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Blur is an well-known model for image and singal degradation. Debluning, an inverse 
of blur is an ill-posed problem and its approximation solution based on regularization 
exists in a restricted domain of Polynomials or functions. We have observed that
(1) Blurring operator is closed in our domain of definition, and
(2) area of deblurred output is approximately 2eVit for the deblurring kemerls in 
terms of Weber parabolic cylinder functions and the gaussian N(0, V2) blur.

1. In t r o d u c t io n

In image processing, blurring is a filter through which the original image is 
passed and produced a sampled output at an uniform interval but the deblurring 
(inverse of blurring) the sample data implies the reconstruction of images closer to 
be original image. Stark4 reviewed the image deblurring techniques but in a recent 
work by Hummel et at.2 it was observed that

(1) the process of deblurring is unstable.
(2) cannot, be represented as a convolution filter in the spatial domain, and
(3) a convolution inverse does exist and provides the restriction on the space of 

allowable functions to polynomials of fixed finite degree.
Recently Martens3 have observed that the work of Hummel et al?  involved a 

number of following important restrictions : (1) only the case of gaussian blur was 
considered; (2) the blurring Kernel was assumed to be the product of gaussian and 
a polynomial of fixed degree; and (3) the deblurring problem was only analyzed for 
analong signals. In this context both Hummel et al.2 and Martens3 had adopted that 
the image can be locally represented by a polynomial.

As we know, vision begins with the transformation of a flux of photon particles 
into a set of intensity values at an array of sensors5. Again the solution of differential



equation for harmonic oscillations of particles in quantum mechanics are of the form 
of parabolic cylinder functions8.

In this note we are assuming that the image can be locally represented by a 
Weber parabolic cylinder function1’5. In Section 2, we show how that Weber parabolic 
cylinder function is related to Hermite polynomial and other related relations. Also 
we shall show that the blurring operation is closed in the domain of definitions.

2. W eb er  Pa r a b o u c  C y linder  F unction

The well-known definition of Hermite polynomial and Weber parabolic cylinder 
function are given below :

Definition 1 —  The Hermite polynomial may be denoted by H„ (x) of n degrees 
of polynomial of x, expressed as follows :

H , W - * .  I  ( - 1  r
m-0 V

or, by the Rodrigues formula 

Hn(x) = (-  

where H0 (x) = 1.

Definition 2 —  The Weber parabolic cylinder function may be denoted by 
D„ (x) of n degrees of polynomial of x, expressed as follows :

H ) »
m-0 ’

or,

Dn (x) -  e*l/4 ( - 1 T  (V2)« ~  (e~^/2 )

where D0 (x) = e~x2/1
2.1 Relationship between Hermite Polynomial and Weber Parabolic Cylinder 

Function
The relationship between Hermite polynomial and Weber parabolic cylinder 

function may be expressed as follows.

D„ (xV2c) = er°^/2Hn (xVc).

Where

c = a constant, and 

n = degree of the polynomial



2.2 Asymptotic Relationship
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If n -* oo then the expression by Dn (x) as Y  —- D„ (jc) converges [1] to
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exponential function of x  and t  as
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that is
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2.3 Observations

Let II be an operator of blurring then by definition of convolution we get

00

n D „  (y) = J* K { y - x )  Dn (x) dx
— oo

where
Dn(x) = Weber parabolic cylinder function 

K(x) = Kernel.

Assume
2
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Let us choose o  = V2 and m - 0  then

exp ■{ x2/4  }■, -  oo s  x s  oo.

Lemma 1 —  II is closed on the domain of Dn (x).

00

PROOF : Since II D„(y) = J* K ( y - x )  Dn{x) dx
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[Integration by parts]

= (y/V2) n£>n_! (y)

= (y /vT V -1 n D j (y)

= (y /V I y -1 ^  (y/V2) e-y2/8

[Since IIDt (y) = (y/V2) e_y2/8 ]

= ^  (y/V2y e_>2/8

Property 1 —  II [ D, (jc) + £>; (jc) ] = II [ £>,- (at) ] + II [ Dj (jc) ].

Proof : By definition we can write

00

n [Z ) ( (* ) + £ , ( * ) ] =  /  [ A W + ^ j W ]  dy
—  oo

00 00 
= J tf(x -)0  A ( y )  <fy + f  K ( x - y ) D j ( y )  dy

—  oo -  oo

= n  [A (jc)] + n  [Dj (jc)].

Lemma 2 —  An image may be expressed by the combinations of D„ (y) as
N

_  p
Y  — Dj (y) where N -+  »  and its blurring also converges to a fixed function. In 
<-o 1 '
that case blurring operation is closed in the domain of definition.

Proof : By Lemma 1 we get

n  Dn (y) = (y/V2)" <f^/8)

Let y = l /^ 2  and e_y2/8 then

II |  ~  D, (y) j = H)a,y, where a, = constant.

Again by property 1 we can write for finite N
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Assume a, -  1 / i ! and y “ 1/* •  1/V2. 

Therefore

n
i - 0 i - 0

As N - *  & then

n [ e - y 2/4 + >*-'2 /2 ]-a l>  e-yl/8*y.

By Lemma 2 we have seen that

n 2  71 A W
i - 0

V2
e~r/8*y.

So, we shall construct II-1 which is inverse transform of II. 
That is

£  7 > 0 0 - n - '
i-0

or’ 2  77 AOO- 11-1
i - 0
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If /  be a function that belongs to the domain of Weber parabolic cylinder 
function, and g  be another function can be generated by blurring transformation with 
f. That is

g - n f

then
f - B N® g

where, B = deblurring kernel
From the above assumption we get as N  —* °°

N

/ -  J  j \  D i (y )  — > e-y2/4 +y‘- ‘Z/2
i - 0

and

8 -  ^ /8 I  f j  A M  -
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Now we shall choose a kernel so that the inverse transformation II-1 operation



on g  will give / .  That is the kernel B(x) will satisfy the following relationship

< r > 2 / 4 + > * - ' 2 / 2  a B ( x )  <g>

When t = V2, then the integral equation satisfy the following

00
e _ (y2 _ 4 V 2 ;y  + 4)/4 „  J  g - ^ / 8  + x  ^

— 00

Integrating both side with respect to y  we get

00 00 00
J  J  B(y -x )  -J= er^ /%+x d xdya  J  g-(y2- ‘*V27 + 4)/4 ^  m 2eVir
—  00 — 00

This integral equation gives the deblurring kernel B(x). So the area of blurring 
output with gaussian jV (0, V2) kernel is 2e Vn where the approximation of local 
image is representd by Weber parabolic cylinder function.

Again if B(x) is the deblurring kernel then

B(x)®

that is

(x/V2Y (y ) - D „ ( y )

f  B(y -x )  |  (x/^2)n \ J = e dx = D„(y)

or f  B(x) ( (y -  x)/V2 f  e ^ dx-D„(y) .
— 00

The above integral equation is equivalent to standard Fredholm integral equation 
of the first kind. This kind of integral equation has been investigated by several 
authors6’7 as ill-posed problem and solved by regularization technique.

3. Conclusions

In this note we find that deblurring problem can be solved with gaussian blurring 
kernel and the image is locally approximated by Weber parabolic cylinder function 
as Hermite polynomial approximation. We are trying to solve the integral equation 
(1) and to find the optimal deblurring kernel.
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