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Abstract— A new method of shape representation and feature extraction is suggested. A shape is 
approximated by a constant-point polygon in which between any two adjacent vertices of the polygon, the 
number of points on the contour of the shape is constant. This representation is applicable for 
both concave and convex shapes and there is no chance of missing any spikes on the boundary. The sequence 
of the angle of variation between two consecutive line segments is taken as the primary feature 
(representation of the shape). This sequence is then modelled by an autoregressive (AR) process and the least 
square error estimate of the AR coefficient vector is used as input to a  multilayer perceptron (MLP) network 
for learning and classification. Robustness of the shape representation scheme and the M LP classifier is 
also investigated empirically. Adaptive AR modelling is used for estimating the numerically stable and robust 
coefficient vector.

Shape recognition Neural networks Multilayer perceptron Autoregressive model

1. INTRODUCTION

Recognition of shapes is an important problem in 
computer vision. Its applications vary from detection 
of aircraft to identification of cancerous blood cells. 
Several algorithms*1 ~14) are available in the literature, 
some of which work only for convex shapes while 
others fail for open shapes. This report reviews some 
of the existing methods of feature extraction and 
classification o f shapes. Attempts have then been 
made to develop a new feature extraction and classi­
fication techniques for two-dimensional (2D) closed 
shapes without any restriction on the convexity/con­
cavity of the shape. A new primary feature, called 
angle of variation has been suggested based on a 
constant-point polygonal approximation of the shape. 
The constant-point polygonal approximation is an 
approximation in which between two consecutive 
vertices of the polygon, a constant number o f points 
(pixels) exists on the contour. The sequence of angle of 
variation between two consecutive segments is taken 
as the primary feature for the shape. The angle sequence 
is then modelled as a circular autoregressive (AR) 
process. The AR coefficient vector is then estimated 
using the least square error (LSE) estimate. These AR 
vectors can be used to classify shapes using the mini­
mum distance classifier. When the class boundaries are 
complicated the minimum distance classifier may not 
function well. Here this feature has been used as input 
to a multilayer perceptron network for learning and
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classification. An investigation has been carried out 
varying the number of layers, number of neurons in 
the intermediate layers and the dimensionality of 
feature vectors. The method has been tested on four 
classes of shapes and the results are found to be quite 
satisfactory. To make the AR coefficients numerically 
more accurate and robust an adaptive formulation of 
the AR process has been used.

2. SOME WORKS IN SHAPE RECOGNITION AND 
THEIR LIMITATIONS

2.1. Method o f  Dubois and GlanziU

In this approach, the boundary of a shape is approxi­
mated by an ordered sequence of N  angularly equi- 
spaced radius vectors projected between the centroid 
and the boundary as shown in Fig. 1. The boundary 
approximation can be improved by increasing the 
number of radius vector projections, N.  Here the 
radius vector length is a function of the angle of 
projection <j> = 2izt/N, where t =  1 ,.. . ,  N  and r(<p) forms 
a one-dimensional boundary approximation. This 
boundary approximation is however restricted to 
boundaries which are convex. Since their shape de­
scription technique is based on an AR model, the 
function r(<f>) should be single valued. However, r(4>) 
becomes multivalued when the radius vector intersects 
the boundary more than once, as in the case o f a 
non-convex boundary. In order to represent such non- 
convex boundaries, Dubois and Glanz suggested an 
algorithm that “unwraps” the boundary and stretches 
the multivalued function r(<j)) to produce a one­
dimensional function ru(i). As Fig. 2 shows, the new 
scheme searches sequentially along the boundary until



Fig. 2. Extraction of radius vectors for non-convex shapes.
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Fig. 3. Missing of spike by a boundary sampler.

Regarding this approach the following points are 
noted.

(1) This method of unwrapping does not preserve 
the sign of the angular change between two consecutive 
boundary samples. This loss of phase information can 
lead to a single unwrapped function com ing from a 
number of different shapes.

(2) The centroid of a non-convex shape m ay fall on 
the boundary of the shape.

(3) A spike on the boundary of the shape can be 
missed out by this method of boundary sampling 
(Fig. 3).

(4) This method is not applicable for open shapes.

2.2. Method o f  Das et al.(2)

Das et al. approximated a shape by N  sam ples of its 
original boundary sequence. The x and y  Cartesian 
coordinates of these samples, with reference to the 
object centroid, serve as elements of a bivariate series. 
This bivariate series is then represented by a circular 
autoregressive (CAR) model characterized by a set of 
unknown coefficient matrices and an independent 
vector noise sequence. They used the following model:

Y (k )=  t  A j Y ( k - j )  + y/fiV(k), k =  1,2,
l=i

X(k) = a +  Y(k)

where {A j , j  = 1 ,2 , . . . ,  p} are 2 x 2  coefficient matrices 
and a is the 2 x 1 process mean vector; i.e. E ( X k) =  a. 
The modelling error is taken as zero mean w hite noise 
and is represented by V(k) with /? as the covariance 
matrix.

Several classification features which are functions 
of the coefficient matrices and the residual error 
covariance matrices are used for shape recognition. 
However, the following comments are relevant.

(1) This method does not work with open shapes.
(2) Moreover, it involves estimation of m any par­

ameters, for example, even when the order o f the CAR 
process is three, the number of coefficients to be 
determined is 12.

(3) The coefficient matrices A j  are not rotation
invariant. Hence these cannot be used directly for
classification.

,. . . , . „ , , 2.3. Method o f  Gupta et al.(5)a radius vector crossing is detected and measures the ^
length. To determine the next ordered length, the Gupta et al. used a multilayer perceptron network
sequential boundary search is continued until another for shape classification. The normalized contour se-
radius vector crossing is detected. Thus the radius quence has been used as the input, where a contour
lengths are ordered according to the order of detection sequence is an ordered sequence that represents the
i, by the sequential boundary follower. This new Euclidean distance between the centroid and all the
scheme also produces a periodic or circular time series boundary pixels. They referred to the network as a
but the period Nu  of the new time series is longer three-layer perceptron, but effectively it is a four-layer
than the period N  of r((j>). This sequence, ru(i), is then perceptron. This is because every component o f the
modelled as a circular AR process of some order p and input vector (contour sequence) is applied to every
then the AR coefficient vector is used for the classifi- neuron in the first hidden layer. This is possibly
cation purpose. required to make the input rotation invariant. In this



experiment they used 48 neurons in the first hidden 
layer, so the number of neurons in the input layer has 
also to be 48. The number of neurons used in the 
second layer was 26 and that in the output layer 
was 4. Thus the total number of neurons was 126 and 
the network required updating of 48*48 +  48*26 +  
26*4 =  3656 weights in every iteration. Moreover, if 
the number of neurons in the input layer is reduced, 
the shape information will be lost as reduction of the 
number of neurons in the input layer implies reduction 
of duration of the contour sequence.

3. PROPOSED METHOD

In this report a new scheme for shape representation 
has been suggested and feature vectors derived from 
this have then been used as input for classification. 
Usually the feature vectors derived from a training 
set of shapes are used to compute the represent­
ative vectors for each class. Unknown shapes are 
then classified using these representatives. Here we 
have used a robust technique of classification using a 
neural network. First, we shall discuss the proposed 
representation scheme and then the classification 
technique.

3.1. Representation and feature extraction

3.1.1. Angle o f  variation. The entire boundary of a 
2D shape is divided into constant point segments and 
then each segment is approximated by a line segment 
joining the two end points. As the boundary is tra­
versed clockwise (or anticlockwise), the change of angle 
between consecutive segments serves as our primary 
feature. Suppose there are N  points on the boundary 
and we choose to segment the entire boundary into n 
equal segments. Our concept of constant point seg­
ments means that there will be (JV/n) points between 
the initial and final points of each segment, though 
the segment lengths (i.e. the Euclidean distance be­
tween the initial and final points) may be unequal.

The process of finding out the angle o f variation is 
described below. Consider three segments (AB, BC, 
CD) of equal length. Suppose the change of angle 
between segments AB, BC is 6lt and that between BC, 
CD is 02, serve as our primary feature. Then these 
angles are found as follows. Assume that AB and BC 
are vectors. The dot product of the vectors is given as

AB ■ BC =  | AB 11 BC | cos (

So

COS0J =  A B B C /|A B ||B C |. (1)

If the coordinates of A, B, C are (x l ,y l)  (x2,y2)  and 
(x3, y3), respectively, then the position vector of AB is 
(x2 — x l ) i  + (y2 — y l ) j  and the position vector o f BC 
is ( x l  — x2)i  +  (>’3 — y2) /, where i and j  are the unit 
vectors in the x  and y  directions, respectively. So

AB-BC =  (x3 -  x2)(x2  -  x l) +  (y3 -  y2)(y2 -  y l) 

and

c o s8 i = ((x3 — x2)(x2 — x l)  +  (y3 — y2)(y2 — y 1))/

V ( ( x 3 - x 2 ) 2 +  ( y 3 - y 2 ) 2)

V ( ( x 2 - x l ) 2 + ( y 2 - y l ) 2). (2)

Proposition. Angle of variation is rotation, translation 
and size invariant.

Proof. Consider the two shapes shown in Fig. 4 where 
the second shape is a rotated version of the first one. 
Suppose the polar coordinates of A, B, C are (rl,a l), 
(r2, a2) and (r3, a3), respectively. Then the slope of AB 
is

(r2sin a2 —rl s in a l)
m, = -----------------------------

(r2cosa2 — rl co sa l)

and the slope of BC is

(r3 sin a3 -- r2 sin a2)

(r 3 cos a3 — r2 cos a2)
(3)

Thus

tan 0, =
ml  — m2

1 +  ml*m2

r2r3sin(a2 — oc3) +  rlr3  sin(a3 — a l)  +  r lr 2 s in (a l — a2) 

r2r3cos(a2 — a3) — r2z — r lr3 co s(a l — a3) +  r l  r2cos(a l — a2)
(4)

This will do som e sort o f polygonal approximation of 
the shape. The reason for not considering equal length 
segments is given as follows. Consider the shape as 
shown in Fig. 3. If we choose each segment to be of p 
units of length then while segmenting the contour, the 
probability of missing out the spike ABC is quite high 
which in turn leads to a loss of shape information. 
However, if we decide to segment the boundary into n 
segments such that there will be p pixels between the 
initial and final points o f each segment then there will 
be no loss o f shape information unless p is very high.

Now if the shape is rotated by an angle 0 with 
respect to an axis passing through the centroid, then 
the rotated coordinates of A, B, C are (rl, a l — 0), (r2, 
a2 — 0) and (r3, a3 — 0). If the angle between AB and 
BC is 62, then it can be shown in a similar manner that 
tan 82 is given by the same formula as tan 01, i.e. 
tan 02 =  tan 01. Hence it is rotation invariant. More­
over, a bigger shape will have all its coordinates scaled 
by a factor (say a) over all the coordinates of the 
smaller shape. Hence the slopes ml  and m2 remain the 
same which results in the same angle sequence for both



Fig. 4. Illustration of rotation invariance for angle of variation.

the larger and the smaller shapes. Thus it is also size 
invariant.

The translation invariance is obvious.

3.1.2. Finding out the feature vectors. The way in 
which the angle sequence has been generated, it is clear 
that the ith angle is dependent on some immediately 
previous angles. Hence such a sequence can be m od­
elled as an AR process.

3.1.3. A R  model. An AR model is a parametric 
equation that expresses each sample of an ordered set 
of data samples as a linear combination of a specified 
number of previous samples plus an error term. If the 
sequence is assumed to be a circular one, then it is 
invariant to rotation, translation. Hence the model 
parameters (CAR coefficients) are also so and can be 
used as shape descriptors. The specific form of the 
model used is

y, = *o+ Z Zjy.-j + w, 
i= l

In matrix 
as

form the system of equations can be written

y m+1
1 y m 
1 ym+i

i.e. Y„ =  X J „  where

y  i 

y  2

y„-m j

(7)

/?„=

The least square error estimate of /?„ is 

or ^ ( X X r W J . (8)

(5)

where y, is the current angle; y ,_j the angle detected j  
angles before the current angle; a , ,a 2, . . . , a m the 
unknown AR coefficients to be estimated from the 
observed time series data; m the model order; a0 the 
unknown constant to be estimated, and {w,} a random 
sequence o f independent, zero mean noise with vari­
ance /}.

The AR model parameters are estimated using the 
conventional least square error method. The least 
square error estimates are those estimates which mini­
mize the error of prediction. This can be found as 
follows. Let

m
^  =  <*0+ I  i = m + l , m  + 2 , . . .  . (6)

*= i

Solving the above equation, we can get the AR 
model parameters which may serve as the ultimate 
features for classification of shapes. It may be noted 
here that if there are n angles and p is the order of the 
model then (n — p) angles can be predicted using 
equation (5). In order to predict the first p  values one 
can assume p previous values as zero or one may view 
the sequence as a circular one. The latter choice is more 
logical as this will make the process starting point 
invariant for the polygon approximated shape.

However, in the case of angle of variation if the 
length of a segment is k (i.e. k  points or pixels lie on 
the contour between the two end points o f a line 
segment) then (k — 1) polygonal approximations of the 
shape are possible depending on the starting point 
(a similar situation exists in many other shape rep­
resentation schemes). The angle sequence generated 
for each of these may be little different. But this differ­
ence will decrease with the reduction in k. Exper­
imentally, it has been found that the AR vectors gener­
ated by the k — 1 different angle sequences are slightly 
different. This difference can be possibly reduced in two 
ways. One can estimate the AR vector considering all the 
sequences or repeat an angle sequence a large number 
of times and the AR vectors are estimated using that. 
This will also make the coefficient vectors more robust 
to noise. But how many times should we repeat the 
sequence? One solution may be to compute the AR 
vector first with one sequence, and then with two 
sequences, three sequences and so on, until the co­
efficient vector stabilizes. This will involve a lot of 
computation, as every time one needs to invert a 
matrix. Accuracy of the estimate may also be reduced. 
To overcome this we suggest use of the adaptive AR 
model. In this model one can add observations one 
by one and the estimates o f the AR coefficients can 
be updated without recomputing the matrix inverse 
repeatedly. The model is developed as follows.

3.1.4. Adaptive A R  model: Let the model order be 
p ,y t ( i=  1 ,2 , . . . ,  n) be the observed sequence and «, 
(i =  0 ,1 ,2 , . . . ,  m) the model coefficients. If we have only 
n observations then the LSE estimate of the coefficient 
vector is given by equation (8). N ow  if a new sample is



used then the transformed system of equations is

ym+1 “i y m y  i
l ym+1 • y 2

l y »-1  •■■ y»-
y„+i_ j y* ■■ y»+1

(9)

P„ + l = ( X j + lX n+lr l (X J„+1Yn+1)

where

and

x„+, = X n
X X

X X  =  ( l ,y „ ,. . .  ,y„ + , _m).

After some algebraic manipulation one gets fi„ + l as 
follows:

h +l= k H X l +1x n+ly l x x \ y n+l- x x p n-\ (10)

— Pn + K n  + 1 LVn +1 P n + i l  

where

p„xx7

(11)

K„+ l =
1 +  X X  PnX X T

and

p n = ( x : x nr l -

An initial estimate can be obtained by taking a 
reasonable number of points and then each new 
point is added until convergence is achieved. This 
method has been found to be more accurate and 
numerically more stable than the previous model.

3.2. Classification

These AR vectors can be used to classify shapes. In 
fact a data base can be created with representative AR 
vectors (one for each shape) from a set of known  
shapes. Then this data base can be used to classify an 
unknown shape using minimum distance or some 
other criterion. W hen the class boundaries are simple 
this works fine but with complicated structure of

classes the performance of such classifiers may fall 
down. To overcome this a neural network classifier can 
be used. The advantage with a neural network is that 
it can test competing hypotheses in parallel, thereby 
providing output in real time. Moreover, it has the 
ability to learn and separate complicated and concave/ 
convex class boundaries. In the next section we con­
centrate on a neural network classifier.

4. A NEURAL NET APPROACH FOR 
SHAPE CLASSIFICATION

Human intelligence, discriminating power, etc. are 
attributed to the massively connected network of bio­
logical neurons in the human brain. Recently, several 
attempts have been made to emulate the biological 
neural network by artificial analogue neurons.

4.1. The artificial neural net

The artificial neuron has been designed to mimic the 
first-order characteristics of the biological neuron. In 
essence a set o f inputs are applied, each representing 
the output o f another neuron. Each input is multiplied 
by a corresponding weight, analogous to a synaptic 
strength and all o f the weighted inputs are summed to 
determine the activation level of the neuron. Figure 5 
represents the idea.

In the diagram X  =  (x l ,x 2 ,.. . ,x n )  is the set of 
inputs and W T = (w l ,w 2 , . . . ,w n )  the set o f weights. 
Hence N ET  =  =  X W .  The NET signal is usual­
ly further processed by an activation function, F, to 
produce the neuron’s output signal OUT. This may be 
a simple function like

O U T =  K(NET) 

where K  is such that

O U T  =  1 if NET >  Threshold 

=  0 otherwise.

It may also be a sigmoidal function, for example 

O U T  =  1 /(1+ e “NET).

This type o f sigmoidal function enables the neuron

NET=XW

Fig. 5. Schematic diagram of functioning of a neuron.



to  function with appropriate gain over a wide range of 
input levels. Neural networks have been extensively 
used for pattern classification/5,11_14) The following 
section describes the perceptron network commonly 
used for classification.

4.1.1. Single layer perceptron. A single layer per­
ceptron consists o f only a single layer of neurons. The 
nodes compute a weighted sum of the input elements 
and apply an activation function on the weighted 
sum which determines the output of the nodes. This 
perceptron divides the space spanned by the input 
into two regions separated by a hyperplane or a plane 
in two dimensions. The connection weights and the 
thresholds in a perceptron can be fixed or adapted. 
However, the single layer perceptron cannot simulate 
a simple EXCLUSIVE-OR function. Thus no matter 
what weights and thresholds are assigned, the EX-OR 
function cannot be realized. Such functions are said to 
be linearly inseparable and set definite bounds on the 
capabilities of single layer networks. This problem can 
be circumvented by a multilayer perceptron network 
(MLP).

The linear inseparability problem of single layer 
networks could be overcome by adding more layers. 
These multilayer networks can perform more general 
classifications, separating points that are contained in 
concave/convex regions. The architecture of a three 
layer M LP is shown in Fig. 6. In an MLP there is no 
connection among the neurons within a layer, but 
every neuron in layer i is connected to all neurons in 
layer i +  1.

4.1.2. Perceptron learning. The learning ability of an 
artificial neural network is its most intriguing property.

Learning can either be supervised or unsupervised. 
Supervised learning requires an external “teacher” that 
evaluates the behaviour o f the system and directs 
subsequent modifications. Perceptron learning is of 
the supervised type.

A perceptron is trained by presenting a set of 
patterns to its input layer, one at a time and adjusting 
the weights until the desired output occurs for each 
of them in the output layer. The backpropagation 
algorithm is used to train the perceptron. The algor­
ithm is discussed below.

Consider the network depicted in Fig. 6. The total 
input to the ith neuron of any layer is

NET; =  $ > 0.O, (12)
j

where Oj is the output o f theyth neuron in the previous 
layer and WtJ the connection weight between the ith 
neuron in one layer and the jth node of the previous 
layer. The output of node i is O, =  F(NETj) where F is 
the activation function. For a sigmoidal activation 
function F  can be taken as

0 ,=  1/(1 + e ' lNETi_9i)). (13)

The parameter 0; serves as the threshold bias. In the 
learning phase of such a net, we present the pattern 
X  = {xk}, where x k is the fcth component o f  the feature 
vector X  and ask the net to adjust the weights in all 
the connecting links such that the desired outputs \tt] 
are obtained at the output nodes. In fact we ask the 
net to find a single set o f weights and biases that will 
satisfy all the pairs presented to it. In general, the 
output {Ok\ will not be the same as the desired output 
{tk}. For a pattern the square error can be written as

E = Y ,(h -Ok)2. (14)
k

Input layer Hidden layer Output layer

Fig. 6. A three layer perceptron.



In the backpropagation algorithm the adjustment of 
weights is done in a manner to reduce the error E  
gradually. It may be mentioned here that fk =  1 for 
the class in which X  belongs and tk =  0, otherwise. 
In order to minimize E  the gradient descent search 
is applied here. In other words, the incremental change 
A Wjk is taken as proportional to the negative gradi­
ent ( - 8 E /d W Jk). Therefore, the updating rules can 
be written as Wjk(t +  1) =  Wjk(t) — rjdE/dWJk (r\ is 
the step length of learning). After a little algebraic 
manipulation the updating rule for the output layer 
becomes

WJk(t +  1) =  WJk(t) +  ridjOk

where

<5j =  (tj — Oj)Oj(l — Oj).

For the other layers

W0t(t +  1) =  Wjk(t) + rjdjOk

where

Sj = Oj( l - O j ) ^ d kWkj. 
k

A detailed derivation o f this result can be found 
in reference (14).

5. IMPLEMENTATION

While finding out the angle of variation of a shape, 
we divided the contour of the shape into equal length 
segments. However, if there are N  points on the 
boundary of the contour, and if we decided to segment 
the contour into n constant-point segments then the 
ratio (iV/n), i.e. the number of points on the boundary 
between the initial and final points of the segment may 
be fractional. Under this situation the coordinates of 
the end points can be computed as follows.

Let p =  int(JV/n). If P  is the starting point o f the 
segment, then the next required point will lie between 
the (P +  p)th and (P +  p +  l)th points. If ( x l ,y l)  and 
(.x2 , y2) are the coordinates of the (P +  p)th and 
(P +  p + l)th points, respectively, then the coordinates 
(x, >’) of the end point o f the segment can be obtained 
as follows.

If m =  N /n  — int (N/n)  then x  = mx 2 +  (1 — m)x  1 and 
y = my 2 +  (1 — m)y  1.

The investigations for the AR vectors (obtained 
from the angle of variation) were carried out on four 
different shapes (Fig. 7) o f various sizes. We confined 
our study to model orders 2,3 and 4 because for higher 
order models the computation becomes quite exten­
sive. Experiments have also been carried out with 
noisy shapes. From each reference shape, various noisy 
shapes are generated by adding different degrees of 
random noise to  the contour points of the shape.*5’ 
Each contour point is assigned a probability p of 
retaining its original coordinates in the image plane 
and probability q =  (1 — p) of being randomly assigned 
the coordinates o f one o f its eight neighbouring pixels.

(b)

(c)

Fig. 7. Uncorrupted shapes.



The degree of noise is increased by increasing the noise 
level q. Noise may be further increased by repeating 
the process several times. Addition of noise through 
this procedure distorts the contour and thus changes 
the overall shape. Figure 8 depicts some noisy shapes. 
As an illustration the AR vectors for the original 
shapes and two noisy versions of them are shown in 
Table 1. Experimental investigation shows that AR 
vectors obtained after iterative refinement using the 
adaptive model are more consistent.

The Multilayer Perceptron Network is then trained 
with these input feature vectors for classification pur­
pose. The number of layers and the number of neurons 
in the hidden layers are varied. The number o f neurons 
in the input layer varies with the dimension o f the input 
vectors. On the other hand, the number o f output 
neurons is the same as the number of classes, i.e. four 
(as four shapes are considered here). In order to train 
the neural net, ten noisy samples of each shape are 
generated (i.e. total of 40 samples). The network is then 
trained with the feature vectors generated from these 
noisy samples, which form the training set. The training 
set is cyclically inputted to  the network and iterated a 
number of times, until the weights stabilize. After this, 
unknown shape vectors are classified using the trained 
net. The recognition scores for three and four layer 
perceptrons are given in Table 2.

Table 1. AR vectors for original and noise corrupted shapes

Fig. 8. Noise corrupted shapes.

Shape No.
Original

shape
Noisy 

shape 1
Noisy 

shape 2

1 0.1470 0.1877 0.2067
-0 .1647 -0.1805 -0.1708
-0 .1012 -0.1134 -0.1149

8.9116 10.2215 10.4232

2 0.2233 0.2268 0.1502
-0 .2330 -0.2443 -0.1695

0.1527 0.1654 0.1414
24.5230 24.7038 26.0620

3 0.6888 0.6105 0.4704
-0 .2779 -0 .3294 -0.0062
-0 .0542 -0 .0406 -0.2404

7.7550 9.1158 11.4332

4 0.0387 0.0355 -0.0163
-0 .1198 -0.1452 -0.1396

0.0624 0.0720 -0.0429
18.1356 21.2766 20.3376

Table 2. Recognition scores

No. of hidden Percentage
No. of layers Model order neurons score

3 3 2 97.50
3 100.00
4 100.00

4 3 3,3 99.00



As can be seen from Table 2, the recognition score 
increases with the increase in the number of hidden 
neurons. In our investigation, we found that the 
recognition score does not increase if the number of 
neurons is increased beyond four (with AR process of 
order 3). Increasing the number of layers o f the 
perceptron beyond three, does not increase the recog­
nition score. The AR process of order 3 seems to be 
adequate for representing shapes under the proposed 
scheme. It may be noted that for a three layer percep­
tron with an AR process of order 3 the total number 
of weights to be updated in every iteration is only 32 
even when we take four neurons in the intermediate 
layer. This is indeed very low compared to 3656.(5) 
Moreover, the total number of neurons in this case is 
only 12.

6. CONCLUSION

A review of som e shape analysis techniques has 
been provided. A new scheme for shape represent­
ation using a constant-point polygonal approximation 
which can be applied to both concave and convex 
closed simple shapes has been suggested. The approxi­
mation scheme is such that it preserves the structural 
information of the shape and there is no chance of 
missing any spike on the contour. The sequence of 
angle of variation between two consecutive linear 
segments is then taken as the primary feature. This 
angle sequence is rotation, translation and size invar­
iant. Autoregressive models are then used to find 
features for shape analysis. A multilayer perceptron 
network has been used for classification. The network 
is initially trained with the AR coefficient vectors 
derived from a set o f shapes (including some noisy 
shapes) and then the trained net is used for recognition 
o f unknown shapes. Application of the neural network 
enables one to separate classes which have complicated 
boundaries. Robustness of the proposed shape rep­

resentation scheme and the effectiveness of the neural
net have been established experimentally.

REFERENCES

1. S. R. Dubois and F. H. Glanz, An autoregressive model 
approach to two dimensional shape classification, IEEE  
Trans. Pattern Analysis Mach. Intell. 8(1), 55-66 (1986).

2. M. Das, M. J. Paulik and N. K. Loh, A bivariate auto­
regressive modeling technique for analysis and classifi­
cation of planar shapes, IEEE Trans. Pattern Analysis 
Mach. Intell. 12(1), 97-103 (1990).

3. L. G upta and M. D. Srinath, Contour sequence.moments 
for the classification of closed planar shapes, Pattern 
Recognition 20, 267-272 (1987).

4. Z. You and A. K. Jain, Performance evaluation of shape 
matching via chord length distribution, Comput. Graphics 
Image Process. 28, 185-198 (1984).

5. L. Gupta, M. R. Sayeh and R. Tam anna, A neural 
network approach robust shape classification, Pattern 
Recognition 23, 563-568 (1990).

6. B. Bhanu and O. D. Faugeras, Shape matching of two- 
dimensional objects, IEEE Trans. Pattern Analysis Mach. 
Intell. 6(2), 137-156(1984).

7. E. Persoon and K. S. Fu, Shape discrimination using 
fourier descriptor, IEEE Trans. Syst. Man Cybern. 7(3), 
170-179(1977).

8. T. Pavlidish, A review of algorithms for shape analysis, 
Comput. Graphics Image Process. 7, 243-258 (1978).

9. R. L. K ashyap and R. Chellappa, Stochastic model for 
closed boundary analysis: representation and reconstruc­
tion, IE EE  Trans. Inf. Theory IT-27(5), 627-637 (1981).

10. C. T. Zahn and R. Z! Roskies, Fourier descriptors for 
plane closed curves, IEEE Trans. Comput. C-21, 269- 
281 (1972).

11. R. P. Lippman, An introduction to computing with neu­
ral nets, IE E E  Trans. Acoust. Speech Signal Process. 4-22 
(April 1987).

12. S. E. Troxel, S. K. Rogers and M. Kabrisky, The use 
of neural networks in PSRI target recognition, IEEE  
Int. Conf. Neural Networks, San Diego, California, 24-27 
July (1988).

13. M. R, Sayeh and J. Y. Han, Pattern recognition using a 
neural network, Advances in Intelligent Robotics Systems, 
SPIE's Cambridge Symp. Optical and Optoelectronic 
Engineering, Cambridge, Massachusetts (1987).

14. Y. H. Pao, Adaptive Pattern Recognition and Neural 
Network. Addison-Wesley, Reading, Massachusetts (1989).

About the Author— N ik h il  R. P a l  obtained the B.Sc. (Hons.) in physics and the M.B.M. (operations 
research) in 1979 and 1982, respectively, from the University of Calcutta. He received the M.Tech. and Ph.D. 
in com puter science from the Indian Statistical Institute, Calcutta, in 1984 and 1991, respectively. At present 
he is with the Electronics and Com munication Sciences Unit of the Indian Statistical Institute, and currently 
visiting the University of West Florida, Pensacola, Florida, He is also a guest lecturer at the University of 
Calcutta. His research interests include image processing, pattern recognition, artificial intelligence, fuzzy 
sets and systems, uncertainty measures and neural networks.

About the Author— P r a t ik  P a l  obtained his B.Tech. degree in electronics from the Jadavpur University in 
1989 and M.Tech. degree in computer science from the Indian Statistical Institute, Calcutta, in 1991. 
Currently he is associated with T ata Consultancy Services, Calcutta. His research interests include shape 
analysis, neural networks and software engineering.

About the Author— A n u p a m  K. B a s u  obtained his M.Stat. degree in 1989 and M.Tech. in computer science 
in 1991 both from the Indian Statistical Institute, Calcutta. He is currently associated with Tata Consultancy 
Services, Calcutta. His research interests include shape analysis, neural netw orks and software engineering.


	m, =	

	y, = *o+ Z Zjy.-j + w, i= l

	x„+, =

	XX = (l,y„,... ,y„ +, _m).

	h+l=kHXl+1xn+lylxx\yn+l-xxpn-\ (10)

	p„xx7

	pn=(x:xnrl-




