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Abstract: Some new geometrical properties, e.g., length, breadth and index of area coverage (IOAC) of a fuzzy set along with 
their computational aspects are introduced. An algorithm for providing both fuzzy and nonfuzzy segmentation based on these 
measures is also proposed. The proposed algorithm is found to be successful even for the input images containing multiple 
objects or an elongated object, where the existing fuzzy compactness based algorithm (which is valid for extracting a single 
compact object) fails. This is illustrated on various images.
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1. Introduction

When the regions in an image are ill-defined (i.e. 
fuzzy), it is natural and also appropriate to avoid 
committing ourselves to a specific segmentation/ 
thresholding or skeletonization or to a specific 
(hard) decision by allowing the regions to be fuzzy 
subsets of the image. Fuzzy geometric properties 
(which are the generalization of those for ordinary 
regions) as defined by Rosenfeld [1] seem to pro­
vide a helpful tool for such analysis [2, 3],

Let us consider the work of Pal and Rosenfeld 
[2] describing an algorithm for both fuzzy and 
nonfuzzy image segmentation using fuzzy ‘com­
pactness’ measure. For crisp sets, the measure is 
largest (=  l /4n )  for a disc. For a fuzzy disc, the 
measure is greater than or equal to \ /4n .  The 
algorithm in [2], therefore, assumes a single com­
pact object for its extraction (segmentation) from 
an input image so that minimization of compact­
ness o f its fuzzy ‘bright image plane’ results in its 
optimum (least compact) segmented version. 
When the input image contains a number of 
isolated objects or an elongated object, the above 
algorithm fails.

The present work introduces some new

geometrical measures, namely, length, breadth and 
index of area coverage (IOAC) of a fuzzy set. 
IOAC of an image gives a measure of the fraction 
o f the maximum area (that can be covered by 
length and breadth) actually covered by the image. 
It takes spatial fuzziness of an image into account 
and is, therefore, minimized for gray level 
thresholding.

Besides these, the way of computing the various 
geometrical measures in terms of the cooccurrence 
matrix or row/column histogram is provided here. 
This, in turn, makes their conceptual realization 
easier and computationally faster. It is to be men­
tioned here that these aspects did not get attention 
while developing the concepts by Rosenfeld [1] or 
even while formulating a thresholding algorithm 
by Pal and Rosenfeld [2],

The superiority of the proposed algorithm based 
on IOAC measure over that of the compactness 
measure [2] is demonstrated on various input im­
ages having a wide range of histograms.

2. Fuzzy geometrical properties

A fuzzy subset of a set S is a mapping n  from  S



into [0,1]. For any p e S ,  /u(p) is called the degree 
of membership of p  in /u. The support of n  is an or­
dinary set and is defined as

S(y) = {p \i i(p )> 0}.

p  is called a cross-over point of n  if nip) = 0.5. A 
crisp (ordinary, nonfuzzy) subset of S  can be 
regarded as a special case of a fuzzy subset in 
which the mapping ju is into {0,1}.

An image X  of size M x  N  and L  levels can be ex­
pressed [2, 3] as

X  = {x,y) = n(x,y)/(x,y):

x =  1,2, y =  1,2.......N ),

where Mx(x, y) = /u(x, y)/(x, y) denotes the grade of 
possessing some property by the (x,y)th pixel. In 
defining the geometrical properties, we replace 
sometimes n(x,y) simply by /u.

Some existing properties

Some geometrical properties of fx as defined by 
Rosenfeld are given below [1, 2, 3].

pixels as unity, then the perimeter of an image is 
defined by

P(M)= I  |M 0 -t*U)\ (2b)

where ju(i) and n(j)  are the membership values of 
two adjacent pixels.

C. Compactness. The compactness of a fuzzy set 
H having an area of a(p.) and a perimeter o f p(n)  is 
defined as

comp(^) =
aiM)

(3)
{pin)}2

Physically, compactness means the fraction of 
maximum area (that can be encircled by the 
perimeter) actually occupied by the object. In the 
nonfuzzy case, the value of compactness is max­
imum for a circle and this value is l /4 n . In case of 
a fuzzy disc, where the membership value is only 
dependent on its distance from the center, this 
compactness value is ^ \ / 4 n  [2], O f all possible 
fuzzy discs compactness is, therefore, minimum 
for its crisp version.

A. Area. The area of a fuzzy subset n  is defined 
as

a(n) = |  fj. (la)

where the integration is taken over a region outside 
which ji = 0.

For jj. being piecewise constant (in case of a 
digital image X  of dimension M x N )  the area is

a(n)= £ / « = £  Y<H{x,y) (lb)
* y

with x -  1,2, y=  1,2, . . . ,N .

B. Perimeter. If [i is piecewise constant, the 
perimeter of n  is defined as

P(V)=Y, \^i)-f^(J)\-\A(.i,j ,k)\.  (2a)
U,k

This is just the weighted sum of the lengths of the 
arcs A (iJ ,k )  along which the regions having n  
values n(i) and /u{j) meet, weighted by the absolute 
difference of these values. In case of an image, if 
we consider the pixels as the piecewise constant 
regions, and the common arc length for adjacent

D. Height and width. The height of a fuzzy set n 
is defined as

h(p) = |  max {[i(x,y)} dy  (4a)

where the integration is taken over a region outside 
which fi(x,y) = 0.

Similarly, the width of a fuzzy set is defined by

w(ji) = |  max {/u(x,y)} dx  (4b)

with the same condition over integration as above.
For digital pictures, x and y  can take only 

discrete values, and since n  = 0 outside the bound­
ed region, the maxes are over a finite set. In this 
case the expressions take the form

h(fi)= E  max {n(x,y)} (5a)
y X

and

w(ju)= £  max {n(x,y)}. (5b)
x y

So physically, in case of a digital picture, height is



the sum of the maximum membership values of 
each row. Similarly, by width we mean the sum of 
the maximum membership values of each column.

Example 1. Let // be of the form

0.2 0.4 0.3
0.2 0.7 0.6
0.6 0.5 0.6

The above mentioned properties are calculated: 

<?(//) = 0 .2+  0 .4+  0 .3+  0 .2+  0.7 

+ 0 .6+  0 .6+  0 .5+  0.6 = 4.1, 

p(n)=  |0 .2 -0 .4 | + |0.2 — 0.2! + |0.4 — 0.31 

+ |0.4 —0.7| + 10.3 — 0.61 + |0.2 — 0.6|

+ 10.2 — 0.71 + |0.7 — 0.6| + |0.7 — 0.51 

+ 10.6 — 0.6| + |0.6 — 0.51 + |0 .5 — 0.6|

= 2.3,

comp(^) = 4.1/(2.3 X 2.3) = 0.775, 

h(fj) = 0.4 + 0.1 + 0.6= 1.7, 

w(fx) = 0.6 + 0.7 + 0.6 = 1.9.

New properties

Some new geometrical properties are introduced 
here along with their illustrations.

E. Length. The length of a fuzzy set n  is defined 
as

l(p) = max j ( n{x,y)Ay\^ (6)

where the integration is taken over a region outside 
which fi(x,y) = 0.

In case of a digital picture where x  and y  can 
take only discrete values, the expression takes the 
form

l(ju) = max £>(*,.>')j - (7)

Physically speaking, the length of an image fuzzy 
subset gives its longest expansion in the In­
direction. If n  is crisp, ju(x,y) = 0 or 1 say, for 
background and object pixels respectively; the

length then denotes the maximum number o f ob­
ject pixels in the /-direction.

Comparing equation (7) with (5a) it is noted that 
the length is different from the height in the sense 
that the former takes the summation o f the entries 
in a column first and then maximizes over different 
rows whereas the latter maximizes the entries in a 
column and then sums over different rows. It is 
also to be noted that

l(ju)/h(fS)^ 1.

F. Breadth. The breadth of a fuzzy set /u is 
defined as

b(M)- ■ max
y

H(x,y) dx (8)

where the integration is taken over a region outside 
which n(x,y) = 0.

In case of a digital picture, where x  and y  can 
take only discrete values the expression takes the 
form

b(ju) = max £ > ( x ,m . (9)

The breadth of an image fuzzy subset gives its 
longest expansion in the ^-direction. If ju is crisp, 
/u(x,y) = 0 or 1; the breadth denotes the maximum 
number of object pixels in the X-direction.

From equations (9) and (5b) it is noted that the 
difference between breadth and width is the same 
as that between length and height. Here also,

G. Index o f  area coverage (IOAC). The index of 
area coverage of a fuzzy set may be defined as

IOAC(//) = area(yu)
m - w ( 10)

In the nonfuzzy case, IOAC has a maximum value 
of 1 for rectangles placed along the axes of 
measurement. For a circle this value is 
nP'/Qr- 2r) = n/4.  Physically, by IOAC of a fuzzy 
image we mean the fraction (which may be im­
proper also) of the maximum area (that can be 
covered by the length and breadth of the image) ac­
tually covered by the image. Note the difference 
between the IOAC and compactness measures.



For the fuzzy subset n  in Example 1, the new 
properties are

/(//) = 0.4 + 0.7 + 0.5 =1.6, 

b(ji) = 0.6 + 0.5 + 0.6 =1.7,

IOACCu) = 4.1/(1.6 x 1.7) = 1.51.

3. Relation between compactness and IOAC

Let us, for example, consider an upright M x N  
rectangle. Let n = a  inside the rectangle and fi = 0 
outside it. Then

a(/u) = M Na, p(ju) = 2 (M  + N)a,

l(/j) = Ma, b(ju) = N a

where a, p, I, b represent the area, perimeter, 
length, and breadth of an image respectively. 
Hence

compOi) 

IOAC(^) =

MNa M N  1 
(2(M + N)a)2 ~ 4(M+7V)2 X a ’

M N a  1
M a N a  a

So for rectangles,

4(M + N )2
IOAC = ------------- x compactness.

M N  F

When M = N  (for a square),

IOAC = 16 X compactness.

If we consider a fuzzy disc (with the similar con­
dition on a)

nP-a 1 1
compCu) = —-----= —  x - ,

(2nra) 4n a

IQ A C M — ^
(2m)(2m) 4 a

So for a circle

IOAC = 7r2 x compactness.

4. Histogram thresholding and image segment­
ation by IOAC optimization

In this section we are going to describe an 
algorithm for gray level thresholding and ob­
ject/background separation considering the IOAC 
measure as the objective criterion.

A . Selection o f  membership function

From the discussions in Section 3 we notice that 
for a M x N  upright rectangle represented by pi

comp (/li) = 

IOA C(/u) =

M N a const.
(2(M +N)a)2 

M N a  1
M a N a  a

Now, since a  can take any value in [0,1], we can 
infer that concerned geometrical properties are 
dependent on the membership values. It is further 
to be noted that compactness and IOAC of a fuzzy 
region decrease as its n  value increases and they are 
smallest for a crisp one. Hence the choice o f the 
membership function is an important criterion. In 
the case of a digital image we would like to have 
higher membership values for the pixels whose 
possibility of belonging to the object is high.

If the object pixels have higher gray levels we 
can select the standard S-function proposed by 
Zadeh as used in [2] to extract a fuzzy ‘bright im­
age plane’. The definition of the function is as 
follows:

fx(x) = S(x;a, b, c)

= 0 if x < a ,

/  x - a \ 2
= 2 ( ------ ) if a ^ x ^ b ,  (11)

c - a

1 - 2
x - c \  2
c - a

=  1

if b ^ x ^ c ,

if x > c

with cross-over point b = (a + c)/2 and window size 
w = c - a .

On the other hand, when the object pixels have 
lower gray levels compared to the background pix­
els, we would select a function complementary to



th e  5-function (i.e. we would choose a (1 -5 ) -  
function) which we will name ‘Z’-function to 
represent a ‘dark image plane’.

It is to be mentioned here that the criteria re­
garding the selection of membership functions 
a long with the window size in image processing 
problem s have recently been reported by Murthy 
an d  Pal [4]. The criteria involve symmetry in am­
biguity around the cross-over point and bound 
functions based on the properties of correlation 
[5]. Zadeh’s 5-function (equation (11)) satisfies the 
aforesaid criteria.

B. Formulation o f  algorithm

From the definitions of area, length, breadth 
and  index of area coverage (IOAC) (as given in 
equations (1), (7), (9) and (10) respectively), it has 
been noticed that for crisp sets the value of index 
o f  area coverage (IOAC) is maximum for a rec­
tangle placed along the axes of measurement. 
A gain, of all possible fuzzy rectangles IOAC is 
minimum for its crisp version. For this reason, we 
will use minimization of IOAC as a criterion for 
image segmentation.

C. Criteria fo r  threshold selection

Suppose we use an 5-function for obtaining the 
‘bright image’ ju(X) of an image X .  Then for a par­
ticular cross-over point selected at say, b = s, the 
pixels having gray levels >s  will have membership 
values >0.5  and those having gray levels <5 will 
have membership values <0.5 . This implies alloca­
tion o f the gray levels into two regions. The term 
lO AC (u)  then reflects the amount of ambiguity in 
the geometry (i.e. in spatial domain) of X.  
Therefore, modification of the cross-over point 
will result in different /u(X) planes (and hence dif­
ferent segmented versions), with varying amount 
o f IOAC denoting fuzziness in the spatial domain. 
The fi(X) plane having minimum IOAC value can 
be regarded as an optimum fuzzy segmented ver­
sion of X .  This is optimum in the sense that for any 
other selection of s, the value of IOAC will be 
greater.

Com putational steps of the proposed algorithm 
are similar to those based on the compactness

measure [2]; the steps are summarized here for the 
convenience of the readers.

Algorithm

Given an L  level image X (M x N )  with minimum 
and maximum gray level values /min and /max 
respectively.

Step 1. Construct the membership plane /u (us­
ing equation (11)) as

pt(m, n )= /u(f) = 5(/; a, b, c) (bright image
plane)

or
ju(m, n) = fi(l) = 1 -  5(/; a, b, c) (dark image

plane)

with cross-over point b and particular window size 
w = c - a .

Step 2. Compute the area, length, breadth and 
IOAC of X  using equations (1), (7), (9) and (10) 
respectively.

Step 3. Vary b between lmin and /max and select 
those ju(m, n) planes for which IOAC(X) has local 
minima. Among the local minima let the global 
one have a cross-over point 5.

The n(m,n) plane, corresponding to the cross­
over point s, can then be viewed as a fuzzy 
segmented version of the image X .  For the purpose 
of nonfuzzy segmentation, one can take s as the 
threshold or boundary for classifying/segmenting 
an image into object and background. For images 
having multiple regions, one would have a set of 
such optimum /u(X) planes.

D. Implementation and results

The algorithm has been implemented on the im­
ages of Biplane and Lincoln (Figures la , 2a) hav­
ing black object and white background. Here 
Anin= 1 and /max = 32. It has also been tested on an 
image of handwritten characters ‘Shu’ (Figure 3a) 
having white object and black background. The 
corresponding histograms are shown in Figures lb , 
2b and 3b. For a black object (white background) 
a (1 -5 ) - ,  i.e., Z-function and for a white object 
(black background) a standard 5-function is used 
for extracting the membership planes.
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Figure 1. Biplane image: (a) input, (b) histogram.
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Figure 2. Lincoln image: (a) input, (b) histogram.



The different minima obtained by the proposed 
algorithm for different window sizes are shown in 
Tables 1 and 2. The thresholds obtained by com­
pactness minimization [2] are also included here 
for comparison. As a typical illustration, the crisp 
segmented versions of the images corresponding to 
the thresholds obtained by both the measures 
(IOAC and compactness) for a fixed window size

(12) are given in Figure 4 (gray values below 
threshold are put zero except Figure 4 f w hich is 
two-tone).

The results show that the global thresholds (for 
any window size) obtained by the com pactness 
measure, as expected, are very much worse fo r  the 
‘Shu’ image than those of the IOAC measure in  ex­
tracting the object. It is also to be noted th a t the
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Table 1
Thresholds for the images of Lincoln and Biplane

Lincoln Biplane

w Comp IOAC Comp IOAC

6 10* 11* 23 5* 14 27 11 19 24*

*o00 11* 23 5* 26 11 19 24*
10 10* 11* 23 5* 26 12 24*
12 10* 11* 23 5* 24 13 24*
14 9* 11* 23 6* 23 13 24*
16 9* 11* 6* 21 14 24*

The thresholds with superscript » 

Table 2
Thresholds for Shu image

denote the global minima.

w Comp IOAC

8 8* 24 8 12*
10 8* 24 9 12*
12 8* 23 9 13*
14 9* 23 13*
16 10* 22 14*

The thresholds with superscript * denote the global minima.

appropriate thresholds (12 to 16) did not come out 
even as local minima by the compactness measure. 
This is because of the fact that the former measure 
attempts to make circular approximation of the 
object for its extraction. As a result, some of the 
background portions get treated as object; thus 
failing to remove background noise. For the 
Biplane image, neither compactness nor IOAC has 
been able to provide a global threshold appropriate 
for its extraction. However, it is interesting to note 
that the IOAC measure has been able to detect the 
appropriate thresholds (11 to 14) of the Biplane 
image as local minima for any window size 
whereas the compactness measure failed to do so. 
For the image of Lincoln the thresholds are more 
or less the same for both measures.

Furthermore, for a wide range of window sizes, 
the variation in global thresholds is seen to be in­
significant. This corroborates the theoretical find­
ings of Murthy and Pal [4] and establishes further 
the flexibility of the fuzzy set theoretic approach.

5. Computational aspects

From the proposed algorithm in Section 4 and

the algorithm of Pal and Rosenfeld [2] it appears 
that one needs to scan an L  level image L  times 
(corresponding to L  cross-over points of the 
membership function) for computing the 
parameters for detecting its threshold. The time of 
computation can be reduced significantly by scan­
ning it only once for computing its cooccurrence 
matrix, row histogram and column histogram, and 
by computing I = 1 ,2 ,..., L  every time with the 
membership function of a particular cross-over 
point.

Let h(i), i=  1,2...... L,  be the number of occur­
rences of the level i, let C[/,y], /=  1,2,. .. ,L , 
j  = 1 , 2 , be the cooccurrence matrix and let 
//(/), i= 1 , 2 , be the membership vector for a 
fixed cross-over point of an L  level image X .  Then 
determine the area and perimeter as

a(X)=  £  h(i)n(i), (12)
;= i

P ( X ) =  £  £  C[i,j]\/u(i) - / /( /)  |. (13)
i= l 7=1

Let the row-histogram R[m,f\, m  = ,M ,  
1= 1, . . . ,L ,  represent the number of occurrences of 
the gray level / in the mih  row and let the column- 
histogram C[n,l\, n = \ , . . . ,N ,  1 = 1 , repre­
sent the number of occurrences of the gray level / 
in the nth column of the image.

Then calculate length and breadth as 
L

l(X) = max £  C[n,[\ju(l), (14)
n 1=1 

L
b(X) = max £  R[m,l\fi(l). (15)

m /= l

It is to be mentioned here that the computational 
aspects of the perimeter did not get attention 
earlier in [1, 2],

6. Discussion and conclusions

An attempt has been made here to introduce 
some new measures, e.g., length, breadth and in­
dex o f area coverage (IOAC) on fuzzy geometrical 
properties. The IOAC measure removes the 
drawbacks of the existing ‘compactness’ measure 
in object/background classification problems.



Figure 4. The various segmented versions of the images for the window size 12. Thresholded at (a) 10, (b) 11, (c) 5, (d) 13, (e) 24,
(0 8, (g) 13.



When the input image contains multiple objects or 
an elongated object, the segmentation algorithm 
[2] based on the compactness measure is seen to 
fail to extract the appropriate boundary even as 
one of its local minima. On the other hand, the 
proposed algorithm based on the IOAC measure 
has been found to be successful in this regard.

Computational formulae of various geometrical 
measures in order to make the algorithm fast have 
also been provided. One may also use the new 
measures for finding the skeleton of a fuzzy 
segmented image as done with the compactness 
measure in [3],
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