 0.0 0.0 0.0 1.19 1.03 1.14 0.0 0.0 0.0 .867 .954
21 16 .078 .95 0.0 0.0 0.0 1.04 1.00 1.18 0.0 0.0 0.0 .962 1.140
6 10 .085 .25 0.0 0.0 0.0 1.12 1.00 1.27 0.0 0.0 0.0 .893 1.137

20 10 .202 .76 .067 0.0 0.0 1.31 1.00 1.67 .073 0.0 0.0 .724 1.205
10 10 .248 .84 .042 0.0 .100 1.43 1.00 2.89 .049 0.0 .177 .676 1.869
17 16 .351 -.35 .155 0.0 .107 2.03 1.03 3.24 .097 0.0 .143 .528 1.635

5 13 .368 .94 .217 0.0 .077 3.18 0.96 7.75 .174 0.0 .036 .821 6.536
9 10 .392 .87 .483 0.0 .175 5.98 1.09 11.04 .416 0.0 .373 .284 2.762

15 15 .420 .77 .356 0.0 .101 3.38 1.00 6.68 .223 0.0 .289 .358 2.129
14 10 .420 .22 .467 0.0 .142 7.68 1.29 12.22 .345 0.0 .392 .266 2.303

1 8 .449 .69 .393 0.0 .143 10.49 0.91 21.97 .440 0.0 .316 .415 9.491
2 8 .449 .43 .411 0.0 .125 9.37 0.94 24.82 .472 0.0 .377 .214 5.327

19 13 .472 .52 .423 0.0 .143 5.84 1.06 10.68 .273 0.0 .252 .350 3.529
18 16 .474 .90 .348 0.0 .161 2.62 0.94 6.84 .196 0.0 .209 .485 3.350
11 12 .503 .80 .414 0.0 .150 3.32 0.86 10.17 .364 0.0 .263 .539 5.895
13 8 .562 .44 .500 .179 .179 3.61 0.78 13.33 .373 .055 .261 .617 10.35
12 9 .573 .90 .560 .012 .135 1.81 0.98 7.27 .154 .002 .140 .566 4.051
3 8 .634 .92 .589 .304 .143 18.72 1.38 40.70 .424 .086 .257 .319 9.167
4 8 .634 .89 .536 .268 .232 10.66 1.02 34.39 .417 .158 .204 .520 17.541

16 20 .723 .98 .508 0.0 .128 14.81 0.94 36.92 .279 0.0 .110 .518 20.075
7 12 .723 .93 .505 0.0 .191 7.38 0.84 27.36 .316 0.0 .131 .604 19.342

Here gs is the least squares estimator of var(/3s) under the model in which

Yi =  P x i +  e i , e ( ^ ) = 0 , E e ( ^ )  =  0  (* £  j ) .  

Thus
. = 1 y  (Vi ~ PsXjf 
3 n(n — 1) x? ’

'  '  i € s  *

where f3s  denotes the least squares estimator of ( i .  This model is reasonable in 
situations where the Horvitz-Thompson estimator is appropriate.

In Tables 1-3, the relative efficiencies of v% and v3 with respect to are 
denoted by Ef / E% and E  ̂j E3 and the relative biases are denoted by and b3 
where E*{ =  1 /M S E « )  and 6? =  | £ «  -  Vr(eHT) | / { M S E « ) } 1/2 ( t- =  i ?2 ,3).

From Tables 1 and 2 we conclude as follows.
• For n =  3, v2 can be considered to be almost a nnu estimator of V (eHf ) 
for populations with Cx < 0.5. It has uniformly higher probability of being 
non-negative than both vx and v3. For r1? p1 increases as Cx increases for 
the populations considered. For populations where vt and v3 both have non­
zero probability of being negative, p3 was uniformly smaller than px, limits of



TABLE 2
Probabilities and relative efficiencies o f v{ (v*), i =  1 ,2 ,3 ,  

for 19 real populations n =  4

Popl. Probabilities Relative efficiency Relative bias Rel. efficiency
no. N Cx P Pl Vi P3 E0/E1 Eq/ E2 e 0/e 3 ‘ 1 »8 e *je ; E 'J E t

8 8 .056 .82 .057 0.0 .114 2.962 1.023 4.122 .126 0.0 .271 .344 1.369
21 10 .060 .95 .024 0.0 .029 2.105 1.012 2.693 .039 0.0 .080 .487 1.285
6 10 .085 .25 .100 0.0 .105 2.560 .996 3.725 .158 0.0 .213 .378 1.952
5 10 .090 .62 .181 0.0 .114 2.868 .957 5.242 .314 0.0 .213 .378 1.952

20 10 .202 .77 .133 0.0 .376 3.659 1.006 5.425 ,209 0.0 .055 .388 2.176
10 10 .248 .84 .443 0.0 .248 7.716 .975 15.518 .456 0.0 .388 .210 2.772
9 10 .392 .87 .695 0.0 .200 67.649 1.127 103.923 .670 0.0 .433 .058 4.419

18 10 .394 .84 .571 0.0 .229 40.684 .796 76.657 .606 0.0 .332 .082 6.908
17 10 .396 -.46 .543 0.0 .329 24.433 1.123 42.946 .461 0.0 .328 .131 4.405
15 10 .413 .63 .662 0.0 .176 69.547 1.369 113.897 .691 0.0 .468 .059 3.874
14 10 .423 .22 .710 .029 .200 127.647 1.847 182.755 .627 .77 .460 .046 3.626
1 8 .449 .69 .671 .300 .214 126.434 .717 201.336 .802 .160 .335 .050 13.915
2 8 .449 .43 .757 .014 .171 118.022 .666 200.334 .801 .019 .382 .033 9.062

11 10 .519 .79 .667 .081 .219 51.212 .813 106.398 .613 .016 .236 .114 14.047
19 10 .532 .44 .771 .181 .167 239.920 1.947 314.374 .688 .071 .359 .047 6.878
13 8 .562 .47 .757 .529 .186 69.013 .836 149.877 .714 .274 .187 .181 33.078
16 10 .562 .98 .767 .181 .181 83.434 .839 167.258 .782 .055 .301 .084 15.719
12 9 .573 .90 .786 .571 .167 45.042 1.247 105.951 .331 .108 .121 .186 15.776
7 10 .574 .91 .667 .095 .224 83.959 .666 174.223 .700 .026 .184 .122 31.198

variation of and p3 being (0.042, 0.589) and (0.077, 0.232) respectively. We 
find that v2 is, in general, the most efficient of the three, when its efficiency is 
compared with respect to v0. This suggests that the estimator v2 is the best of 
the three, from the viewpoints of both non-negativity and efficiency.
• For the modified estimators, relative bias of v2 is almost always zero, while 
for 16 out of 21 populations 63 is less than or equal to 6J. We find that v2 is 
uniformly more efficient than v{. The modified estimator v2 seems to be the 
best of the three.
• The same trend is observed for n =  4. For n = 5, p2 is uniformly smaller 
than px and p3 for populations with Cx < 0.25. For the remaining populations 
p3 is smaller than p2 which in its turn is smaller than Pl. The estimator v2 has 
greater efficiency than both v1 and v3.
• The relative bias of v* is uniformly higher than that of v2 and v3 (except for 
populations 6  and 2 1 , where bf < b3). For populations with Cx < (>)0.25, 62 is 
lower (higher) than 6 3 . The estimator v2 is more efficient than v f , while v3 has 
poor efficiency.

The above analysis suggests that for the Horvitz-Thompson estimator,
(i) for n = 3,4, v2 (v2) is the best of (v*), i -  1,2,3};
(ii) for n =  5, for populations with Cx < 0.25, v2 can be recommended. For the 

remaining types of populations, v2 and v3 are the better estimators, while



TABLE 3
Probabilities and relative efficiencies o f  n,- (v*), i =  1, 2, 3, 

for 14 real populations n — 5

Popl. Probabilities Relative efficiency Relative bias Rel. efficiency
no. N Cx Pl p2 p3 E J E l E J E ,  E J E 3 b* b* b*3 E* / E * E*/E ‘

8 8 .056 .321 .125 .321 24.956 7.772 34.617 .684 .293 .657 .418 1.829
21 ' 10 .060 .250 .095 .198 9.629 8.058 12.603 .459 .315 .497 .948 1.474

6 10 .085 .317 .087 .294 13.241 4.848 18.481 .514 .347 .519 .481 1.704
5 10 .090 .341 .107 .333 17.016 3.344 26.059 .618 .236 .575 .265 2.184

20 10 .920 .222 .119 .611 12.772 2.332 17.942 .352 .109 .288 .310 2.961
10 10 .248 .544 .365 .321 53.396 5.217 82.690 .653 .351 .419 .255 4.226

9 10 .392 .746 .659 .187 482.618 41.864 633.873 .754 .732 .374 .197 6.754
18 10 .394 .663 .516 .242 370.848 8.377 541.501 .754 .615 .286 .136 11.864
15 10 .413 .746 .484 .218 765.768 12.739 1052.530 .790 .510 .358 .092 8.072
14 10 .423 .750 .373 .206 3220.821 40.286 4066.433 .761 .647 .288 .078 11.849
11 10 .519 .754 .603 .198 3434.806 12.970 5808.461 .753 .518 .073 .216 186.005
19 10 .532 .837 .794 .159 5894.681 183.662 7815.605 .817 .767 .202 .258 27.189

7 10 .574 .766 .520 .187 1547.592 14.329 2691.118 .810 .543 .091 .189 139.527

is always the best of vf, v£.
Recently, Mukhopadhyay & Tracy (unpublished) extended similar empirical 

investigations to Midzuno’s sampling strategy. Other sampling strategies may 
be investigated as well. An important problem to which the referee drew our 
attention is the search for a theoretical upper bound for the probability of an 
estimator vik taking negative values. This issue will be addressed elsewhere.
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