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Abstract: A three-stage dynamic fuzzy clustering algorithm consisting of initial partitioning, a sequence of updating and 
merging by optimisation of a characterisation function based on measures of fuzziness in a set is described. Unlike the conven­
tional detection of disjoint initial clusters, the algorithm can extract overlapping initial cluster boundaries when the feature 
space has ill-defined regions. The membership function in IR" involves the density of patterns at a point in addition to its 
Euclidean distance. The merging criterion involves the number of samples and the amount of fuzziness in the intersection of 
two clusters, and the disparity in their size. The effectiveness o f the algorithm is demonstrated on the speech recognition 
problem.
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1. Introduction

Clustering may be viewed as a problem of un­
supervised pattern recognition. The objective is to 
partition the given data set into a certain number 
of natural and homogeneous sets where the ele­
ments of each set are as similar as possible and dif­
ferent from those of the other sets. In practice, the 
separation of clusters is a fuzzy notion and hence 
the concept of fuzzy subsets offers special advan­
tages over conventional clustering [1], In fuzzy 
clustering each element is assigned a finite member­
ship to each of the clusters. The well-known fuzzy 
clustering algorithms include the fuzzy isodata [5], 
fuzzy C-means [6] and clustering by decomposition 
of induced fuzzy sets [3], In the last two cases, the 
number of clusters is assumed to be known. Again, 
all these methods consider the initial clusters to 
start with to be disjoint.

The measures index of fuzziness, entropy and n- 
ness [1] (which provide an amount of difficulty in 
deciding whether a pattern is a member of a set or 
not) have been found to be successful in various 
pattern recognition and image processing prob­
lems, e.g., in segmenting an image [7], in defining 
a feature evaluation index [8], in determining

initial seed points [2], and in providing a quantita­
tive measure for image enhancement [9],

The present work attempts to demonstrate an­
other application of the aforesaid fuzzy measures 
in dynamic clustering of a data set. The technique 
involves a three-stage hierarchy. In the first stage, 
various fuzzy sets representing ‘points clustered 
around some point, say b' are obtained. By op­
timizing measures of fuzziness over these sets, the 
seed points and the corresponding initial cluster 
boundaries of the feature space are extracted. 
Unlike conventional detection of initial clusters 
where the boundaries are made disjoint, this al­
gorithm can extract overlapping initial clusters 
(boundaries) when the feature space has ill-defined 
regions.

In the second stage, membership values are 
assigned to the points in the feature space corres­
ponding to each cluster. Besides the conventional 
use of Euclidean distance in measuring member­
ship value [4], the density of patterns at a point is 
also considered here in this evaluation. This, in 
turn, makes use of the aforesaid fuzzy measures (in 
terms of the density of patterns at a point) in the 
process of evaluation. A sequence of cluster up­
dating and membership assignment is repeated un­



til a local maximum value of a characterization 
function is obtained. The characterization func­
tion also includes the fuzzy measure as described 
above.

Finally, in the third stage a provision for mer­
ging is kept on the basis of an objective function. 
The objective function is dependent on three fac­
tors, namely, the number of points in the inter­
section of two clusters, fuzziness in the intersection 
of two clusters and the disparity in the size of two 
clusters.

The algorithm is able to generate the optimal 
number of clusters kQ in the feature space both 
when k0 is known and unknown. Effectiveness of 
the algorithm is demonstrated on speech recogni­
tion problems. Results of the individual stages are 
also highlighted.

2. Outline of the algorithm

Consider the feature space

(7l> u \)  X (̂ 2> u l )  X

to be split into Ln grid points where L = (ut - l,)/d, 
and , Uj are the lower and upper bounds of the 
/'th property of the sample, d  denotes the grid 
width.

Inputs
(i) The n coordinates of the ./V pattern points in 

the ^-dimensional feature space. (The upper and 
lower bounds «, and /, for / = 1,2,..., n can then be 
obtained.)

(ii) The grid width d.
(iii) The radius I  of the ir-function.

Procedure
1. Determine the initial seedpoints and corres­

ponding cluster boundaries.
2. Repeat steps 3 to 5 until a local maximum of 

a characterization function if/ occurs.
3. Assign membership values to each grid point.
4. Compute the function y/.
5. Update the cluster centers.

Outputs
(i) The k0 cluster centers corresponding to op­

timal partitioning of Qx .
(ii) The membership of L n grid points to each 

of the k0 clusters.
(iii) The local maximum value of the character­

ization function if/.

This algorithm may be run for suitable combina­
tions of d  and k yielding a large number of initial 
clusters k. The optimization leads to minimum fuz­
ziness among the k  clusters in Qx . Now two con­
ditions may arise.

Case 1. The number of optimal clusters k0 is 
known, where k > k Q. At each stage, the pair of 
clusters having maximum fuzziness between them 
may be merged and the local maximum of if/ com­
puted until k = k0.

Case 2. The number of optimal clusters k0 is 
unknown. A large k  is first of all chosen. At each 
stage merging and maximization of if/ [as in Case 
1] may then be repeated until a global maximum 
value of if/ is obtained. The corresponding set of 
k0 clusters constitute the optimal partitioning of 
Qx .

In the following sections, the above-mentioned 
steps will be explained in detail.

3. Extraction of initial clusters

Let X - { X UX 2, . . . ,X N) be a set of N  pattern 
points in an H-dimensional (n > 2) feature space 
Qx • The fuzzy set associated with X  may be de­
fined as [2]

X(b,X) = {fiX{b'k)(Xi) ,Xi}, i = l , 2 , . . . , N  (1) 

where

Mx(b,x)(Xi) = S(Xi;b,k) or n(X:;b,k) 

and A',elR,!.

b corresponds to the cross-over point for the func­
tion S  and the central point for the function n [2].

Here the S-function is defined as

S(Xi-,b,A) = (1 -  IXt -  b \ / k f /2  or 

1 -  (1 -  \\Xj- b\\/k)2/ 2 ,
when \X(-  6|| <A,

= 0 or 1, otherwise (2)



where || • || denotes the Euclidean distance in IR" 
and A >  0 is the radius. The 7?-function is defined as

n{Xr,b,X) = 2 ( \ - \ \X i- b \ / X ) \

A/2< -  b\ < A,

= \ - 2 { \ X i- b \ / X ) 1,

0<  \X j - b \  <A/2. (3)

This is shown in Figure 1 where XjB (R2. Note that 
the central point b of equation (3) is designated as 
c in the figure.

Considering nX{bX)(Xi) = n{Xj\b,k), equation 
(1) can be viewed as a fuzzy set X(b,X) of ‘points 
clustered around b’ so that iuX(byx)(Xj) denotes the 
degree of belonging of X t to such a set. Keeping A 
constant and changing b, we can therefore 
generate a class of such fuzzy sets.

Let /, and u, be the lower and upper bounds of 
the /'th property of the sample. The feature space 
(ll, u l) x ( l 2,u2) x  ■■■ x(l„,un) is split into Ln grid 
points where L = (ui- l i) /d  for a fixed i. Here d  is 
some pre-assigned positive constant called grid 
width. Let bh i= \ ,2 , . . . ,L n, be the grid points.

Choosing A suitably, calculate the amount of 
fuzziness in the set X(bh l )  using any of the 
following measures.

Index o f  fuzziness

y{X(bhX ) ) = 7-. I  m\n(nX(bhk){X j)) (4) 
N  j — i

Entropy

1 N
//(* (* ,, A)) = — —  £  S„(nX{bhi)(Xj)) (5) 

yv in z j=\

where S„ is the Shannon function defined as

Sni^Xtb.'X^Xj))
= -  (min fix(bi,x)(Xj)) ln(min juX0hi)(Xj))

-  (max/iX{ba)(Xj)) In(max/;m J ) (A}))

and m\nnXib! >)(Xj), maxfiX(ba)(Xj) refer to the 
minimum and the maximum of the two //-values at 
the point Xj  of the S-function.

Pi-ness

I{X{bn X)) = ~  I  n(Xj-,bh X) (6)

The expressions (4)-(6) represent an average 
amount of difficulty (ambiguity) in deciding a 
point Xj  as a member of the set X{bh A). It follows 
that y and H  increase monotonically in the interval 
[0,0.5] and decrease monotonically in [0.5,1] with 
a maximum value 1 at fi = 0.5. On the other hand, 
I  (eq. (6)) has maximum value 1 at n = 1.

3.1. Criteria for  seed point / boundary point ex­
traction

We observe that the contributions towards 
y(X(b, A)) or H{X(b,X)) or I(X(b, A)) are mostly



from the points around b and it decreases as the 
points move away from b. Hence, if the number of 
points around b is more, there will be a greater 
number of points Xj having ^  = 0.5 (1) while using 
the S-function (7?-function) [resulting in y, H  and , 
/== 1] and a less number of points having /u~ 0 or 
1 (0) [resulting in y, H  and /« 0 ]; thus increasing 
the value of y(X(b,X)) or H(X(b, A)) or I(X(b,k)). 
Therefore b can be considered as a seed point 
(center of an initial cluster). In other words, the 
higher the value of these fuzzy measures, the 
greater is the density of patterns clustered around 
b.

Similarly, points along the boundary of the 
cluster would have minimum y or H  or I  values as 
the number of points around b would be less due 
to the sparse pattern distribution there. So cor­
responding to each cluster center the cluster boun­
daries can be extracted by detecting the locus of 
points with minimum y(X(b,l)) or H(X(b,X)) or 
I(X(b, A)) values surrounding the seed point.

This suggests that modification of the cross-over 
point/central point b will result in different fuzzy 
sets having various fuzzy measures. The grid 
points {6,} for which the corresponding fuzzy 
measures are locally maximum may be taken as the 
initial seed points. For each such seed point, the 
surrounding locus of grid points having minimum 
values of fuzzy measures constitute the corre­
sponding cluster boundary. The algorithm for ex­
tracting seed points has been reported in [2]. The 
algorithm for generating the initial cluster boun­
daries is stated below.

3.2. Algorithm

Inputs
(i) The bj, /=  1,2, ...,L", grid points and the 

corresponding measures of fuzziness.
(ii) The initial seed points (already detected).

Procedure [considering n = 2] to detect the boun­
dary corresponding to each seed point

Main
1. Proceed horizontally along the row (along 

axis 2, say) on both sides of the seed point.
2. Call subroutine FNDPTS to detect end points

(rightmost and leftmost points of the cluster boun­
dary) along this axis.

3. For each grid point along this axis do steps 4 
to 5.

4. Proceed vertically along the column (along 
axis 1) on both sides of this point.

5. Call subroutine FNDPTS to detect end points 
(constituting part of the cluster boundary) above 
and below this point.

Subroutine FNDPTS
1. Proceed to the next grid point along the 

desired direction.
2. Compare the measure of fuzziness at this 

point with that of the previous point.
3. If either a minimum is obtained or the 

decrease is very low (i.e., a valley is reached or the 
slope is very gentle compared to the adjacent 
points), then continue to the next step; otherwise, 
go to step 1.

4. If this point is nearer or equidistant to any 
other seed point, then choose this point as one of 
the end points; otherwise, go to step 1.

Output
A listing of the cluster boundary for each seed 

point. Here Fh i= \ ,2 , . . . , k ,  designates the /th 
cluster associated with the /th seed point.

If the feature space has overlapping regions, that 
will be reflected by the output boundaries obtained 
by the above-mentioned algorithm. In other 
words, the initial cluster boundaries so obtained by 
the above-mentioned algorithm will be overlapping 
conforming to the notion that each point may have 
finite membership to more than one cluster. It is to 
be noted that this is unlike the conventional detec­
tion of initial clusters where the boundaries are 
made disjoint.

3.3. Variation o f  d and A

As A of the 7?-function (Figure 1) decreases, the 
plane representing the fuzzy sets ‘points 

clustered around b’ would have more intensified 
contrast around the cross-over point b resulting in 
decrease of ambiguity (y or H  or /  value) in 
Hx(b,k)- As a result, the possibility of detecting 
some undesirable seed point (representing the



spurious maxima in the feature space) increases. 
Similar is the case with decrease in the value of the 
grid width d.

On the other hand, increase in value of A or d  
results in a higher value of fuzziness and this leads 
towards the possibility of losing some of the weak 
maxima.

4. Assignment of membership value

Fuzzy clustering uses iterative optimization of 
an objective function based on a weighted simi­
larity measure between the pattern points in the 
feature space and each of the cluster centers. A 
local extremum of this objective function indicates 
an optimal clustering of the input data.

Let X '  = {bj',i= 1,2, be the set of grid
points in Qx . Let the fuzzy measure (index of fuz­
ziness or entropy or pi-ness) computed at point x, 
where x  e X' ,  be denoted by zx ■ As seen in Section
3, z* measures an average amount of difficulty in 
deciding whether a pattern can be considered a 
member of the set ‘points clustered around x’ or 
not. The higher the value of zx , the greater is the 
density of patterns clustered around x.

A way of computing membership nFj{x) of a 
point x  to a cluster Fj is given below.

Case 1. When ||x-u,-|| =£0 and ||zA--z,J! ^ 0  for 
all /, then

\\zx - z Ui\\ y  
II Zx Z/j

<5\-l

(7)

where 0 < /? < 1, £ , /UFi (x) = 1, i, j  = 1 ,2 ,..., k, and 
fxF.(x)e[0, 1].

The center of cluster Ft is denoted by u,-. Note 
that during the iterative updating (to be explained 
in Section 5), v, is to be considered as the initial 
/th seed point (extracted in Section 3) at the first 
iteration. The positive constant 8 controls the fuz­
ziness in a set. is a weight associated with the pat­
tern density measure.

The expression (7) incorporates a measure of the 
difference in density of pattern distribution be­
tween the point x and the corresponding cluster 
center, in addition to their Euclidean distance. The 
significance of inclusion of the fuzzy measures in

this expression can be visualized by considering the 
speech recognition problem, as an example. Here 
dialectic and other such variations may lead to the 
generation of a good amount of samples of the 
same vowel having coordinates (features) that are 
far apart in the feature space as measured by the 
distance metric. Considering only the Euclidean 
distance as a criterion for evaluating the member­
ship may yield low values in such cases. However, 
by considering zx as a factor we give due impor­
tance to the density of patterns around a point in 
determining its membership to a cluster. So dif­
ferent versions of the same vowel, lying far apart 
and yet having considerable pattern density (num­
ber of occurrence), are assigned higher member­
ship values as compared to that which would have 
been assigned using Euclidean distance only. Since 
/?< 1, the factor zx has, of course, less importance 
than the distance factor in providing membership 
value.

It is to be mentioned here that the work in [4] 
considered a membership function involving only 
Euclidean distance.

Case 2. When ||x-u,-|| =£0 and lzx - z Ui\\ =0 for 
any /, then it implies that x is not the seed point but 
has equal amount of pattern density as the seed 
point has. In that case use of equation (7) will 
result in infinite /u value which is impractical. In 
order to circumvent this, we use equation (7) with 
zx = (zx)av where (zx)av denotes the average value 
of zx computed over its four neighbours. It is ex­
pected that IC zA v-zJ^O .

Case 3. When ||at — t>,-| =0  for / = /„, then (ob­
viously, ||Zx-Zu,ll=0)

H Fi( x ) =  1 for / = /o, 

= 0 otherwise,

(8)

such that £,• /uFi(x) = 1.
The membership of each grid point to each of 

the K  clusters can therefore be evaluated using 
equation (7) or (8).

5. Optimised partitioning

Since an optimum clustering corresponds to 
minimum overlap among the clusters Fu F2, ..., Fk,



the notion of fuzzy set intersection therefore be­
comes an important criterion for measuring fuz­
ziness (ambiguity) in clustering. The amount of 
fuzziness present in clusters Fj and Fs (/'=£/) may 
be viewed to be equivalent to the amount present 
in the subset {FjCiFj).

The fuzziness in Fj D Fj is defined as

L(Fj^Fi) = j ~ v  £  min(fxF.(x),fiFi(x)) (9)
\ X  | x e X '

where \X' \ refers to the number of grid points in 
the feature space Qx , i.e., \X ’\ =Ln.

Given a ^-collection of fuzzy sets {fiF.{x), Vxe  
X '  and 7 = 1,2, . . . ,k}  satisfying £ y///ry(x) = 1, the 
measure of average pairwise fuzzy set separability 
is [3]

^ i - t t I S W )  do)K — I j  j

where j  = 1,2,..., k  -  1 and i= j+ l , . . . , k .
The constant term 2/ ( k -  1) appears in order to 

make the characterization function <// lie between 0 
and 1.

Since there are k{k - 1)/2 nonzero terms, the 
maximum fuzziness = is attained when

HF.(x) = \ / k  for all x e X ’, j=  1,2, . . . ,k,  (11)

and minimum fuzziness (hard partition, i.e., y/= 1) 
when

/xF.(x)=0 or 1 for all x e X ' ,  j=  1,2, . ..,k. (12)

V can therefore be used as an evaluation index of 
partitioning.

The updating of the partition forms an essential 
part of the optimization procedure. A relocation is 
done only if it results in an improvement in the 
process of maximization of y/. The iterative reloca­
tion process continues until convergence on some 
local maximum of yj occurs.

At the first iteration, the cluster centers {o;; 
/ = 1,2,..., k} correspond to the k  initial seed points 
as determined in Section 3. However, in succeeding 
iterations the cluster center o, is updated as [4]

l x^ x [ W iix)Y*x]
(13)

IxeX'iUF.WV 
where w> 1 and /=  1,2, . . . ,k.

The sequence of membership evaluation and

cluster updating is repeated until a local maximum 
value of y/ is obtained. This stage corresponds to 
the minimization of fuzziness in the resulting 
clusters and leads to an optimal partitioning of the 
feature space.

In order to have nonfuzzy (may be overlapping) 
output one may generate suitable a-cuts from the 
resulting //-plane. That is, an element x  can be said 
to belong to cluster F, if and only if fiF/(x)>a  
where 0 < a  < 1.

6. Merging

The necessity of merging two clusters has been 
explained in Section 2. When the ambiguity be­
tween a pair of clusters is high, they can be merged 
to result in a further maximization of y/ in the 
feature space. For this, a measure of ambiguity 
between each pair of clusters may be determined 
by a number of factors as explained below.

(i) As mentioned in Section 5, the amount of 
fuzziness in the intersection between a pair of 
clusters Ft and Fj indicates a measure of the am­
biguity (overlapping) between them. This is given 
by equation (9). Let it be denoted here as

J=L{Fj C\Fi). (14)

(ii) The sum of the fuzzy measures zx in a 
region of intersection between a pair of clusters in­
dicates the total pattern density in the ambiguous 
region. In other words, this may be viewed as some 
measure of the total number of pattern points that 
belong to both clusters. An a-cut determines the 
cluster boundaries as mentioned in Section 5. 
Therefore

E
x e X '

(15)

where min(nF.(x\nFi{x))>a,  can be regarded as 
another ambiguity measure for merging.

(iii) Again, for the a-cut plane, the sum of the 
fuzzy measures zx within a cluster (called within- 
class fuzzy measure) is proportional to the total 
number of pattern points in that cluster. If there is 
a large disparity between the within-class fuzzy 
measures (i.e., large disparity in the number of 
supports or samples) of two intersecting clusters Ft



and Fj ,  then they can also be considered for merg­
ing. A measure of this disparity is given as

(16)D = E Zx-  £  Zx
xeFj xeFj

where min(///;- (x), n ( x ) )  > a .
For each pair of clusters Ft and Fj, a combined 

product

P = J *M *D (17)

may then be computed. This is chosen as an ob­
jective measure such that the pair of clusters 
generating the maximum value of P  may be 
merged, if desired.

7. Implementation and results

The above-mentioned algorithm was implement­
ed on a set of 871 Indian Telugu vowel sounds in 
a Consonant-Vowel-Consonant context uttered 
by three male speakers in the age group 30 to 35 
years. The ten vowel classes (d,a,i,i:,u,u:,e,e:, 
o,o:), including the shorter and longer categories, 
have been used. Figure 2 shows the feature space

of ten vowel classes in the Fx-Fz plane where F\ 
and F2 correspond to the first and second vowel 
formant frequencies obtained through spectrum 
analysis of the speech data. The algorithm was 
implemented in Fortran-77 and run on a PDP-11 
computer.

The experiment has been undertaken for various 
d  and X combinations. As mentioned in Section
3, the number of seed points (and hence initial 
clusters) increases with decrease in either d  or 1. 
This has been described earlier in [2],

The feature space is split into a number of 
grid points and the fuzzy measures are computed 
around each such point with a suitable radius X of 
the ^-function. The seed points are obtained by 
detecting the grid points b,, for which the asso­
ciated fuzzy set has maximum ambiguity. These 
correspond to the initial cluster centers. The locus 
of points of minimum ambiguity around each clus­
ter center determine the initial cluster boundaries. 
As a typical illustration, the overlapping regions 
obtained in the process of extracting initial clusters 
(using d = 50 and A = 100) are shown in Figure 3. 
The fuzzy measure selected was the index of fuz-

F 2 IN Hz

Figure 2. Feature space in F\-F2 plane.
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Figure 3. Overlapping initial clusters for d = 50 and A = 100.

optimal cluster centers at this stage are given by 
the first column of this row. The pair of clusters 
having maximum P  value (eq. (17)) are merged, 
when required, and the resulting clusters are cor­
respondingly updated. The cluster pairs to be 
merged are shown in the second column of this 
table. For example, clusters 6 and 7 are merged to 
yield six clusters, whose updated centers and the 
locally maximized yj value are shown in the second 
row of Table 2.

When k0 is unknown, the process is repeated 
until a global maximum value of yj is obtained. 
The fourth column of the corresponding row in­
dicates the optimal number of clusters and the first 
column gives the resulting cluster centers.

Figure 4 shows the variation of y/ with the 
number of iterations for initial clusters k = 1. The 
curve depicts the behavior of yj at each stage of 
merging and updating. A global maximum of y/ is 
seen to be obtained at k0 = 3. As a typical exam­
ple, consider the case with k0 = l . Here six up­
datings are needed to reach the local maximum 
value of y/ as given in the first row of Table 2. 
Similarly the variation of yt for k0 = 6, 5, 4, 3, 2 
are shown in Figure 4. It is seen that each stage 
requires a different number of updatings to yield a 
corresponding local maximum value of yj.

Table 1
Initial seed points and characterization function

Initial seed points (Fl,F2) Characterization function

(400,1000)
(500,1000)
(750,1300)
(550,1500) 0.722
(500,2000)
(300,2100)
(350,2250)

ziness y. Initially k = l  clusters are obtained. The 7 
initial seed points and the resulting characteriza­
tion function y/ at this stage are shown in Table 1.

Table 2 depicts the updated optimum (in the 
sense of maximization of yt) cluster centers 
(FltF2) and the corresponding local maximum 
values of the characterization function y/. For 
example, the first row of Table 2 shows the 7 
cluster centers obtained from the initial seed points 
(Table 1) after a series of updatings. The value of 
yt (0.76) is the maximum value obtained in the 
process of updating. If the optimum number of 
clusters k0 is known, then the process is ter­
minated at the row corresponding to kQ clusters 
and the local maximum value of yj is obtained. The



Table 2
Cluster centers and characterization function (for k - 1 )

Cluster centers 
( ^ 2 )

Clusters to 
be merged

Characterization 
function if/

Number of 
clusters

(350, 950) 
(500, 950) 
(700,1250) 
(500,1500) 
(650,1900) 
(400,2000) 
(400,2400)

6,7 0.76 7

(350, 950) 
(500, 950) 
(700,1250) 
(500,1500) 
(550,1950) 
(400,2350)

4,5 0.766 6

(350, 950) 
(500, 950) 
(700,1300) 
(550,1800) 
(400,2300)

2,3 0.763 5

(400, 950) 
(600,1300) 
(550,1800) 
(400,2300)

2,3 0.77 4

(450,1000) 
550,1600) 
400,2250)

2,3 0.78 3

(450,1050) 
(500,1950)

— 0.757 2

Figure 5 depicts the movement of the cluster 
centers (only for k0 = 7) in the feature space, 
during the process of updating, leading to a local 
maximum value of . A total of six iterations are 
required in the process, as observed from Figure 4. 
Note that different cluster centers undergo dif­
ferent amounts of movement in the feature space 
and all cluster centers do not move simultaneously. 
The initial seed points (Table 1) and the final up­
dated cluster centers (first row of Table 2) are 
shown by the starting points and terminating 
points respectively of the arrows in Figure 5. It is 
seen that cluster center 6 undergoes a maximum of 
four updatings while cluster centers 1, 2 and 4 
undergo a single updating each.

The vowel data has six classes (considering 
longer and shorter categories as the same). The op­
timal cluster centers obtained corresponding to 
£o = 6 (second row of Table 2) are seen to conform 
well to the vowel diagram.

8. Conclusion and discussion

A three-stage hierarchical fuzzy dynamic cluster­
ing algorithm consisting of initial clustering, 
updating and merging based on various 
characterization functions has been presented in­
corporating the measures of fuzziness (e.g., index

NUMBER OF CLUSTERS 

Figure 4. Variation of >// with iteration.
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Figure 5. Movement of the cluster centers for k0 = 7.

of fuzziness, entropy and 7r-ness) at every stage. 
Unlike the conventional detection of disjoint initial 
clusters, the algorithm is able to extract the hard 
overlapping initial cluster boundaries (as shown in 
Figure 3) for the ill-defined vowel regions. 
Membership function in (R" involves both Eucli­
dean distance and density of patterns at a point. 
The merging criterion involves the number of 
points and the amount of fuzziness in the intersec­
tion of two clusters, and the disparity in their size. 
Varying a creates overlapping output partitions. 
The algorithm is able to generate an optimal 
number of clusters k0 both when k0 is known and 
unknown. Results at every stage are shown to 
demonstrate the effectiveness of the algorithm.

In this connection, mention must be made of the 
work of Diday & Simon [11,12] who have used the 
concept of cross-partition to generate strong and 
weak cluster patterns in their dynamic clustering 
algorithm. A cross-partition is obtained by re­
peated intersections of £0-partitions, resulting in a 
set of disjoint subsets of the pattern space. A fuzzy 
characteristic function based on an ultrametric

distance is used to determine the degree of similar­
ity between two strong cluster patterns. Each weak 
cluster pattern consists of a lumping of a set of 
strong cluster patterns that are nearest to each 
other. Initially, the kernels are so chosen that the 
partitions are realized around pattern points with 
high density. The algorithm involves computation 
of probability density functions. The objective 
function (based on distance measure) minimizes 
the inertia of each cluster versus its kernel, when 
the number of clusters k0 is known, in order to 
obtain disjoint optimum clusters.

Interestingly, the concept of overlapping clusters 
and the fuzziness involved has not been touched 
upon in their treatment. It mainly considered the 
hard domain of clustering. These points have also 
been noted by Diday & Simon [12, p. 92],

The proposed algorithm, on the other hand, 
takes these factors into account in all the three 
stages, viz., initial partitioning, membership 
evaluation and updating, and merging, considering 
k0 unknown (or known). Both initial clusters and 
final output generated can be overlapping, the out­



put being characterized by the membership func­
tion or a-cut.

The fuzzy measures used here incorporate the 
amount of difficulty in taking a decision based on 
an individual sample. The recent development on 
higher order entropy of a fuzzy set [10], which in­
volves various combinations of samples, may be 
used as a measure of fuzziness in a set to result in 
an improved performance.
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