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Abstract: An algorithm for automatic selection of a nonlinear function appropriate for object enhancement of a gnen image 
is described. The algorithm does not need iterative visual interaction and prior knowledge of image statistics in oidet to select 
the transformation function for its optimal enhancement. A quantitative measure for evaluating enhancement ec|iialit> lias been 
provided based on fuzzy geometry. The concept of minimizing fuzziness (ambiguity) in both grayncss and m spatial domain, 
as used by Pal and Rosenfeld [4], has been adopted. The selection criteria are further justified from llic point of hounds of 

the membership function. The effectiveness o f the algorithm is demonstrated for unimodal. multimodal and right skewed 
images when possible nonlinear transformation functions are taken into account.
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1. Introduction

The purpose o f image enhancement is to im­
prove the picture quality, more specifically, to 
improve the quality for visual judgement of the 
picture. M ost o f the existing enhancement tech­
niques are heuristic and problem dependent [1-3]. 
When an image is processed for visual interpreta­
tion, it is ultimately up to the viewers to judge its 
quality for a specific application and how well a 
particular m ethod works. The process of evalua­
tion of image quality therefore becomes subjective 
which makes the definition of a well processed 
image an elusive standard for comparison of 
algorithm performance. Again, it is customary to 
have an iterative process with human interaction in 
order to  select an appropriate operator for ob­
taining such a desired processed output.

For example, let us consider the case of contrast 
enhancement using a nonlinear functional map­

ping. Not every kind of nonlinear function will 
produce a desired (meaningful) cnhanccd version 
[2, pp. 10-13], The questions that automatically 
arise are “ Given an arbitrary image which type of 
nonlinear functional form will be best suited with­
out prior knowledge on image statistics (e.g., in 
robot vision and remote applications where fre­
quent human interaction is not possible) for high­
lighting its object?” and “ Knowing the enhancement 
function how can one quantify the enhancement 
quality for obtaining the optimal one?’’. Regard­
ing the first question, even if we are given the 
image statistics, it is possible only to estimate 
approximately the function required for enhance­
ment and the selection o f the exact functional form 
still needs human interaction in an iterative proc­
ess. The second question, on the other hand, needs 
individual judgement which makes the optimal 
decision subjective.

The present work is an attempt to demonstrate
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an application of the theory of fuzzy sets to avoid 
such human iterative interaction and to make the 
task of subjective evaluation objective. An algo­
rithm is formulated here which minimizes (opti­
mizes) two types of ambiguity (fuzziness), namely, 
ambiguity in grayness and ambiguity in geometry 
of an image containing an object.

It is to be mentioned here that the said am­
biguity measures have been found recently by 
Pal and Rosenfeld [4] to obtain both fuzzy and 
nonfuzzy optimum segmentation for object-back­
ground classification of an image. Their algorithm 
used Zadeh’s standard S-function [5] to compute 
the ‘bright image’ membership plane and to com­
pute its ambiguities. By changing the cross-over 
point of the S-function for a fixed bandwidth, an 
optimum membership plane for which ambiguity is 
minimum was obtained.

The proposed algorithm has three parts. Given 
an input image X  and a set of nonlinear transfor­
mation functions, it first of all enhances the image 
with a particular enhancement function with its 
varying parameters. The second phase consists of 
measuring both spatial ambiguity and grayness 
ambiguity of the various enhanced X '  using the 
algorithm in [4], and of checking if these measures 
posses any valley (minimum) with change in the 
parameters. The same procedure is repeated in the 
third stage for other functions. Among all the 
valleys, the global one is selected. The correspond­
ing function with the prescribed parameter values 
can be regarded as optimal, and the value of am­
biguity corresponding to the global minimum can 
be viewed as a quantitative measure of enhance­
ment quality.

The nature of nonlinearity of the optimal en­
hancement function is further justified from the 
point of bounds [7] of S-type membership func­
tions. The effectiveness of the algorithm is demon­
strated on various unimodal, bimodal, skewed and 
multimodal images when different nonlinear func­
tions are considered as enhancement operators.

It is further to be noted that although the geo­
metrical ambiguity measure [4] was formulated 
only for a single compact object, the present ex­
periment has been extended to other types of 
objects also to investigate the effect of the said am­
biguity measure.

2. Grayness ambiguity and spatial ambiguity [4]

A gray tone image X  of L  levels and dimension 
M x N  can be considered as an array of fuzzy 
singletons, each having a value o f membership 
denoting its degree of brightness relative to some 
brightness level /; / = 0 ,1 ,2 ,... , L  — 1. In the nota­
tion of fuzzy sets, it can be represented as

X  — 1/ x mn. ^

m = 1,2, n — l , 2 , . . . , N }

where xmn is the (m,n) th pixel intensity, 0 ^ x mn̂  
L - 1. n mn (=ii(xmn)) denotes the grade of posses­
sing some property (e.g., brightness, darkness, 
edginess, smoothness) by the (m,n) th  pixel in­
tensity x mn.

The entropy of image X  may be computed as

H { X )  = ~ ^ — ^ T e( l )h( l )  (2)
M N  In 2 i

with

TtU) = -n(l) ln/u(l)

-(1 - / / ( / ) ) I n ( l - / / ( / ) )

and /?(/) denoting the frequency o f level I.
Similarly, the area, perimeter and compactness 

of X  [6] may be computed as

<>(X) =  I E ^ = E  M O  H D ,  (3)
m n I
M N - 1

p ( X )  — £  ^  | fimn — £im n +11
m ~ 1 n = I

N M - 1

S  I ftm n ~~ ftm  + 1, n I > (̂ )n = 1 m = 1

co m p (^ ) = a ( X ) / p 2(X) .  (5)

It is thus seen from the above measures that 
H ( X )  considers global inform ation and provides 
an average amount of fuzziness in grayness of X, 
i.e., the degree of difficulty (ambiguity) in deciding 
whether a pixel would be treated as black (dark) or 
white (bright). The difficulty is minimum when 
Hmn = 0 or 1 (i.e., the image is crisp with either ful­
ly black or white pixels) and maximum when 
Mmn = 0.5 (semi-bright pixels). Other grayness am­
biguity measures, e.g., index of fuzziness and 
index of crispness are available in [4],



The measure comp(A'), on the other hand, takes 
into account the local information and reflects an 
amount o f fuzziness in geometry (spatial domain) 
of X.  Among all possible fuzzy disks, the compact­
ness is the smallest for its crisp version.

Combining the two types of ambiguity described 
above a composite measure was defined as

9{X) — H ( X )  • comp(X) (6)

which involves fuzziness both in gray level and in 
spatial dom ain of the image. Thus, a (jmn plane 
having minimum 9 value implies that the image X  
has minimum ambiguity (fuzziness) as far as the 
grayness and geometry of its object together are 
concerned.

For computing the ambiguity measures (equa­
tions (2)-(5)) o f  an image X,  fimn is considered 
here to be a ‘bright image’ subset and is obtained 
from xm„ using Zadeh’s standard S-function [7] as 
follows:

Mmn = Xmn^O,

_  _  / Xmn 
\  c - a

= 1- 2 ( ^ I

= 1

where b = (a + c ) / 2 is the cross-over point, i.e., at 
X/nti b, — 0.5 and . 1 b ~ b - o — c h is the
bandwidth. /umn represents the degree of bright­
ness of the /;)th pixel intensity ,vm„.

3. Gray level rescaling

The gray level rescaling is one of the most widely 
used techniques for contrast enhancement which 
decreases the blurring and at the same time reveals 
the features of interest. Each pixel is directly re­
quantized or mapped here to a new gray level in 
order to improve the contrast of the image. In 
many pictures, the gray level difference between 
object and background is so small that it becomes 
visually difficult to discriminate them; enhance­
ment is then required to increase such difference.

The simplest form of the functional mapping 
may be expressed as

mn ' f  mn)

- C

a

*mn^C (7)

where
= gray value of the (///./;)th pixel in the 

input image (original),
= transformed gray vlauc of the (/w.n)th 

pixel (enhanced).

Figure 1. Commonly used mapping functions for image contrast enhancement.
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f ( x mn) = prespecified transformation function,

*max = maximum gray level of input dynamic 
range.

Some of the most popular [3] mapping functions 
are shown in Figure 1.

The transformation function like Figure 1(a) 
when applied on an image, makes the dark area 
(lower range of gray level) stretched and the bright 
area compressed, resulting in an increase in the 
contrast within the darker area of the image. Simi­
larly, the application of a mapping function like

Figure 1(c) will produce effects exactly opposite to 
that of Figure 1(a).

The mapping function as in Figure 1(b) will 
result in stretching of the middle range gray levels. 
The curve in Figure 1(d) (which is also known as 
gamma correcting curve for display of nonlinear­
ity), when used as mapping function, will compress 
drastically the midrange values, and at the same 
time it will stretch the gray levels of the upper and 
lower ends.

In our experiment we have simulated these m ap­
ping operators with the help of different nonlinear 
functions in order to investigate their relative en-

Figure 2(a). The mapping function corresponding to equation (8). a: *=100 , b: £  = 66.6, c: k  = 50, d: £ = 40, e: £ = 3 3 .3 .

Figure 2(b). The mapping function corresponding to equation (9).

Figure 2(c). The mapping function corresponding to equation (10). a: A  =0.064, B = 0.1, £>=11. b: A = 0.01 A, B = 0.15, £>=13. 
c: A  =0.080, £  = 0.25, £>=15. d: A  = 0.084, B = 0.4, £>=17. e: A  =0.093, fi = 0.5, £>=19.



Figure 2(d). The mapping function corresponding to equation (11). a: Fd = 12, b: F(i = 14, c: Fd= 16, d: Fd = 18, e: Fd = 20.

Figure 2(e). The mapping function corresponding to equation 
(12). a: Fd = 22, b: Fd = 21, c: ^  = 20, d: Fd=19, e: Fd=18.

hancement performance on different images. The 
following forms of nonlinear function (monotoni- 
cally nondecreasing) are used to represent (ap­
proximately) the curves in Figure 1. The mapping 
function in Figure 1(a) is represented by either

ax:.
1 + axt 1 /a  + xl„ k  + x l n

or.

f ( x m„) = b\og(xmn)

(8)

(9)

where the parameters a and b  are positive con­
stants.

The mapping function in Figure 1(c) is repre­
sented as

f ( x mn) A [/‘(.V,,:,; )] + B xmn+ C

0 < A , B ,C < 1

where

(10)

F(Xmn) Xmn ■ 

=  0

D  for xmn>D,  

for xmn^ D ,

-'mm -Vmax

where xmin and xmax are the minimum and maxi­
mum gray levels in the image.

The function in Figure 1(b) can be expressed as

f (*mn) = 1 +
-I

(11)

and that of Figure 1(d) as 

f(.xmn)
i r

max — P i -+fi -1
-Ft!

(12)

where Fe and Fd are positive constants and /? is the 
value of f ( x mn) for xmn = 0. The functional forms 
for equations (8)—(12) are shown through Figures 
2(a)-2(e) respectively.

4. Algorithm

The block diagram of the proposed algorithm is 
shown in Figure 18 at the end of the paper. Given 
an input image X ,  it is first of all transformed 
(enhanced) by one of the nonlinear mapping func­
tions (Figures 2(a)-2(e)). The n  values of the 
transformed image X ’ are computed with Zadeh’s 
standard S-function (equation (7)) in order to com­
pute its I{X' )  value. Here I  stands for either en­
tropy (equation (2)) or compactness (equation (5)) 
or 6 (equation (6)). The same procedure is repeated 
for different parameters q of the fu n c tio n /17. It is



then checked whether these ambiguity measures 
possess any valley or not.

A similar checking is adopted for other mapping 
functions under consideration. In the final stage, a 
global minimum (valley) is determined. The corre­
sponding mapping function with specific q value 
can be regarded as optimum enhancement function 
of the image X.  The image X ' = f :(l(xm„) thus pro­
vides the optimum enhanced output, given a set of 
functions. The concept of optimum enhancement 
is explained below.

Concept o f  optimum fuzziness and object en­
hancement

Let us consider, for example, an image X  con­
sisting of an object in a background. An enhance­
ment transformation (viz. equations (8)—(12)) 
when applied on A', attempts to enlarge the gaps in 
levels between two regions and at the same time to 
reduce the difference in levels within a region. As 
a result, the fimn values of the enhanced image 
would tend to either 0 or 1; thus making a decrease 
in value of H (X ) .

It is to be noted that the above decrease in H ( X )  
(fuzziness in grayness) does not ensure proper en­
hancement of the object. In other words, unless 
the transformation function is able to discriminate 
the object geometry (or boundary) from the back­
ground, the H ( X )  values even if they decrease will 
not reflect its meaningful enhancement. This leads 
one to determine the appropriate functional form 
such that the corresponding enhanced image would 
result in a minimum number of pixels having 
Hmn = 0.5 and a maximum number of pixels with 
fimn = 0 or 1; thus contributing least (minimum) to 
H (X ) .  This may be treated as the optimum value 
of gray level fuzziness in the sense that the value 
obtained from any other transformation function 
will be greater than this.

Similar is the case with the spatial ambiguity 
measure comp(A') where modification of the en­
hancement function will result in different nmn 
planes with varying ‘compactness’, co m p (^ ) will 
reach a valley (optimum) only when there is an 
appropriate enhancement of the object geometry 
of X.  For any other choices of enhancement func­
tion, either a part of the object will be treated as

background or a part of the background will merge 
with the object. In the former case, both area and 
perimeter will decrease but the decrease is more for 
the denominator; thus resulting in a value greater 
than the optimum one. The latter case, on the 
other hand, involves faster increase of the numera­
tor than that of the denominator and gives rise to 
the same result as the former one.

5. Bounds of membership function

All the enhancement functions f ( x mn) (equa­
tions (8)—(12)) are seen to be monotonically non­
decreasing and f ( x m„) € [0,1], These mapping 
functions f ( x mn) may therefore be viewed, like 
equation (7), as S-type membership functions fimn 

for extracting a fuzzy subset ‘bright 
image’ from an image X.  Recently, M urthy and 
Pal [7] formulated two bounds for S-type member­
ship functions in order to select the membership 
functional forms which are preferably to  be used 
while representing a fuzzy set in practice. The 
significance of these bounds in image segmentation 
and analysis problems was also found to  be justi­
fied [7], The optimum enhancement functions of 
an image obtained in the previous section may 
therefore be further judged with these bounds.

The expressions for bound functions are based 
on the properties of correlation [8] between two 
membership functions H\(x) and The main
properties on which correlation was formulated 
are:

P ,: If for higher values of n u fi2 takes higher 
values and the converse is also true, then the cor­
relation Cpufl2> 0.

P2: If Hy] and n2], then CMhfl2>0.
P 3: If H\ t  and n2 then CMû 2< 0.
(T denotes increases and 1 denotes decreases.)
It is to be mentioned that P2 and P 3 should not 

be considered in isolation of P j . Had this no t been 
considered, one can cite several examples when 
//,T and fi21 but C ^ 2<  0, and when//! T and n 2i 
but C^hftI> 0. Subsequently, the type o f m ember­
ship functions which should not be considered in 
fuzzy set theory are classified with the help o f  cor­
relation. Bound functions h and g for an  S-func­
tion n  were accordingly derived as [7]:



h(x) = 0, 0<X^<5, 

- x - 8 ,  <5< x^l, 

g(x) = x + d ,  0 1 -  3,

= 1,

where

x e  [0,1], <5 — 0.25.

The bounds are such that

Ch'g>0 ,  0 , C g ,^  0 ,
h ^ i u ^ g .

(13)

(14)

(15)

A function n  satisfying these bounds does not 
have most of its variation concentrated on a small 
interval of [0,1]. For any arbitrary interval [a, 6], 
the bound functions will change proportionately 
according to the length of interval.

In the light of object-backgroud classification 
(or contrast enhancement), the interpretation of 
these bounds is that the membership function 
which best represents the fuzziness in gray level of 
an image must have values —0.5 over the am­
biguous (around threshold) gray levels.

Since the enhancement functions are viewed as 
S-type membership functions, the equations (13)- 
(15) may thus be used to see whether the optimum 
enhancement function of an image satisfies the 
bound criteria.

6. Results

To study the effects of various types of enhance­
ment (mapping) function on different types of 
images, we have considered here four different 
types of image namely, Lincoln, Chromosome, 
Cell and Biplane which have multimodal, highly 
right skewed, partially skewed and bimodal histo­
grams as shown in Figures 3-6. The different map­
ping (enhancement) functions indicated by 
equations (8), (10), (11) and (12) and their varying 
forms (for different values of parameters) were 
applied on each image. For every form of the 
mapping functions the three different fuzzy set 
theoretic measures such as entropy (.H ( X )), en- 
tropy-compactness product (0(^0) and compact­
ness (comp(Ar)) were calculated using the



algorithms described in Section 2. Table 1 shows 
the values of these measures for the input images. 
The programs were simulated on a PD P-11/24 
microcomputer system. The dot matrix printer was 
used to produce hard copy of the images, where 
various gray levels of the image were represented 
by different graphic patterns.

Figures 7(a)-(d) show plots of H  and 6 for 
various values of a in equation (8), corresponding 
to the images of Lincoln, Chromosome, Cell and 
Biplane. Figure 8 gives the variation of comp(X) 
of these images separately. Both H ( X )  and Q(X) 
are found to decrease monotonicaily in Figures 
7(b) and 7(c), and to increase monotonicaily in 
Figure 7(d) with a. Whereas, in Figure 7(a) it is 
seen for the Lincoln image that 6 increases while H  
decreases with a. From these plots we can infer

m m ' "

i : '■ " -rir̂ iif

that in the cases of Figures 7(b) and 7(c) as a in­
creases there will be some quality enhancement 
effect (decrease in ambiguity in grayness and per­
haps in spatial domain) for the Chromosome and 
Cell images. For the Biplane image, there is no 
such reduction in ambiguity considering either H  
or 6 as a increases. But considering their ‘com p’ 
measure (Figure 8), we see that there are valleys at 
a = 0.015 and a = 0.025 indicating optimal en­
hancement of the Biplane and Chromosome im­
ages as far as their fuzziness in geometry alone is 
concerned. The enhancement is optimal in the

Table 1
Ambiguity measures for different input images

Image Entropy
(H)

Compactness
(comp)

Product o f H  
and comp (<?)

Lincoln 0.481 0.00428 0.00128
Chromosome 0.175 0.0892 0.00988
Cell 0.141 0.014 0.00484
Biplane 0.304 0.0150 0.00219
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Figure 7. The plots o f H  vs. a and 0 vs. a, when equation (8) is used as mapping function on the input images of (a) Figure 3,
(b) Figure 4, (c) Figure 5, (d) Figure 6.



sense that its ambiguity will be greater for any 
other value of a.

Figure 7(a) implies that as a increases the 
Lincoln image possesses less ambiguity in level but 
has more spatial ambiguity. It therefore appears 
that the Lincoln and Cell images do not possess 
any valley. This indicates that optimal enhance­
ment is not at all possible for them when one 
decides to use equaiton (8) as enhancement (map­
ping) function. To demonstrate the above facts the 
pictorial outputs for all the input images are shown 
in Figures 14(a)-(d) for a typical set of values of a.

Since the Lincoln and Cell images do not show 
any valley in any of the said measures, we have 
included two enhanced versions for each of them 
corresponding to lowest and highest ambiguity 
values. For the Chromosome and Biplane images

Figure 8. The plot of comp vs. a, when equation (8) is used as 
mapping function on the images of Figures 3-6.

the enhanced versions corresponding to the opti­
mum value of a and two other values around it are 
shown.

Let us consider for example, the enhanced images 
of Chromosome (Figure 14(b)). Here the enhanced 
image other than the optimal one is either blurred 
(Chromosome boundary is not sharp) or discon­
nected. Similarly, for the Biplane image equation 
(8) with a value of a less than the optimal one is not 
able to discriminate the object from the back­
ground. On the other hand, the enhanced version 
corresponding to a value of a higher than the opti­
mal one has resulted in fragmentation (decrease in 
homogeneity) within the object.

Figures 9(a)-(d) show the plots of H ( X )  vs. D  
and 9( X)  vs. D.  Figure 10 shows the plots of 
comp(A') vs. D  for equation (10) (Figure 2(c)). For 
each value of D  the corresponding values of A ,  B 
and C  are given in Figure 2(c). Figures 9(a), 9(b) 
and 9(c) corresponding to the input images Lincoln, 
Chromosome and Cell show distinct valleys in each 
case. On the other hand, both the curves o f H  and 
9 in Figure 9(d) show monotonicaily increasing 
behaviour with D. Their compactness measure 
(Figure 10) possesses a valley only for the Cell 
and Biplane images. Therefore, the transform ed 
versions of the Lincoln, Chromosome, Cell and 
Biplane images corresponding all to D =  13 can be 
considered as optimal enhancement as far as H a n d  
6, H  and 6, H,  comp and 8, and comp respectively 
are concerned.

Figures 15(a)-(d) demonstrate some o f the en­
hanced outputs at and around D =  13 in order to 
exemplify the significance of the optimal version. 
It is to be noted from Figures 14(b) and 15(b) that 
the Chromosome image corresponding to a = 0.025 
is optimum in the sense of compactness measure 
only, whereas the one in Figure 15(b) correspon­
ding to D =  13 is optimum considering both H  and
6. That is why the latter one is more acceptable 
than the former version as far as quality enhance­
ment is concerend. Let us further consider Figures 
14(d) and 15(d) where the optimal versions corre­
spond to a = 0.015 and D =  13 considering only the 
compactness measure. The absolute value o f com ­
pactness being lower in case of Figure 15(d) indi­
cates its greater acceptability as enhanced version. 
This is also supported visually.



F igure 9. The plots of H  vs. D  and 9 vs. D, when equation (10) is used as mapping function with a fixed set of values for A , B, C 
(for each value o f D) and applied on the images of (a) Figure 3, (b) Figure 4, (c) Figure 5, (d) Figure 6.
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Figure 10. The plot of comp vs. D, when equation (10) is used 
as mapping function and applied on the images of Figures 3-6.

The variation of H  and 9 with Fd of equation
(11) (Figure 2(d)) corresponding to all the input 
images is shown in Figures 11(a) and 11(b). Here 
Fe is kept constant (at a value of 8) so that only 
the cross-over point will vary. Their compactness 
measures are plotted in Figure 12. It is seen that for 
the Lincoln image all the measures show the pos­
sibility of optimal enhancement around Fd=15 
(Fd = 14 for H  and 9 and Fd = 18 for comp). For 
the Biplane image H  and 9 provide a valley at 
Fd=17. The Chromosome image possesses a val­
ley only for the comp measure whereas the Cell 
image shows a valley only for the entropy meas­
ure. For demonstration we have included here only 
the enhanced outputs corresponding to the optimal 
Fd values. From Figure 16(a) it is seen that the 
enhanced Lincoln image corresponding to Fd= 18

Figure 12. The plot o f comp vs. F& when equation (11) is used 
as mapping function (Fe =  8) and applied on the images of 

Figures 3-6.

looks better (discrimination of object from  back­
ground) than that of Fd=14. Comparing Figure 
16(d) with the optimum versions of Figures 15(d) 
and 14(d) it is clearly visualized that Figure 16(d) 
minimizes both gray and spatial ambiguities 
whereas the other two minimize only the spatial 
ambiguity. A similar argument holds as well for 
the Chromosome and Cell images.

Figure 13 shows the plot of H  vs. Fd when equa­
tion (12) is used as mapping function. F o r all the 
images, H  is found to be monotonicaily decreasing 
and as expected, the minimum value obtained  is 
always higher than that of the corresponding input 
images. This fact clearly indicates that there will be 
no enhancement at all by the function in equation
(12). As a typical illustration of the said fact, we 
have included here only one transform ed version



Figure 11. (a) The plot o f / /v s .  Fd considering equation (11) as mapping function on the images of Figures 3-6 with Fe = 8. (b) The 
plot of 9 vs. Fi considering equation (11) as mapping function on the images of Figures 3-6 with Ft - 8.

of the Lincoln image for Fd = 22 (Figure 17). As 
one can see, the contrast has decreased here as 
compared to the input image and a number of 
regions got merged.

The functional forms for optimal enhancement 
corresponding to the equations (8), (10) and (11) 
are found to satisfy the bounds described in Sec­
tion 5.

For example, consider Figure 2(d) (equation 
(11)) where optimal enhancement functions corre­
spond to the value of Fd lying in the range 14-18 
and satisfy the bound conditions. Again, the func­

tion corresponding to Fd= 12 which gives no val­
ley in variation of the fuzzy measures does not 
satisfy the bound criteria. Similarly, for Figures 
2(a) and 2(c), the curves corresponding to a = 0.1 
and 0.3, and D =  17 and 19 respectively do not lie 
within the bound functions.

Equation (12) (Figure 2(e)) has most of its varia­
tion at either end and almost no variation at the 
middle. This type of function is already found in 
[7] to be discarded (from the point of view of 
bounds) as mapping function in representing a 
fuzzy set. Figure 17 also corroborated this fact.





(d) .....i f ^ p § |&

Figure 15. The transformed image output when equation (10) is 
used as mapping (enhancement) function on the input images of
(a) Figure 3: (i)Z?= 11 (A =0.064, 3  = 0.1, C = 0 .0 1), (ii)X>=13 
(A  =0.074, B = 0 .15, C = 0 .01), (iii)£>=17 (.4=0.084, B  = 0.4, 
C = 0.01); (b) Figure 4: same A , B, C, D  values as in Figure 
15(a); (c) Figure 5: same A , B, C, D  values as in Figure 15(a); 

(d) Figure 6: same A , B, C, D  values as in Figure 15(a).

developed considering a single object in an image. 
Here we have considered single objects viz., 
Biplane and Chromosome, multiple objects like 
Cell and single objects with multiple disjoint 
regions such as Lincoln to demonstrate its effec­
tiveness.

Functions like equations (10) and (11) are found 
to provide optimal enhancement for all types of 
images considered here as far as minimization of at 

ileast one of the fuzzy measures is concerned. For 
the Cell image its optimal enhancement produced 
by equation (10) is reflected by all the fuzzy meas­
ures. Similar is the case for the Lincoln image when 
equation (11) is considered. Visual discrimination 
of enhancement qualtiy produced by grayness am-

Figure 17. The transformed image output when equation (12) i 
used as mapping (enhancement) function in the Lincoln imag 

with Fe= 8 and Fd = 22.



PATTERN RECOGNITION LETTERS 

i

December 1990

biguity minimization and spatial ambiguity mini­
mization is found to be well characterised by the 
respective measures.

Since the entropy (equation (2)) depends on the 
nature o f the histogram of an image, a function 
like equation (10) (Figure 2(c)) was able to produce

a valley in the behaviour of the H  measure only  for 
the images o f Lincoln, Chromosome a n d  Cell, 
because the appropriate selection of the param eter 
D  made its cross-over point lie around thresholds 
between object and background. For th e  same 
reason, equation (11) (Figure 2(d)) has been able to



Figure 18. Block diagram of proposed algorithm.

produce a valley in the H  measure for the Lincoln, 
Cell and Biplane images; the Chromosome image 
having a right skewed histogram got discriminated. 
However, minimizing both spatial and grayness 
ambiguity is a good indication for acceptance of an 
enhanced image.

Equation (8) showed comparatively inferior per­
formance, because the test images do not have a 
left skewed histogram. Equation (12) increases the 
ambiguity in grayness of pixels and thus could not 
produce enhancement of any image. Bound func­

tions are also found to be an indication for dis­
carding enhancement functions.

It is to be mentioned here that four distinct 
enhancement functions have been considered here 
in order to cover most of the enhancement func­
tions normally used [3]. All these functional forms 
can also be generated with only one function, 
namely, the standard beta density function [9] by 
changing its parameters.

Acknowledgement

The authors gratefully acknowledge Prof. D. 
Dutta Majumder for his interest in this work, 
Mr. S. Chakraborty for drawing the figures and 
Mr. J. Gupta for typing the manuscript. The 
facility provided by the DOE, Govt, of India for 
computing is also acknowledged.

References

[1] Gonzalez, R.C. and P. Wintz (1977). Digital Image Proces­
sing. Addison-Wesley, Reading, MA.

[2] Ekstrom, M.P. (1984). Digital Image Processing Tech­
niques. Academic Press, New York.

[3] Wang, D.C.C., A.H. Vagnucci and C.C. Li (1983). Digital 
image enhancement: a survey. Computer Vision, Graphics 
and Image Processing 24, 368-381.

[4] Pal, S.K. and A. Rosenfeld (1988). Image enhancement and 
thresholding by optimization of fuzzy compactness. Pattern 
Recognition Letters 7, 77-86.

[5] Zadeh, L.A. (1975). Calculus of fuzzy restrictions. In: 
L.A. Zadeh et al., Eds., Fuzzy Sets and Their Application 
to Cognitive and Decision Processes. Academic Press, 
London, 1-39.

[6] Rosenfeld, A. (1984). Fuzzy geometry of image subsets. 
Pattern Recognition Letters 2, 311-317.

[7] Murthy, C.A. and S.K. Pal. Bounds for membership func­
tion: correlation based approach. Fuzzy Sets and Systems, 
submitted.

[8] Murthy, C.A., S.K. Pal and D. Dutta Majumder (1985). 
Correlation between two fuzzy membership functions. 
Fuzzy Sets and Systems 7 (1), 23-38.

[9] Tubbs, J.D. (1987). A note on parametric image enhance­
ment. Pattern Recognition 20, 617-621.


	Automatic selection of object enhancement operator with quantitative justification based on fuzzy set theoretic measures

	Malay K. KUNDU and Sankar K. PAL

	1.	Introduction

	2.	Grayness ambiguity and spatial ambiguity [4]


	<>(X) = IE^=E MO HD,	(3)

	3.	Gray level rescaling

	5.	Bounds of membership function


	= 1,

	(d)




