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Abstract
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The problem of optimum circular fit to weighted data points in multi-dimensional space is addressed in this paper. It is shown
that the modified weighted sum of square error function can be optimized to obtain expressions for the parameters of the circular
fit so that expensive iterative numerical optimization algorithms are not needed. Also, it is shown that the derived parameters
are independent of uniform scaling of the data weights. Experimental results indicate that reliable circular fit can be obtained
even if the data comes from a small arc rather than the complete circle. Sensitivity to noise is also studied.
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1. Introduction

The problem of circular shape (circle, sphere or
hypersphere) detection is often encountered in Pat-
tern Recognition and Image Processing applica-
tions. There are two stages of the problem, namely
{a) localization of points in the space that approx-
imately belong to a circular shape, and (b) optimum
parameter estimation from the data obtained by lo-
calization. The localization problem can be tackled
by the generalized Hough transform (Illingworth
and Kittler (1987)) or some kind of cluster analysis.
We are concerned here with optimum parameter
estimation only.

Given a set of points in 2-D space, a modified
mean square error function can be optimized to find
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closed form expressions for the coordinates of the
center and the radius of the fitting circle (Thomas
and Chan (1989)). When the optimum fit is re-
quired on 2-D or 3-D simply connected objects, a
simpler approach due to Chaudhuri (1990) may be
used. However, that approach cannot be used for
scattered data points.

While normally we do not encounter physical
objects beyond 3-D, we may encounter data points
in three or higher dimensions. One example is the
patterns represented in multi-dimensional feature
space, as frequently experienced by the pattern
recognition community. More generally, the data
may be weighted because of measurement impreci-
sion and quantization as well as to give unequal
importance to all data. For example, if we choose
a gradient image where no thresholding is done,
the data should be weighted according to the gra-
dient magnitudes so that points with high gradient
get more weight.
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In this note we show that a modified weighted
sum of error function can be optimized to obtain
a closed form expression of the parameters of the
circular fit in any multi-dimensional space. Also, it
is shown that the derived parameters are not af-
fected if the weights are multiplied by a constant
scaling factor. This method can be seen as a gener-
alization of Thomas and Chan (1989). Experimen-
tal results are presented to show the efficacy of the
technique.

2. Optimum circular fit

Consider N data points x;, X3, ...
any positive integer n>2 where

, Xy in R” for

X; = (x,-,,x,-z, ees Xijs "'9xin)['
We want to make the circular fit so that the center
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and radius 7, optimize the modified sum of square
error function
2
O] (1)

=l§ [ Y ;-c

where m; is the weight corresponding to the ith
datum. Partial derivatives of J with respect to ¢
and ry equated to zero lead to
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From equation (3)
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where M=Y"  m;. For each value of k, equa-
tion (2) can be expanded as
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% i=zl i [ ng (xij - Cj)z - r‘z’] = 0. (5)
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By equation (3), the third term of equation (5) is
zero. Then equation (5) becomes

N n ; N
i; m; X [ j;l (x;~¢) ] ~r; i; mx, =0. (6)

Using equation (4) again in the second term of
equation (6), we have

N n
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The third term in equation (9) is
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since by equation (8)
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Then equation (9) becomes
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which is a linear equation in ¢;’s. For k=1,2, ... }

we get n equations that can be solved by the meth] .

of determinants. Once the ¢;’s are solved, roy

be found using equation (4). Note that eachi ¢ k\
rameter can be expressed in closed form. For'x ~
ample in 2-D, the center (¢, c;) and radius r; art
given by
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Proposition 1. The derived paramelers of circular fit
are independent of constant scaling of the weights.
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To verify the proposition, consider a scaling |
tor s so that the scaled weight m; is

’

m; = m;s.

Then it can be seen that s cancels out in the expr
sion for the coordinates of the center and radiu

3. Experimental results and discussion

To verify the effectiveness of the approach,
analog data with equal weight generated from ideal
circles at various radii were subjected to the pa-
rameter estimation. It was seen that the estimation
error is of the same order as the precision of the
machine. Similarly, data from an ideal straight line
resulted in an abnormally large radius, even if the
number of data points is very small. Thus, the
method can distinguish between linear and circular
data. When the space is discrete, as in a digital im-
age, the digital line should be about 15 pixel long
to detect the line,

Next, it was tested if parameter estimation is
possible when the data comes from an arc rather
than from a complete circle. Figure 1(a) shows
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Proposition 1. The derived parameters of circular fit
are independent of constant scaling of the weights.
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To verify the proposition, consider a scaling fac-
tor s so that the scaled weight m; is

m;=m;s.

Then it can be seen that s cancels out in the expres-
sion for the coordinates of the center and radius.

3. Experimental results and discussion

To verify the effectiveness of the approach,
analog data with equal weight generated from ideal
circles at various radii were subjected to the pa-
rameter estimation. It was seen that the estimation
error is of the same order as the precision of the
machine. Similarly, data from an ideal straight line
resulted in an abnormally large radius, even if the
number of data points is very small. Thus, the
method can distinguish between linear and circular
data. When the space is discrete, as in a digital im-
age, the digital line should be about 15 pixel long
to detect the line.

Next, it was tested if parameter estimation is
possible when the data comes from an arc rather
than from a complete circle. Figure 1(a) shows
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Figure 1. Error of fit for partial arc without noise. (a) Error of radius fit. (b) Error of center fit.
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some results where the error in estimating the
radius is plotted against the angle in degrees that
the endpoints of the arc subtend at the center. If
ry and Fy are the true and estimated radius, respec-
tively, then the error is given by

{ro— fol
o

X 100%,

If the data comes from an ideal analog circle
then it is seen that an arc of 20° is enough to get
the parameters with less than 1% error. The results
are not sensitive to the radius value of the circle.

To get a reliable estimate of the parameters in
case of a digital circle, however, the data should
come from a bigger arc. It is seen that an arc angle
of about 90° is necessary for the purpose. For a
desired error rate the arc should be bigger if the cir-
cle radius is smaller.

The error in estimating the center is also con-
sidered. If O and O are the true and estimated
center, respectively and if d is the Euclidean dis-
tance between O and O, then the error is given by
(d/ry) X 100% . From Figure 1(b) it is seen that the
error is of the same order as that of the radius
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estimation. For this reason, the error in estimating
the center has not been presented in the study de-
scribed below.

Next we considered the effect of noise on the
estimation process. Zero-mean Gaussian pseudo-
random noise has been added to the arc of fixed
radius both in the analog and the digital case and
the results are shown in Figure 2(a)~(b) for dif-
ferent standard deviations o of noise. As expected,
the noise has a more severe effect on a digital arc.
However, when the arc length is comparable to the
noise standard deviation, the estimated radius is
very small. To the algorithm, it seems that the data
come from a rectangle and the algorithm tries to
make the best circular fit to the rectangle. To get
a reasonably good estimate, the arc length should
be of the order of 10 times more than the noise
standard deviation.

To test the efficiency of the approach for weighted
data, a digital image of a round object was sub-
jected to a Sobel operator. The Sobel gradient im-
age was subjected to the circular fit. The results are
shown in Figure 3. The gradient image was partial-
ly erased to see how well the circular fit is obtained
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Figure 2. Error of fit for partial arc with noise. (a) Effect of noise on analog data. (b) Effect of noise on digital data.
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Figure 3. Circular fit on real object. (@) The object. (b) Circular fit on gradient image of the object.

from only a part. In this weighted data space also,
the arc should extend about 907 1o get a reasonably
good fit. See Figure 4.

It may be interesting 10 compare the iterative
techniques (Landau (1987), Bookstein (1979)) with
the present method. The method duc to Landau

(1987) tries to minimize the error of the form
Y (r;—ry)* while the method due to Bookstein
(1979) tries to minimize the error of the form
¥ (ri2 - r(z,)2 . Thus, the error function in our meth-
od is a generalization of that in Bookstein (1979).
However, the present method, which gives a closed-

Figure 4. Circular fit on partial gradient image of the object with radius 50. (a) Arc angle = 65°, estimated radius = 45.11. (b) Arc
angle = 90°, estimated radius = 49.66. (c) Arc angle = 180°, estimated radius = 50.11. (d) Arc angle = 270°, estimated radius = 50.52.
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form expression for the center and radius, can be
computed in one single iteration. On the other
hand, the number of iterations in iterative tech-
niques like those of Landau (1987) and Bookstein
(1979) should be large to get accurate results. An-
other advantage of the present method over the
iterative method is that the closed-form expressions
of the parameters can be substituted in another ex-
pression and do further algebra, if necessary.

In the present formulation, the weight m; does
not depend on the parameters of the circular fit.
However, practical situations may arise where the
weight can be made dependent on, say, the posi-
tion of the center of the circle. Consider, for exam-
ple, the gradient image. If a pixel P with a high
gradient lies on a circle, then its gradient direction
would be normal to the circumference. (Converse-
ly, the edge direction would be tangential.) Let O
be the center of the circle. If OP makes an angle
0; with the gradient direction at P and if s; is the
gradient strength, then we may consider that m, =
s;cos §;. It may be interesting to examine if the
objective function can be suitably modified to get
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separable solutions for an optimum circular fit in
this situation.
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