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Abstract

Kundu, P. and B.B. Chaudhuri, Fuzzy geometric feature-based texture classification, Pattern Recognition Letters 
14 (1993) 825-832.

It is necessary to compute various spatial and gray-level properties for the classification of textured regions of an 
image. However, the regions and their properties are not always crisply defined. It is more appropriate to regard 
them as fuzzy subsets of the image. In this paper we have proposed the use of fuzzy geometric properties for texture 
classification. At first, a set of 2-D local membership-value extrema have been detected on the image. Using them 
as ‘seed’ regions, they are grown till the grown regions do not touch any other seed regions. The resulting regions 
are called the regions of influence. Fuzzy geometric properties like fuzzy area, perimeter, compactness, height and 
width are determined on these regions and they constitute the feature space for texture classification. Several nat­
ural textures are digitized and used to test the efficiency of the approach. It is seen that about 90% classification 
accuracy is obtained in the pattern space of 8 textures.
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1- Introduction

Texture plays an important role in classification and 
segmentation o f  pictures in computer vision and im­
age analysis problems. Texture is a region property 
and can be characterized roughly as a field consisting 
° f  typical microstructures. An im portant character­
istic of texture is its dependence on spatial resolu­
tion. Haralick [ 7 ] has pointed out that tone (i.e., gray 
*evel) and texture are both present in the image at the 
same time, but depending on circumstances one or
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other may dominate. When there is a large variation 
in the tonal primitives in a relatively small area of an 
image, texture becomes the dom inant property. 
However, to classify an image into several textured 
regions, we need to compute various properties of and 
relationships among these regions. For a natural tex­
ture image these regions and their properties are not 
always crisply defined. It is more appropriate to re­
gard them  as fuzzy subsets o f the image. Rosenfeld 
[ 11, 12] extended many standard geometric proper­
ties o f and relations among regions to gray-tone im­
age space using the framework o f fuzzy set theory and 
called this extension the fuzzy geometry of image 
space. The generalization includes the concept of 
connectedness, surroundedness, adjacency, convex­
ity, area, perimeter, compactness, height, width,



elongatedness etc. Chaudhuri [3,4] gave some shape 
definitions in fuzzy geometry, e.g. circle, ellipse, pol­
ygon etc. He also introduced the concept of concave 
fuzzy set and established its properties in the context 
of fuzzy geometry. In this paper we have used fuzzy 
geometric properties to classify different textures in 
an image.

It has been established that useful texture proper­
ties can be found from 1-D local extrema. See, for 
example, Rosenfeld and Troy [13], Ledley [8 ], 
Rotolo [14], Mitchell et al. [ 9 ]. In this paper we have 
considered 2-D local extrema regions and used them 
to find the regions which may capture the perceived 
variation in tonal primitives.

Going beyond the simple counting o f local ex­
trema, we have associated fuzzy geometric properties 
to the regions originated from each extremum. For 
example, given a local maximum, we can determine 
the set of all pels reachable only by the given local 
maximum and not by any other local maxima by a 
path o f monotonically non-increasing membership 
values. This set of reachable pels is defined as a con­
nected region. It can be viewed as a hill whose border 
pels may be local minima or saddle pels. We have used 
fuzzy geometric properties such as area, perimeter, 
compactness, etc. on these regions and used them as 
texture features for classification.

Section 2 contains a brief discussion of fuzzy set 
concepts in image processing. Some definitions of 
fuzzy geometry are given in Section 3. Detection of
2-D local extrema has been discussed in Section 4. 
Texture features are derived in Section 5 while the 
classification results are presented in Section 6.

2. Fuzzy set concept in image processing

Prewitt [10] first noticed the possibility o f using 
fuzzy set concepts in image processing. According to 
the Gestalt principles, there exist two distinguishable 
aspects in an image namely background and object. 
However, the background/object demarcation in a 
gray-tone image is not easy, especially in automatic 
digital image processing. Fuzzy set offers a concep­
tual framework to describe an object in such a 
situation.

Let the object be considered as a fuzzy set, so that 
each pel p  in the image has a membership 0 ^ p ( p )  < 1

of being a constituent part o f  the object. Note that we 
use the phrase constituent part instead o f the word 
member. To see the distinction, consider the mem­
bership of a person belonging to the fuzzy set young 
person' as compared to the membership of a ‘limb’ 
belonging to the concept ‘body’. In the former case 
the membership identifies the person with the con­
cept ‘young person' while in the latter case the mem­
bership identifies the ‘limb' as the constituent part of 
the ‘body’.

The simplest way to represent the image as a fuzzy 
set is by normalizing the gray levels. Thus, if  a pel p 
has gray level f ( p )  then we can define a fuzzy set ji 
so that n ( p ) = f ( p ) / 255. Clearly, 1. The def­
inition of n can be slightly m odified for an image hav­
ing minimum and maximum gray levels/nin a n d . /^  
as

f (P)  fmin / , \
n { p ) =  7 — —?— • ( 1)

/m a x  /m in

Note that still 0 < ii <  1, and p  is monotonic and lin­
ear on gray levels. To make it nonlinear, a power 1 
on the right-hand side of the above equation may be 
used.

We have used equation (1 ) to define the fuzzy 
membership. It should be cautioned that the mem­
bership assignment is a nontrivial problem. Some 
discussion on the topic is available in Chaudhuri [6].

3. Fuzzy geometric properties

A fuzzy subset of a set S is a m apping p. from  S into 
[0,1], For any PeS,  p (P)  is called the degree of 
membership of P in p.. A crisp (i.e., ordinary, non- 
fuzzy) subset of S  can be regarded as a special case of 
fuzzy subset, where the mapping p. is into {0, 1}. S  is 
called the support set o f (i. The level sets o f p  are the 
sets

fit =  { P c = S \ n ( P ) > t } , 0 < ? < 1 .

We consider digital fuzzy sets as special cases of 
piecewise constant fuzzy sets having constant value 
on each of a finite set of bounded regions that meet 
pairwise along rectifiable arcs. A discrete fuzzy sub­
set can be defined on each of the connected compo­
nents of the image. Here, each pel of the component 
belongs to the support set of the fuzzy subset.



Some existing properties 112] 4. Extrema detection

1. Area. The area o f a fuzzy subset /t is defined as

a{ n) =  J* // cLx dy

where the integration is taken over a region outside 
which fi=0.

In case o f a discrete fuzzy subset ft on image space 
with support C, where p. is piecewisc constant, the area 
becomes

a{ n) =  X  ■
U , y ) e C

2. Perimeter. I fp  is piecewise constant let and p/ 
be two constant values of membership where the two 
regions meet. The perimeter o f p is defined as

P W =  X  \ Hi -Hj \ - \ AiJk\ .
i j .k ' . i  < j

This is just the weighted sum of the lengths of the arcs 
Aijk along which the regions on which p  has constant 
value meet, weighted by the absolute differences of 
these values.

3. Compactness. The compactness of a fuzzy subset 
H is defined as

c(fi ) = a ( p ) / p 2(p)

where a(p)  and p ( p )  are the area and perim eter o fp, 
respectively. For crisp sets, the compactness is maxi­
mum for a disc, where it is equal to 1 /4n. In case of 
a fuzzy disc, where the membership value p. depends 
only on the distance from the center, this compact­
ness measure satisfies c(p)  ^  1 /4tc. Thus, of all pos­
sible fuzzy discs, the compactness is smallest for its 
crisp version.

4. Height and width. The height and width of a fuzzy 
subset p  are defined, respectively, as

|  j^max {p(x,  y )} Jd y  and

w (/z)= j j^ m a x { ^ (x ,y )} J d x .

For the detection of 2-D maximally connected ex­
trema we have used the method (EXTREMA-1) 
proposed by Chaudhuri and Uma Shankar [5], The 
extrema components of an image are defined as 
follows.

Let .V denote the set of pels o f an image. Let R be 
an 8-connected component in S. If R is the compo­
nent of R in S', then the border of R with R is defined 
as the subset B(R, R ) of R, any element of which is 
the 8-neighbor of at least one element of R. A com­
ponent R in .S' is a local maximum  or more generally, 
a plateau in S if the membership values of all ele­
ments in R are equal and this value is greater than 
the membership value o f any element in B(R,  R).  
Similarly, R is a local minimum or valley in S  if the 
membership values of pels in R are equal but less than 
the membership value of any element in B( R, R) .

The idea behind the algorithm EXTREMA-1 o f [6 ] 
is to find pels that are not extrema, and to find con­
nected components of the same membership value 
and delete them. Here the pels are considered in a 
row scanning manner. First, each candidate pel 
(CAP) is labelled as either (a ) an extremum or (b ) 
neither a minimum or maximum in its 3 x 3  neigh­
borhood. When (b) is true, the CAP is called a col­
lapsible pel (C P ). Examples of these cases are shown 
below.
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If a CP is encountered, its connected component 
of pels of the same membership value is found and 
all pels belonging to this component are collapsed. 
The result is stored in a matrix whose dimensions are 
the same as that of the original image matrix. The 
collapsed pels are labelled by, say, — 1 in the corre­
sponding positions of the result matrix while the ex­
trema are labelled by, say, 1. The result matrix is ini-



tially empty, i.e., all entries are labelled as 0.
In actual implementation, for each CAP, the cor­

responding position in the result m atrix is examined 
if the label there is — 1, i.e., if  it is already collapsed 
by any previous CP. In case the CAP is already col­
lapsed, no test of maximum or m inim um  is made. In 
case the CAP is not collapsed and it is found to be a 
CP, its corresponding connected component is found 
and collapsed; otherwise, it is considered as an extre­
mum. All results corresponding to the current CAP 
are stored in the result matrix.

5. Feature evaluation

The extrema components are found using the 
method described in Section 4. We associate geomet­
rical properties to the regions grown from these local 
extrema. We describe here the growth process start­
ing from the maxima components. The growth pro­
cess starting from the minima components can be 
understood in a similar manner.

Suppose M  is a local maximum and (/, j )  is a pel 
in it. We determine the set of all pels reachable only 
from ( i j )  and not from the pels of other local max­
ima by monotonically non-increasing paths. (If P  and 
Q are two pixels then a non-increasing path between 
P and Q is a sequence P = p 0, p i , P„ =  Q so that pt 
is the neighbor of p ,_ ! and their membership values 
satisfy the inequality fi(p,+ i),  < =  0, 1, ...,
n — 1.) These reachable pels are kept in a stack de­
noted by SfM. Initially ffM contains only the (/, j ) th  
pel. We check all the 8-neighbors of each member of 
the stack to see whether any of them is either a max­
imum or a minimum. If an 8-neighbor of the mem­
bers of the stack is an extremum (other than M ) then 
these neighboring pels are pushed into the stack 
In this way the stack ifM is grown until one of the 8- 
neighbors o f at least one of its members is an extre­
mum pel not belonging to M. Note that for any M, 
y*M contains at least 9 elements. This process o f grow­
ing the stack is done for all the maxima of the image.

Let i f  be the set of stacks corresponding to  all max­
ima of the given image. In terms o f the membership 
values each stack of y  forms a hill whose border may 
be local minima or saddle points. The space of this 
region may be called the region of influence (R I). The 
size of this region is the number of pels in the corre­

sponding stack. The set of stacks y  can be treated  as 
the set of regions which corresponds to the perceived 
variation in the tonal primitives. If the size o f the re­
gions of y  are small, it is expected that the image is 
busy so that the variation in the tonal prim itives is 
high. Geometric shapes and relations of these regions 
are thus important cues to characterize the texture 
present in the image.

W ithout loss of generality, we denote the R I  origi­
nated from the maximum M  by y M. For every R I y M 
of y  we find the size . VM of the RI by counting the 
number of its elements. To describe f/'M geom etri­
cally, we use the measures defined in Section 3.

I f  denotes the area o f f/M then

=  ^  /̂ /,w 
l,m eS M

where /z/m denotes the membership value o f  the 
(/, m )th  pel and the summation is taken over all the 
elements of y M.

The perimeter of !fM is obtained by considering 
each element of !/'M and its four neighbors, each of 
which belongs to y M\

^  == 2 {  I l^l,m  1̂ 1,m — 1 I I P l ,m  P-l,m  +  1 I

I I "t" I H l,m  P ‘t +  \ ,m  I }  ■

The compactness of ffM is 

=  sdM/  SPm .

The height J ^ a n d  width HM of !:fM are, respectively, 

£  max V-Um and 1 ^ =  £  m ax /^m
/  m

where the summations are taken over all elements of

It has been noted that contains pels reachable 
only by M  and they form a ‘hill’ whose border pels 
are either local minima or saddle points. In addition 
to the above measures, we also consider the relative 
height of this hill. If there exist more than one m ini­
mum on the border then we choose the highest o f 
these minima and call it mtJ. In case o f only one m in­
imum on the border, we call that m inim um  m u. The 
relative height Hu  of the ‘hill’ is taken as

1 — | ^\1 P-mij I

where fiM and p,mij are the membership values o f  the 
pels corresponding to M  and mt}, respectively.



In a similar m anner, the above measures are found 
for all regions o f influence o f N o w .  let the si/e of 
the image be N x N .  The total area of the image is then

d =  E  A.j
{ i , j ) e N x N

where ̂ d e n o te s  the membership value of the ( i. j  )th 
pel. Also let S  denote the total number of extrema of 
the given image. The normalized features of an im­
age are defined as follows.

( 2 )

(3)

(4)

(5)

/, =  « 

f i  =  ^  ’

U =  (Xm <?«)/■*/ •

.A, =  ( —  m  V \ r )  /  ' J  • 

/ ;  =  ( > ; „

J x  =  ( - -  M  W W ) !  ' /  ■

( 6 )

(7)

( 8 ) 

(9)

6. C lassification results and discussion

A set of 16 texture images from the Brodatz album 
[ I ] are used for testing the efficiency of the proposed 
method. The images are digitized in 128x 128 pels 
with 0-255 quantized gray levels. The textures are 
shown in Figure 1, where both oriented and non-ori-

Figure 1 .16  texture mosaics from Brodatz’s album [ 1 ].



ented textures o f different types are presented.
Computation of any feature at a pel is done on a 

window of size 32 X 32 pels around that pel. The pels 
are chosen randomly during training as well as dur­
ing classification experiments. On each of these pels, 
at first the extrema are located on its 32 X 32 neigh­
borhood using the algorithm in Section 4 and then 
the region of influence of each extremum is com­
puted using the procedure in Section 5. All the eight 
features /,- /g  are computed at each pel using equa­
tions ( 2 ) - ( 9 ) .  Thus, the pattern is represented in an 
8-dimensional feature space. Figure 2 represents the 
histograms of the normalized feature values of the 
image D17. From the histograms it is clear that the 
features are well clustered for a texture image. Simi­
lar results can be obtained with other features as well.

The classifier is trained using samples o f different 
size for which the class status is assumed known. The 
mean vector m, and the standard deviation vector u, 
o f training samples for each class are found. Each

mean vector represents the seed point of the corre­
sponding class. During the classification phase, the 
weighted distance of an unknown sample is com ­
puted from the seed point by weighting the Euclidean 
distance by the corresponding standard deviation 
components. In other words, if  the sample vector is 
xk, then its distance from the ith seed point is

xk is assigned to the class i if dt is minimum over all 
i.

Table 1 shows the classification matrix for our 
method using 100 test samples and 30 training sam­
ples. It is clear that maximum confusion occurs be­
tween the textures D09 and D84. Visually too, these 
two textures have somewhat identical grain size.

Plots of the classification rate against the num ber 
of texture classes considering 100 test samples are

O"
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0.15-

“ 0 . 10- 
Li_
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50 100 150 200 250
Norm. F e a t .  fa -----

(b) (d )
Figure 2. Feature value histograms for a texture image.



Table 1
Confusion matrix o f  texture classification

D 09 D12 D05 1)84 D6X D55 D77 D51

D09 68 0 0 32 0 0 0 0
D12 0 100 0 0 0 0 0 0
D05 0 0 80 0 0 14 0 6
D84 2 0 0 96 0 0 0
D68 0 0 0 0 91 4 0 5
D55 0 0 0 I) 1 48 0 1
D77 0 0 0 0 0 0 100 0
D51 0 0 0 0 0 0 0 100

given in Figure 3 where (a) and (b ) represent the 
classification curve using 10 and 30 training samples, 
respectively. It is seen from the plots that the classi­
fication rate increases with an increase in the number 
of training samples. The experiment has been rc-
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peated using 50. 150 and 200 test samples. In all cases, 
the shape of the results is similar, except that the clas­
sification error increases slowly with the number of
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Figure 3. Classification rate o f 100 test samples: (a ) using 10 
training samples, (b ) using 30 training samples.

Figure 4. Classification rate o f  100 test samples considering (a )  
3 fea tu re s/,,/2, / 3, (b ) 4 features/ „ / 2, / 3, / 4, (c ) 5 fea tu re s/„ /2, 
fi,f*,fs<  (d )  6 featu res/i,/2, / 3, / 4, / 5, / 6, (e )  7 featu res/i,/2, / 3, / 4, 

/ 5X / 7, ( f ) 8 fea tu res/i,/2, / 3, / 4, / s, / 6, / 7, / 8.



test samples. There is a sharp fall in classification rate 
when the num ber of classes increases from 2 to 6 and 
then the variation in classification rate is small when 
the num ber of classes varies from 7 to 10. Further 
increase in the num ber of classes results in sharp fall 
in classification rate. The reason for this curious sta­
bility o f classification rate for 7-10 classes is not clear. 
However, it appears that if used for texture segmen­
tation using fuzzy features, the most expected classi­
fication rate will correspond to this stable region 
(« 9 0 % ).

Figure 4 shows the plots o f the classification rate 
for a different num ber of features. It is seen that sat­
uration occurs when the number of features is 6. We 
noted that / 7 and / 8 do not play a prom inent role in 
texture classification if the other six features are 
present.

It is interesting to  examine how fuzzy geometrical 
properties can be used for texture segmentation in a 
natural scene. The problem is being studied and use­
ful results will be communicated in a future 
correspondence.
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