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Abstract: The problem  o f  histogram  sharpening and thresholding by m inim ising greylevel fuzziness is considered. The earlier 
work on the said problem  consists only o f  algorithm s w ithou t m athem atical justification o f  the findings. F o r example, the choices 
o f  ap p ropria te  m em bership function and  the op tim um  value o f  its w indow size (band width) for detecting thresholds were m ade 
experim entally w ith iterative m anner.

The present w ork provides a com plete theoretical form ulation o f  the sam e and  establishes the criteria regarding the choices 
o f  m em bership function and its w indow  size (band width). The variation  in m em bership function is seen to  be restricted by bound 
functions, thus enabling the m ethod o f  segm entation m ore flexible b u t effective. F inally, the m ethod can be viewed as a weighted 
m oving average technique, greyness am biguity  being the weights.
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1. Introduction

A measure of am biguity (fuzziness) in grey level 
of an image is seen to  be provided [1] by the terms 
index of fuzziness [2], entropy [3] and  index of non- 
fuzziness [4], Since these terms basically reflect the 
measure of closeness of greytone image to  its two- 
tone version, they provide a quantitative measure of 
image ambiguity [1] when the cross-over point is set 
to a predeterm ined value. M odification of cross­
over point will result in variation in these values 
and so a set of m inim a may be obtained corre­
sponding to the optim um  threshold levels of the 
image.

The above concept was used earlier experimen­
tally by Pal et al. [5] and Pal and Rosenfeld [6] to 
detect thresholds for various bim odal and m ulti­
modal images. They considered only Z adeh’s stand­
ard  S function [7] over an interval of length c (win­
dow size) in extracting a fuzzy subset ‘bright im age’ 
from the image. But the authors did not provide 
any m athem atical basis of either the choice of mem ­

bership function or their findings. For example, the 
lim itation of using any other type of membership 
function is neither theoretically nor even experi­
mentally justified. The observations on the choice 
of c (which is critical for detecting valleys) was pro­
vided only experimentally. N o m athem atical reason 
was given on the choice of optim al value of c in 
order to detect a valley.

The present work provides a m athem atical for­
m ulation of the aforesaid m ethod, establishes theo­
retically the choice of optim um  c and the selection 
of membership function and justifies the said exper­
imental results. The frame work takes into conside­
ration all possible membership functions and histo­
grams. The relation between c and the length of the 
interval between two peaks of histogram  is estab­
lished. The effect of variation of m embership func­
tion (i.e., the lim itation on the choice of g) on the 
results is m athem atically described. It is then found 
out that the requisite m em bership function g  may 
be confined within the bounds of M urthy and Pal 
[8] and it possesses symmetry in am biguity around



the cross-over point. With this, the method is there­
fore seen to be flexible enough in selecting its input 
membership function keeping the output satisfacto­
ry-

The present investigation can not only be re­
garded as a completion of the earlier work, but also 
be viewed as a generalization of the same. Finally, 
the m ethod has been shown to be equivalent to a 
weighted moving average technique [9],

2. Greyness ambiguity and threshold selection

Let X  be an image of L +  1 levels, M  rows and 
N  columns and n be a membership function defined 
on levels. Let fi(xmn) denote the grade of possessing 
some property (e.g. brightness) by the (m, n) pixel of 
intensity x mn, m = and n = l , . . . , N .  The
index of fuzziness (y(X)),  entropy ( E ( X )) and index 
of nonfuzziness {rj(X)) are defined below [1]:

2 _  _
=  77^7 L  L  rnin[^(xm„),(l -  ii(xmn)]

M N  rn n
2

=  T7T7 X  T  \ p ( X mn)  ~  P x ( X mn)\ (1 a)
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where represents the nearest two-tone version of
H.

£ W  =  t 7 (lb ) 
M N  In 2 m n

with Shannon’s function

SnGu(xm„)) =  -  fi(xmn) log ft(xmn)
-  (1 ~  K - O )  log (1 -  l*(xm„)). (lc)

'/W = li7r7lS[1-|2MO-i|]. (Id)iVl [y tn n

Intuitively ambiguity in greyness should be maxi­
m um  when n{xmn) =  0.5 and it should decrease as 
n(xm„) moves away from 0.5. The above mentioned 
measures possess this property and hence they can 
be considered to represent the greyness ambiguity 
\ n X .

O bserve that rj(X) is the same &sy(X)  because of 
the reason mentioned below.

(a) Let fi(xm„) <  1/2. Then

1 -  |2KXmn) -  1| =  2jU(xmn).

(b) Let fi(xmn) ^  1/2. Then

1 -  |2( M O )  -  1| =  2(1 -  n(xmn)).

Let f ( l )  denote the num ber of occurrences of the lev­
el I. Equations (1) can then be written as

~  I  m m  (2a)

with T(0 =  min[/i(/), 1 — nil)], (2b)

m  =  -  -  X  Sn(Kl) )f ( l) -  (3)
M N  In 2

The concept of using index of fuzziness for 
threshold selection is described below. Similar argu­
m ent holds for entropy also. Let Zadeh’s standard 
S function [7] be considered n  here.

K*mniP,q,r) =  0 if x mn =$ p,
=  2[{xmn -  P)/(r -  P)]2 if P ^  X m„ s: q,
= 1 -  2[(xm„ -  r)!(r -  p)]2 if x mn <  r,
=  1 if x mn7zr (4)

with q =  j(p  +  r) and Aq = r — q = q — p. The pa­
ram eter q is the cross-over point. The window 
length =  r — p =  2 Aq.

Let us, for example, consider the object and 
background segmentation of a bim odal histogram. 
Now, for an image X , the fuzzy measures basically 
com pute the distance between its brightness p roper­
ty n x  and its nearest two-tone property Since, 
X  is dependent of the cross-over point q, a proper 
selection of q (and hence the membership function) 
may therefore be obtained which will result in m ini­
mum value of these measures y and E. This mini­
mum value corresponds to appropriate segmenta­
tion of the image and q may be taken as optimum 
threshold. This is optim um  in the sense that, for any 
other choice of q, the y or E measure will be greater 
than this.

Figure 1. G raph  showing index of fuzziness values vs. cross-over 
points. q0 is optim al.



The corresponding /((xm„) plane can be regarded 
as a fuzzy segemented version of X .  F o r obtaining 
its non-fuzzy (crisp) version, the cross-over point q 
(having m axim um  ambiguity) was considered 
above as the threshold between object and back­
ground. The above concept can similarly be ex­
tended to  a m ultim odal image where there would be 
several m inim a corresponding to different valley 
points of the histogram .

problem  and some of its consequences are stated. 
The relation between c (window size) and the dis­
tance between modes is also established in Section 
3. In Section 4, different types of mem bership func­
tions are taken and the corresponding changes on 
the thresholds of histogram  are discussed. Section 
5 describes the relation between the moving average 
m ethod [9] and the m ethod presented here.

Algorithm fo r  greylevel thresholding

The fuzzy m embership function p,{xmn-,p,q,r) 
(equation (4)) is considered. The function /; is 
shifted over the interval [0,L] by varying p, q and 
r but keeping Aq  fixed. W hen Aq is fixed, the whole 
function fi can be determined uniquely given q. In ­
dices of fuzziness are calculated for every /i, i.e., for 
every q. The valley points of y(q) are taken to be the 
detected thresholds (unam biguous valley points) of 
the histogram  of the input image. The algorithm  is 
thus seen to  be able to sharpen an input histogram  
by rem oving the local variations and ambiguities in 
the vicinity of its valleys.

In this algorithm  c =  2 Aq is the length of the in­
terval which is shifted over the entire dynamic 
range. As c decreases, the n(xmn) plane would have 
more intensified contrast around the cross-over 
point resulting in decrease of ambiguity in X .  As a 
result the possibility of detecting some undesirable 
thresholds (spurious minima) increases because of 
the smaller value of Aq.

On the o ther hand, increase of c results in a 
higher value of fuzziness and thus leads towards the 
possibility of losing some of the weak minima.

Though the earlier works [5,6] used this concept, 
the m athem atical form ulation of the problem  was 
not provided. F o r example, it was reported that if 
c is greater than  the distance between the modes, 
then the corresponding valley point may be lost [5], 
But the m athem atical justification of this finding 
was not given. Similar is the case with the selection 
of the m em bership function where only the function 
shown in equation  (4) was considered. The conse­
quences of using other types of m embership func­
tions are neither m athem atically nor experimentally 
studied.

In Section 3, a m athem atical form ulation of the

3. Mathematical formulation of histogram 
thresholding

We shall assume continuous functions for the for­
m ulation and proofs. Similar results hold in discrete 
cases also. The histogram will be represented b y /, 
the membership function by g  and the index of 
fuzziness by M 0H  where M 0 is a constant 
(M 0 =  2 / M N  of equation (2a)) and H  represents 
the other part of equation (2a). (The summation 
sign should be changed to an integral because of 
continuity.)

Theorem 1. Letf: [0,L] -> [0, oo) be such that
(i) f i s  continuous,

(ii) f ( a ) =  f(b), a < b and f  has local maximums at 
a and b,

(iii) y 0 = \(a  +  b) , fhas  a local minimum at y 0,
( iv ) /is  symmetric around y 0 in the interval [a,b], 

and
(v) / is convex in [a,b].

Let g: [0,c] - » [0,1] be such that
(i) g is continuous, g(0) =  0, g(c) =  1,

(ii) g is monotonically non-decreasing, and
(iii) £(x) =  1 - g ( c - x ) V x e  [0, c] (5) 

where c >  0 is the length o f  the window.
Let c < b — a. Let 5 =  ?(b — a — c). Let

c/2

HAy)  = g ( x ) f ( y  ~  c/2 +  x) dx

+ (1 -  g( x ) ) f ( y  -  c/2 +  x) dx.

c/2

(iObserve that M o H ^ y )  gives the index o f  fuzziness in 
the interval {y — c/2, y +  c/2).) Then

Hg( y ) ^ H g(y0) y y e { y 0 ~ S , y 0 + d).



Proof. Let 0 <  e < S. Let y = y 0 — e. We shall show 
tha t Hg(y) >  H g(y0).

Now

c/2

H g(y) =  g ( x ) f ( y 0 - e - c / 2  + x)  dx

+  J (1 -  g(x) ) f ( y0 - c / 2 - e  + x)  dx
c/2

=  / 1 + / 2 (say).

We shall simplify I 2 now with the transform ation
X  =  c — z

c/2

[1 - g ( c - z ) ]

x f ( j o  -  c/2 -  £ +  c -  z) dz

c/2

g(z)/(yo +  c/2 -  e -  z) dz

c/2

g( z ) f ( y0 -  c/2 + e + z ) dz. 

(T h u s /is  symmetric in [a, 6].) So

c/2

#*00 =  g(x) [/0>o -  e -  c/2 +  x)
0

+ /O o  — c/2 +  e +  x)] dx

c/2

=  2

c/2

^ 2

£(*) [i/O 'o -  £ -  c/2 +  x)

+  i / O ’o +  e -  c/2 +  x)] dx

g(x ) f { \ [ yo -  £ -  c/2 +  x

+  y0 +  e — c/2 +  x]} dx

cl 2

=  2 J g( x ) f ( y 0 -  c/2 +  x) dx. (6) 

0

c/2

.CFo) = -  c/2 +  x) dx

+ (1 -  g (x ) ) f ( y0 -  c/2 +  x) dx

c/2

= J 1 + J 2 (say).

By applying the same calculation of 12 to J 2 it can 
be shown that

c/2

J l  = g( x ) f ( y 0 -  c/2 +  x) dx

i.e.

H J y 0) = 2 g ( x ) f ( y 0 -  c/2 +  x) dx

o
^  Hg(y) (from (6)).

F or y  = y0 +  g when 0 <  e <  <5, a similar p ro o f 
holds. Hence the theorem. □

Remark 1. (a) A similar proof can be given if the  en ­
tropy is taken to  be the grey level am biguity m eas­
ure.

(b) S in the above theorem  will give an idea o f the 
length of the interval in which H g(y) ^  H g(y0). F o r 
c being close to b — a, S will be very small and  the 
valley will be obtained in a smaller interval. In 
practical cases the valley may become invisible also. 
The case of c =  b — a is tackled below in N ote  1.

Note 1. Let /  and g  satisfy the same assum ptions as 
in Theorem 1. Let e >  0 be a small quantity, c =  
b — a and y  =  _y0 — e. So

Hg(y) =  J g( x ) f ( y 0 -  £ -  c/2 +  x) dx
o

c/2

+  g ( x ) f ( y 0 -  £ -  c/2 +  x) dx

+ (1 -  g( x ) ) f ( y0 -  £ -  c/2 +  x) dx

c/2



+  ( l - g ( x ) ) / 0 > o - £ - c / 2  +  x)dx

c — e

— h  + h  + h  + h  (say).

H J y 0) = s ( x ) f ( y 0 - c!2 +  x)  dx

c/2

+ g ( x ) f ( y 0 -  c/2 +  x) dx

+ (1 -  g (x ) ) f ( y 0 -  c/2 +  x) dx

c/2

+ (1 -  g (x ) ) f ( y 0 -  c/2 +  x) dx

= (say).

Now, as in Theorem  1, / 3 can be proved to  be equal 
to

c/2

g ( x ) f ( y 0 + x  + s -  c/2) dx.

Similar to Theorem  1, I 2 +  / 3 can be proved to  be 
greater th an  or equal to

c/2

g( x ) f { y 0 -  c/2 +  x) dx =  J 2 + J 3.

Now J ,  +  J 4 can be proved to be equal to

g ( x ) f ( y 0 ~  c/2 +  x) dx.

J4 can be shown to be equal to

g ( x ) f ( y 0 -  c/2 +  e +  x) dx.

Therefore,

I  j -1— 14 J  j J  ̂

g(x) [f(y0 -  £ -  c/2 +  x)

+ f ( y o  -  c/2 +  x +  e) -  2f (y0 -  c/2 +  x)] dx.

Figure 2. H istogram  in which a  m ode can not be precisely denot- 
ed.

If e is sufficiently small, this difference may (not al­
ways) become negligible because g  is continuous 
and /  is continuous which in turn  gives Hg(y0) ^  
H g(y). So for c =  b — a, practically, it is not always 
guaranteed tha t Hg(y0) <  Hg{y). For o b  — a, a 
similar conclusion can be arrived at. So it can be 
conclusively stated that, for achieving a valley in 
H g(y) corresponding to a valley in / ,  the window 
length c should be less than  the distance between 
two peaks, i f / a n d  g  satisfy the conditions of Theo­
rem 1.

In practical problems, the modes of histograms 
may not be found out exactly. For example, in Fig­
ure 2, though it appears that there are two modes, 
the value of the second mode is not exactly known. 
In  Figure 3, another histogram is shown, where the 
two modes are known more or less accurately but 
the convexity and symmetry properties do not hold 
and also there are many other local minima. By 
using fuzzy membership functions for sharpening 
the histogram , we would like to remove the redun­
dant local minima of the histogram  of Figure 3, so 
that H g(y) in Theorem 1 would have one minimum 
in between the two modes. T hat is, the membership 
function should be taken in such a way tha t Hg(y)

Figure 3. H istogram  where convexity an d  sym m etry p roperties 
are n o t satisfied.



should remove ‘unnecessary’ local minima of the 
histogram. We shall show below that if the value of 
c is very small then Hg(y) would give many local 
minima (Example 1).

Example 1. Consider Figure 4 where a histogram  /  
is shown. Though the prominent modes are and 
a2, there are other local maxima namely a 3, a4, a5 
and a 7. Let us consider a t and a 5. y0 is the only 
local minimum between a x and a 5. / i s  convex in the 
interval a , and a5. Let a6 be such tha t f ( a 6) =  f ( a s) 
and a1 < a 6 < y 0 < as. Now suppose that /  is 
symmetric in the interval (a6, a 5) around y 0. Let c < 
a5 — a6. Then any g satisfying the conditions of 
Theorem 1 would have y 0 as a local minimum. But 
the detection of y0 as a threshold is desirable or not 
depends on the problem. For the same histogram 
shown in Figure 4 and for a two-class problem 
Hg(y) may produce other local minima if the value 
of c is not big enough. In practical problems, 
whether the conditions of convexity and symmetry 
are satisfied or not, it is better to take c to be 
>  as — a6 if the detection of y 0 is to be avoided.

From  Example 1, it is apparent that the value of 
c cannot be very small compared to the difference 
between the modes. In this section, though all the 
results are stated for the index of fuzziness, the same 
conclusions would hold for the entropy also.

In the next section the effect of various types of 
m embership functions on the valley points are ob­
served.

4. Various membership functions and greyness
ambiguity

Figure 4. H istogram  of Exam ples 1 and  2.

in Figure 5 for e >  0 and 5 > 0. (Though a specific 
form of g is presented below, any form w ith the 
same idea would suffice the purpose.)

for 0 ^  x ^  ^(c -  a 5 +  a6 -f 5) = A lf

^  1 | (1 -  2 e )(x  -  j c )

2 flg Qq 3 
for A x <  x ^  ^c,

=  l - g £,a(c - x )  f o r ^ c s g x s S c

where 0 <  e is a small quantity , 0 < 5 < a5 — a6, a5 
and a6 are as defined in Example 1, c is any positive 
num ber and A 2 =  c — A 1. The essential differences 
between g  of Example 1 and g Ei s of this example are 
listed in Table 1.

Note 2. In order that y 0 of Figure 4 should not be 
detected as a valley point of the greyness ambiguity 
function, not only the value of c >  a5 — a6, bu t also 
the membership function gEi s of Exam ple 2 is to be 
avoided. ge g has most of its variation concentrated

In the previous section the relation between c and 
the difference in local minima is established. In this 
section, different types of membership functions are 
examined for the threshold selection using greyness 
ambiguity. In Example 2, the same histogram  of 
Example 1 is considered to show that some types of 
membership functions may provide undesirable re­
sults.

Example 2. The histogram under consideration is 
the one shown in Figure 4. Consider g e d as shown
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Table 1

g  of Exam ple 1

1. The length of dom ain  o f g  is less than  a5 — a6.

2. O utside the interval o f length a 5 — a6, g  takes values ‘0 ’ or 
‘1’ so th a t greyness am biguity  will be zero for those values.

gc j , of Exam ple 2

The length o f dom ain  o f gs d is grea ter th an  a5 — a6.

O utside the m iddle interval o f length a 5 — a6 — S , either Shan­
n o n ’s function o r m in(gE J x ) ,  1 — g£,a(x)) takes very small values 
(because s can be m ade arb itrarily  sm all) so that after the m ulti­
plication w ith / ,  the  result w ould be insignificant. T hat is, gt 6 
serves the sam e purpose  as g  o f Exam ple 1. Hence valley y 0 will 
be detected.

in a small interval in the middle of [0 ,c] and has lit­
tle variation in the rest. So this function would not 
satisfy the bounds of M urthy and Pal [8], (The 
bounds of M urthy  and Pal are described in the Ap­
pendix.) In the practical problems where assum p­
tions of convexity and symmetry are not satisfied 
for / ,  it is im perative that the functions of the sort 
gtj  are to  be avoided.

We will now show that if most of the variation 
in g  is concentrated  towards one of the end points 
of the interval [0 ,c], it is, inadvisable to consider that 
function (N ote  3). The argum ent will be sim ilar to  
that of Exam ple 2.

Note 3. Let g  be a function (Figure 6) from [0, c] to 
[0, 1] such th a t »

(i) g(0) =  0, g(c) = 1, g  is m onotonically non ­
decreasing,

(ii) there exists a point ze[3c/4 ,c) such tha t 
g(z) =  j ,  and

(iii) there exists z 0, c/2 ^  z0 < z  such that 
g(z0) < e where e is a small positive value.

Figure 6. M em bership  function o f N ote 3.

T hat is, m ost of the variation in g  is concentrated 
towards the end point c. The m ultiplication of the 
heights of the histogram  with either Shannon’s 
function or the index of fuzziness would be insignifi­
cant in the interval [0, c/2] if e is taken suitably. This 
would essentially result in a m embership function g  
whose dom ain is of length c/2 but not c.

That means, once the value of c is chosen, the 
variation of g  should not be concentrated mostly on 
a small interval towards the end point of the inter­
val [0,c], Similarly, it can be argued that it cannot 
be concentrated towards the starting point of the in­
terval [0,c]. F rom  N ote 2, it is apparent that the 
variation in g  cannot be concentrated in a small in­
terval in the middle of [0 ,c],

Observe that, if the variation in g  is concentrated 
towards one of the end points of g, or in a small in­
terval in the middle of [0, c], then it can not satisfy 
the bounds of M urthy and Pal [8], The conclusion 
is that, g can be taken to  be a function satisfying the 
above bounds. In Figure 7, such bound functions 
are shown. Once g  satisfies the bounds, then the 
form of g  may be taken as

Figure 7. B ound functions.



g(x)  =  1 -  g(c -  x) Vx € [0, C],

because this would be able to detect the valley, in 
case it is present.

5. Method of moving averages

The method of moving averages is a standard 
technique in statistics [9] for smoothening the histo­
gram. The m ethod is described below, and its rela­
tion with histogram smoothing by minimising the 
greyness ambiguity is described.

Moving averages

The method of moving averages for window size
3 is described below. The data is the ou tpu t of a cer­
tain factory for every m onth in a year. See Table 2. 
Observe that for a continuous h istogram /, window 
size c, the moving average m ethod would give

c

Q / C y - c /2 +  x) d x^/c 

o

for every point y.
A generalization to the moving average m ethod 

is to  give unequal weights to the frequencies, i.e. for 
weight function h, the transformed frequency at the 
point y  is

Table 2

Month Output Result of moving average meth­
od for window size 3

January a, -
February ai (a, +  a 2 + a3y  3
March Oi (a 2 +  a 3 +  a J /3
April a4 (a3 +  a4 +  fl5)/3
May (o4 +  o5 +  a6)/3
June a6 (a 5 +  a 6 +  a 7)/ 3
July (a6 +  fl7 +  a 8)/3
August “8 (a7 + as +  a9)/3
September a9 (as + a9 +  a, 0)/3
October a io (a9 +  a 10 +  a u )/3
November “ n ( a 10 +  a u  +  a 12)/3
December 0\1 -

C

h(x) f ( y  — c/2 +  x) dx

o__________________ _
c

h(x) dx

o

Now, in order to find the local m inimum value of 
the transform ed frequencies it is sufficient to  deal 
with

c

h{x) f { y  — c/2 +  x) dx

o

c

since J  h(x) dx is a constant.

o
While selecting thresholds for histogram  segm en­

tation, we minimised

C

h(x ) f (y  — c/2 +  x) dx

o

where h(x) depends on the greyness am biguity  
measure. So the m ethods described in this paper are 
nothing but a generalization of the technique of 
moving averages and segmenting on the basis o f the 
transformed histogram . In o ther words, the m ethod  
may be said to  be a weighted moving average 
threshold selection m ethod, where the weights are 
the ambiguity values.

6. Conclusions

Minimising the greyness am biguity by different 
fuzzy measures has been proved to be a useful tool 
for formulating a m ethod of segm entation or shar­
pening of a grey tone image. Any kind of m onotoni- 
cally nondecreasing m embership function satisfying 
the bounds and equation (5) can be used for the 
above mentioned purposes. This, in turn , makes the 
approach flexible.

In the earlier reports [5,6], Zadeh’s S function 
was used as a membership function. N ote that this 
function satisfies the bounds and equation (5). 
Therefore, the theory described here can be viewed 
as a generalization of earlier works. N ote also that



some observations were made [5,6] on the effect of 
window size w ithout any m athem atical basis. The 
present fram ew ork provides a theoretical justifica­
tion to those  findings.

In ad d ition , the present investigation visualises 
the problem  in a generalised set up and provides 
flexible choices for window sizes and membership 
functions w ith a proper m athem atical basis. In this 
sense, th is can  be considered as a com pletion of the 
earlier research . Furtherm ore, the algorithm  is 
found to  be analogous to the moving average tech­
nique.
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Appendix

Bounds f o r  membership functions

The m em bersh ip  function g considered through­
out this p a p e r  has the following properties:

(i) g: [0 ,c] —>• [0,1 ] is continuous,
(i>) g(0) =  0 , g( l )  =  1 and g  is m onotonic. 
Recently M u rth y  and Pal [8] form ulated bounds 

for m em bership  functions of the above sort in order 
to discard th e  m em bership functional forms which 
are to be avo ided  while representing a fuzzy set in 
practice. Significance of these bounds in image seg­
mentation a n d  analysis problems was also found to 
be justified [8].

The expression for bound functions is based on 
properties o f  correlation [10] between two m em ber­
ship functions 5 i(x) and S2{x). The m ain properties 
on which co rre la tio n  was form ulated are 

Pt: If for h igher values of <51; S2 takes higher val­
ues and for low er values of (5l5 S2 also takes lower 
values then cs i2 >  0 (c represents correlation).

P2: If <5iT a n d  <52T then cS v g2 > 0.
P3: I f ^ t  an d  <52J then cSvd2 <  0.

(T denotes increases and j denotes decreases.)

It is to  be mentioned that P 2 and P 3 should not 
be considered in isolation of P t . H ad this been the 
case, one can cite several examples when and 
<52j  bu t cSl' i 2 <  0 and and 52[ bu t cSvi2 >  0 . 
Subsequently, the types of m em bership functions 
which should not be considered in fuzzy set theory 
are categorised with the help of correlation. Bound 
functions h r and h2 are accordingly derived [8], 
They are

M * )  =
=  x  — e, 

h2(x) =  x +  e,
=  1,

where e =  0.25.
The bounds for the m em bership function g  con­

sidered throughout this paper are h ^ x )  <  g(x)  <  
h2{x) for x e [ 0, 1].

For x belonging to any arbitrary interval, the 
bound functions will be changed proportionately. 
F or h ^ g ^  h2, chvhl ^  0, ckvg  >  0 and c*2,? 5* 0. 
The function g  lying in between and h2 does not 
have m ost of its variation concentrated (i) in a very 
small interval, (ii) towards one of the end points of 
the interval under consideration and (iii) towards 
both the end points of the interval under considera­
tion.
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