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Abstract—We consider the problem of discriminant analysis of two multivariate normal populations
having 2 common dispersion matrix, where the initial samples are classified stochastically. We assume a
beta model for this classification variable and assume it to be independent of the feature vector X, given
the group. We study the Efron efficiency of this procedure compared to the situation where the initial
classification is done deterministically and correctly. We present tables and charts of this efficiency and
conclude that stochastic supervision contains a great deal of information on the discriminant function.

Discriminant analysis

1. INTRODUCTION

Discriminant analysis is traditionally performed
assuming that the classification of initial samples is
done deterministically and correctly. Recently, some
applications in remote sensing and in medical diag-
nosis have led to interest in considering discriminant
analysis where the initial classification is prone to
error.? Aitchison and Begg'® identify the need for
statistical diagnostic techniques based on data sets
containing cases which have not been allocated to a
single diagnostic type with certainty but for which
only an assessment of the probabilities of the types is
available. They give an example from medical diag-
nosis of Conn’s syndrome. They discuss some methods
of discriminant analysis based on the logistic trans-
form.

In this article, we consider initial samples of this
type, for the case of a feature vector X having
p-dimensional normal distributions A4 ,(iy,Z) and
A 1y, Z) in two groups, occurring in proportions 7
and =, respectively; we denote by A, the Mahalanobis
distance between the two groups. We denote by
Z(0 < Z < 1), the variable indicating the supervisor’s
assessment of the chance of an unit coming from
Group 1 {and (1 -~ Z) from Group 0). We denote by
y the actual group.

In a series of articles in this journal.®~% we have
investigated the problem of imperfect initial samples.

In Katre and Krishnan,' we considered the problem
where the initial samples are classified determinist-

ically and are subject to a constant and unknown
probability of misclassification; this misclassification
was assumed to occur independently of the feature
vector X; we derived here the maximum likelihood
estimators of parameters and gave various procedures
for computing them. In Krishnan,® we studied the
efficiency of this error-prone supervision scheme com-
pared to a perfectly supervised scheme; this efficiency
a la Efron® called the Asymptotic Relative Efficiency
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Stochastically classified initial samples

Asymptotic relative efficiency

(Eff) is a measure of the amount of information
contained in the error-prone initial samples relative
to perfectly supervised initial samples; this efficiency
can also be interpreted in terms of the relative sample
sizes required in the two schemes to achieve the same
expected error rates of the classification scheme using
the estimates of the discriminant function derived
from these parameter estimates. We'*! presented tables
of this Eff for various values of the parameters and
interpreted them; our calculations gave an idea of
the worth of error-prone initial samples for various
parameter values. In Krishnan and Nandy'® we

. turned to stochastically supervised initial samples and

used the model described here; we derived the EM
algorithm of Dempster, Laird and Rubin® for
maximum likelihood estimation of parameters. In the
present article, we work out the Eff of the stochastic
supervision scheme compared to a deterministically
and correctly supervised scheme to answer questions
on the relative information contained in stochastically
supervised initial samples and the relative sample size
required under stochastic supervision.

Stochastic supervision model

We consider 2 model for stochastic supervision in
which Z is distributed as the beta distribution with
parameters m and n (denoted 8(m, n)) and independent
of X when y = 0 and as #(n,m) and independent of
X when y = 1. Various choices of m, n give a whole
range of cases from the completely unsupervised
case (when m = n) to the (perfectly) supervised case
(Im — n| - o) as seen from the cumulative probability
curves of Fig. 1. For m = n, the distribution is the
same for y = 0 and y = 1 and hence it is the unsuper-
vised case; it does not matter what the common value
of m, n is. We show that our efficiency formula when
m = nis the same as that obtained in the unsupervised
case. For m # n, the supervisor assessment is probabil-
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Fig. 1. Cumulative distribution curves of beta distribution for various values of m and n.

istically more on the correct side; the larger |m — n|
is, the more correct it is, approaching perfect super-
vision as {m — n| = co. From the nature of the curves
it appears that the wider apart the two curves are the
better is the supervision. The correctness of the
supervision depends not merely on |m — n|; for the
same value of {m — n|, lower values of m, n seem
to indicate better supervision. Thus some kind of
normalised values of m — n| may be a suitable indi-
cator of the level of supervision. We discuss this
further in Section 4. Thus the beta model may be a
reasonable way to describe stochastic supervision.
The assumption of #(m,n) and %(n, m) models for Z
makes the stochastic supervision have a symmetric
structure with respect to the groups 0 and 1; it
simplifies the mathematics considerably. Although
the assumptions of symmetry or that of Z and X
being independent given y, may not be completely
realistic, it is a useful first model to begin investigation
of this phenomenon. A reasonable formulation in
which X and Z are dependent is to make the prob-
ability of misclassification larger when X is close to
the means of both the groups. From the evidence
available from the studies of Chhikara and McKeon"
and Lachenbruch,”” the efficiency of such a scheme
is higher than when X and Z are independent.
Thus it is seen that such independent (random)
misallocation is the least favourable situation for
efficiency and hence is worth studying. Recently
Titterington® has proposed an alternative to our

supervision model using the logistic-normal distri-
bution and worked out the EM algorithm for estim-
ation of parameters under his model. We propose to
study efficiency under this model.

The Eff is the ratio of the Asymptotic Error Rates
(AER) of the correctly supervised and stochastic
supervised schemes. The AER of a scheme is a function
of the elements of the variance-covariance matrix of
the estimators of the linear discriminant coefficients.
This AER of a perfectly supervised scheme depends
on, and A and the AER of a stochastically supervised
scheme and its Eff depends on n,,A and the par-
ameters of the stochastic supervision model. Thus in
our model, Eff depends on x,, A, m and n. Efron®
has derived the AER of a perfectly supervised scheme.
Thus it only remains for us to derive the AER of
the stochastically supervised scheme. Thus following
Efron® we make a linear transformation on X to
reparametrise the model in terms of ny, A, m, n
and other parameters of the model. The variance-
covariance matrix of the discriminant coefficients is
what is required for computing the AER. This AER
is a function of the elements of the variance-covariance
matrix of estimators of the linear discriminant
coefficients, This variance-covariance matrix can be
obtained from the likelihood function as follows:
obtain the information matrix as the expected value
of the negative of the matrix of second mixed deriva-
tives of the loglikelihood with respect to the par-
ameters: invert this matrix to get the required vari-
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ance-covariance matrix. Denoting loglikelihood by L,
we have

L(x,2,y) = L(x,2) + L(y/x, 2). (1.1)

These loglikelihoods (Ls) respectively correspond
to the perfectly supervised scheme, the stochastically
supervised scheme and the logistic regression based
on X and Z. The information matrices being minus
of expected values of second derivatives of these
Ls satisfy a similar additive condition. Thus the
information matrix of the stochastic supervision sch-
eme can be worked out from those of the perfectly
supervised and logistic regression schemes. We pro-
ceed to derive this here. Note that we are using
logistic regression estimators only as a technique
for computing the required information matrix, and
logistic regression as such is not our concern in this
article. An application of this technique was made by
O’Neill'*? to study the efficiency of an unsupervised
initial sample vis-a-vis a perfectly supervised initial
sample.

2. ASYMPTOTIC RELATIVE EFFICIENCY
For the case of p-dimensional normal populations
Alio,Z) and Ay, )

in two groups, occurring in proportions n, and =,
respectively, the Bayes rule uses

Bo + B'x 2.1
where
1
Bo = log(m/mo) — 5 (" 1 — HoZ ™ ok
B =X iy — to) 2.2)

as the discriminant function. The Bayes rule is the
one with the least error rate. The Asymptotic Error
Rate (AER) of a procedure based on estimates {(a,, a')y
of vector (B, f') from a sample of size N is defined to
be the limiting value (as N — o) of the additional
error of (ag,a’) over the Bayes error. This AER will,
naturally, depend on the nature of the learning
procedure and the values of the parameters. For
perfectly supervised, unsupervised and stochastically
supervised procedures it will be different and for the
same parameter values, the unsupervised procedure
will have a larger AER than the stochastically super-
vised procedure, and the stochastically supervised
procedure will have a larger AER than the supervised
procedure. When several procedures less efficient than
the supervised one are considered, the supervised
procedure may be used as the basis of the comparison.
This leads to Efron’s Asymptotic Relative Efficiency
(EfT).

Since error rates of discriminant rules based on
Bo. B or their estimates are invariant under linear
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transformations on the feature vector X, we assume
a canonical form for (uo,X) and (u(,X) to be

(—%el,lp) and (%e,,l,,) where A is the Mahal-

anobis distance between the two groups, e; is the
vector (1,0, ..., 0) and I, is the p x p identity matrix;
this canonical form can be obtained by a linear
transformation on X. Let (ag, a)y denote the estimate
of (Bo,P) based on a sample of N by a certain
procedure and let ER(ao, a)y denote the error rate on
using (aq,a)y for (B¢, P) in (2.1). Let A = log(n,/n,).
Then fo = 4, B’ = Ae,.

Efron® shows that if

N0, @)y ~ (Bor Bl > N e 1O M) (23)

then

NLER(@, @)y — ER(Bo, B)) %«b(% - %)

4 AY
[rg - (%)ror, + (Z) 4o+ r,%] (2.49)

L
where — means convergence in law (distribution),

r=(ro,r1,ra,-..,7p) ~ H,44(0,5), ¢ is standard nor-
mal density function, and 0 the (p + 1)-null vector.
The AER of a procedure with estimates (aq,a)y is
then defined to be the expectation of the limit above,
which is equal to

(A4
2A¢(2 A)
24 AY
[Soo —_ (—A’>501 + (K) $11 + S22 + -+ spp:l (2.5)

where ((s;)) = S. This is denoted for convenience by
AER(a,, a). Then the Asymptotic Relative Efficiency
Eff of a procedure with (co,c)y with respect to a
procedure yielding estimate (bg, b)y is

Eff, = AER(bo, b)/AER(co,C). (2.6)

In order to compute this efficiency for stochastically
classified initial samples relative to a perfectly super-
vised sample we need the matrices S for these cases
for the maximum likelihood estimates. This is done
by computing the information matrix of f,,f and
inverting it; Efron has already computed this for the
supervised case as

0 ] 27

H
= "°"‘[o (1 + Amgm) ",y
where

1+ A%4

-1 —(mo — mA2
H'=
[— (mo — m)A/2 ]

1 + 2nom,A?
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3. EFFICIENCY OF STOCHASTIC SUPERVISION SCHEME

We have observations (x;,2;), j=1,2, ..., N. Let
fi{x) represent the density of & (u;,Z),i=0, 1. Then

Jolx,2) = o) g (m’n) ML=zt
fi%3) = g M = G

where Beta stands for the complete beta integral, give

the density of observation (x,z) in the two groups.

For what follows, we need full, various marginal

and conditional likelihoods. We use L to denote

loglikelihood, whose arguments and the conditioning

symbol ‘/* indicate which loglikelihood is being con-
. sidered.

L(x,2,y) = log{[m, fi(x, )P [mo fo(x,2)) 77}  (3.2)
L(x, y) = log{[r, f1()P"[mofo(x)]' 7%} (3.3)
L(x, 2) = log{[m filx,2) + mofolx,2)} (34)
L(x) = log{m, fi(x) + mo fo(x)} (3.5
L(y/x, 2) = log{[m:(x, )]’ [molx, 2] 7, (3.6)
where
(%, 2) = 1 — my(x, 2)
- nOfO(x7 Z)
o fo(x,2) + 7y f1(x, 2)
1
= [T AT (37)
where w = log[z/(1 — z)] and
Liy/x) = log{[m()PImox)) 7}, (39)
where
To(x) = 1 — m(x)
- 7o fofX)
T foX) + 7y f1(x)
1
= {5 (3.9)

In what follows, we need to deal with information
matrices arising out of three types of situations—
when the actual group y is known (called conditional),
when y is not known (called unconditional) and of
the logistic regression type; the observations are
correspondingly of the type (x, y), (x) and (y/x). We
denote the information matrices based on a single
observation for the parameters fy,  of these three
types by I with subscripts C, UC and LR respectively.
The relation between Iy, I and I,z is obtained by
using

L(x,y) = L{x) + L(y/x). (3.10)

In what follows, we shall also need to consider the
case where the stochastic supervision observation z
is also available; then, we have again three types of
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observation (x, z, y), (x, z} and (y/x, z). The information
matrices in this case are denoted with an asterisk;
thus we have I, I% and Ifz. Note that:

(1) we are interested in the parameters fo, f and
the information matrices for them;

(2) the estimates of B,, B remain the same whether
L{x, y) or L{x, z, y) is maximised, since evidently,
given y, information of z is redundant as per
our model;

(3) I%c corresponds to the case of stochastically
classified initial samples.

Let us now reparametrise yg, iy, X, m, n, T, as

Q = mypy + Topo

R =2 + momy(pty — polts — to)

Bo, pu=n+mandv=n—m

This reparametrisation of m, n into u, v is chosen
because the logistic regression involves only ».

Let A, B, C denote the information matrices of (Q,
R Bo, B, u, v) based on (3.2), (3.4), (3.6) respectively;

&, Itc and Iy are parts of these matrices respectively

correspondlng to the parameters iy, § only.

Let us partition 4 corresponding to (@, R), (Bo, b),
(u,0v) as

Ay A A
A=Ay Azz Az (3.11)
Azy Axy Az

and similarly B and C also.

It can be easily checked that because of the inde-
pendenc of X and Z given y, assumed in our model
Ays, A3, Asy, As, are all 0 matrices. Thus

All A12 0
A=A, A4, O (3.12)
0 0 A

Further, since L(y/x,z) does not involve (Q, R), the
partitioned matrix C is as follows:

0 0 0
C = 0 C22 C23 . (3.13)
0 C5; Ci;
Further, because of (1.1), A = B + C. Hence
Ay Ay, 0
B=)A4;, A3 —Cyp; —C;3 (3.19)
0 —Cs; 33— Ci3

Now, L(x, z, y) breaks up into two factors, one
involving m, n and z only and another not involving
m, n and z. Thus on the basis of the reparametrisation
we can break up L(x,zy) into two factors, one
involving u, v and z only and the other not involving
these. We can obtain the information matrix Ajs
using observation z only because of the structure of
A. Then
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A33

H 11 1 -1
=Z[—1 1:|M[1 1] (315

where the information matrix M of m, n is easily seen
to be

2
40 %o 411 _ 40110

2 ]
Qoo a Qoo ago

M= 00 5 (3.16)
17 801810 Qo2 _ G0s
) 2

o0 ao0 800  4go

where
1
a;; = j (log2)(log(1 — )Yz~ (1 — 2"~ 'dz
0

Vi,j=0,1, 2. (3.17)

Let A~ ! be partitioned similar to 4 with superscripts,
that is, with components 4!!, etc. Then

It = I = (473!
= AZZ - AZIA;llAlil

=B,, + Cy; — By BBy, (3.18)

and
Ife = (B*)"!
By, 3,3]—'(3,2>

=B,, — (B B

22 ( 21 23)[331 B33 B32
By} 0 }(Bu)
=B,, —(B C _
22 ( 21 23)[ 0 B331 C32

= By; — B, BBy, — C23B337Cs,

= By, — Bszx_llez — Ca3[As3 — Csa]glcaz-l

(3.19)
Hence

IE =1Ifc + Cy + Ca3[A33 — C33]17'Csy. (3.20)

Note that under the linear transformation we have
used, fo = A and " = Ae,. The matrix I, = I¥ was
computed by Efron as (2.7).

Now it remains to compute C. For this we follow
the technique of Efron for his Lemma 3, which makes
essential use of the exponential family form of (3.6)
and (3.7). The conditional loglikelihood given {(x;z;}
is
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Y. [ylogmlx; z) + (1 — ylogmolx, 2))]

7

nx;2p)
=Y y;log——"L + > log mo(x;, 2;)
jyl gno(xj’zj) j o

= ZyjlogeXp[Bo + fx;+ (n— mw;]
i

+ Y log !
7 1+ exp[Bo + Bx; + (n — m)w,]

= ZYi(ﬁO + fx;+(n—mw)
j

— Zlog[l + exp(fo + B'x; + (n — mw))]

3

= (.BO’ ﬂ’7 D)T - ‘/’(ﬂo, ﬂlﬂ D) (321)
where
. !
T= 2\ x|¥
=t
and !

Y(Bo. B,v) = Y logl1 + exp(Bo + f'x; + (n — mw))].

Now

C = ]imN_,m %Covﬁo‘ﬂ,m

1 1
=j f (x)(l,x, win (x, 2)rg(x, z)dF(x, ) (3.22)
R

Y W

where

m—1 1 -— n -1
dF(x,z) = <ﬂofo(x)z——ﬁ-fft—a(—r%r)t)_

M 1(1 _ z)m—l
+ 1y f1(x) “Betanm) dxdz
since fi{x,z) is a mixture of fy(x,z) and fi(x,2) in
proportions of 7, and 7.
As in Efron,

J 71 () mo(x)(mo folx) + 7y fi(x))dx
RP
expl-A8100)

= oM, J_m n,exp[Ax/2] + neexpl —Ax/2]
(3.23)

_ momyexp[—A%8] ("
2nBeta(m,n) Jo

E(x', wi) wizmtn=2()

z)m+n—2

x'exp[ —x?/2] dxdz

- nomexp[ —AZ/8] f [lo ( z
\/ZvnBeta(m,n) o £ 1~

f 212" Y1 — 2" texp[Ax/2] + moz™ (1 — 2)" " texpl— Ax/2]

m+n—2, 1 — m+n-2
Z)]z {1 —2)

x'exp[ —x2/2]

dxdz

= ”07’-'1Dij

j_w 12" (1 — 20" texp[Ax/2] + moz™ (1 ~ z)* " texp[ — Ax/2]

(3.24)
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thus defining notation D;;.

Now
Ca Cn]
= T
[Csz Css o
[ Doo Dio O {0 Do
Do Dz O 0 t 0 Dy
0 0 Doo" 0 l 0 0
: : : [
) : . (32
0 0 0 Doo | 0 0 (3:23)
0 0 (I 0 | 00
[ Doy Dy 00 0 | 0 Do |
Now the matrix C,; + Cy3[A3z — C33]71Cs,

required in formula (3.20) becomes

F=0C,; + Cyldss —C33]17'C3, (326)
where
M M ot
Aan — Caal- 1 =[ 11 12 ]
(3= Sl = My, Moy~ Do
_ 1 [Mu_Dm ~M“]
M,,(M,; — Doy) — M3, —-M,, My,

where the partitioned matrix M is defined in (3.16).
Let us take

d =M /UMy, — Do)My, — M) (3.27)

" Then

_ l: Doo + dDj,
" LDyo +dDg; Dy D;o + dD},

Hence we obtain the following result giving a formula
for the asymptotic efficiency of stochastic supervision
relative to perfect supervision, where the stochastic
supervisor’s classification follows a beta model and is
independent of the feature vector.

Eff (n,,A,m,n) =
q(nlaAv m, ns)Effl(TCl’As m, n) + (p _ I)Eﬂw(nlvA’ m, n)
q(TH,A,m,n) + (p - 1)

(3.29)
where
Ny — =11 -2
(1,—A)[H F] (1, A>Eff°o
q(nl!Avmvn)= 1+7117IQA2 °
(3.30)

Eff,(n,,A,m,n) and Eff (7, A, m, n) are asymptotic
relative efficiencies for estimating the intercept and
angle respectively, of the discriminant function and
are given by

Eff} (7(1 s Aa m, n)

Do +dD01D11:l (3.28)
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(-8 (=)

A - A ;
(1, ——Z>[H —F] (1, “Z)

Eff (ry,A,mn) =1 — Doo(1 + mom,A%).

Eff, and Eff,, can also be interpreted as Eff when the
dimensions of the feature vectors are 1 and oo
respectively. The Eff, is a convex combination of these
two quantities.

We observe easily that when m = n, the matrix F
in(3.30) and (3.31) reduces to (in O’Neill’s! ® notation)

ag a4y
a, a;
where a; = Dy, giving Eff, as the same formula as for

the unsupervised case derived by O’Neill.*? Further,
if 7y = ng = 4, then 4 =0, and Eff, = Eff, = Eff .

(3.31)
(3.32)

4. COMPUTATION OF EFFICIENCY AND
INTERPRETATION

We have computed Eff; and Eff,, as given by the
formulae derived above for various values of n;, A,
m and n. The formulae derived above involve single
and double integrals. For these integrals we have used
subroutines of the NAG (Numerical Analysis Group)
package. Efficiency values for some selected values
of the parameters are presented in Table 1. A summary
of the efficiencies is presented in Fig, 2.

As noted earlier, our beta distribution is a model
for the stochastic nature of the supervision and m = n
is a case of lack of supervision and as |m — n}
increases the supervision gets better, reaching perfect
supervision in the limit as |m — n] - co. The area
between the cumulative distribution function curves
of #(m, n) and %(n, m), which is equal to the difference
between the means of the two distributions %(m, n)
and %B(n,m) is b — i

m+n
|m — n| from 0 for m =n to 1 as {m — n| » . How-
ever, we find that the efficiency does not depend only
on |m — nj; for the same {m — n}, it is larger for smaller
m and n; so a normalising factor should be a quantity
less than m + n. At the suggestion of the referee, we
Im — n|

. This quantity increases with

tried ./m + n and

seems to bear an increas-
m+n

ing relationship to efficiency in the range 1 to 5 of m,
n that we have considered. This relationship is given
in Fig. 2.
From Table 1 and Fig. 2, we notice that:
(1) Eff increases with supervision;
(2) Eff increases with A, the distance between the
groups;
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Fig. 2. Eff for various values of parameters and supervision index.

(3) For n = 0.5, the dimension of the feature vector
is immaterial for Eff. this is evident from the
formulae also. whereby Eff, = Eff, = Eff, as
we noted earlier;

{4) Eff; decreases with the value of n, away from
1

(5) Eff, increases with the value of n, away from
l.

(6) For m = n, Eff;, and Eff, coincide with the
corresponding Eff of unsupervised learning as
per O'Neill's"'® tables; this is also evident
from the fact that our formula coincides with
O'Neill’s in the unsupervised case, as pointed
out at the end of Section 3.

From (4) and (5) above. it follows that unsymmetric
&oups need a larger number of features for the same
distance between groups.

In an earlier article,'¥ we had computed these
efficiencies, for a deterministic but error-prone super-
Vision scheme, with a constant probability « of mis-
Supervision. From a comparison of these two situ-
alions, it turns out that:

*=001 and m=2 n=7 with the index

Im — n

ym+n

90-95%:

x=005 and m=2 n=6 with the index

Im — n|

vm+n

74-90%;
PR 2351

= 1.67 are similar with Eff in the range of

= 1.42 are similar with Eff in the range of

Table 1. Asymptotic relative efficiency of normal discrimi-
nation with stochastic (Beta) supervision

A=2 A=3 A=4
Eff, Ef, Ef, FEf, Ef, Eff,

n, o mn
05 1 5 0.8980 0.8980 0.9194 0.9194 0.9536 0.9536
2 4 04762 04762 0.6094 0.6094 0.7852 0.7852
3 3 0.1016 0.1016 0.3590 0.3590 0.6570 0.6570 -
0.667 1 5 0.8972 0.8988 0.9171 09217 0.9518 0.9554
2 4 04694 04844 0.5972 0.6223 0.7762 0.7943
3 3 00847 0.1217 0.3375 0.3820 0.6422 0.6719
09 1 S 09086 0.8958 0.9097 09312 0.9400 0.9647
2 4 04927 0.5026 0.5475 0.6801 0.7222 0.8403
3 3 00595 0.1996 0.2537 0.4892 0.5580 0.7483

=020 and m=1 n=2 with the index

dm—nl = 0.4 are similar with Eff in the range of
m+n

35-80%,

2=035 and m=4, n=5 with the index

dmonl_ 0.3 are similar with Eff in the range of

m+n
18-70%;
a = 0.5 and m = n with the index I —n =0 are

m+n

similar with Eff in the range of 13-75%.

Thus, our formula and the computations thereof
give an idea of the worth of stochastic supervision.
Stochastic supervision is useful if it is sufﬁcientl){ far
away from an unsupervised scheme. In situations
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wherein the design of supervision systems is under
consideration and a choice of supervision systems is
available at various costs, the formulae above may
help one to choose a system on the basis of cost-
efficiency analysis. For instance, when m =2, n = 4,
p=1,A=4 n, =0.667, Eff = 0.78; this means that
for these parameter values, 78 stochastic supervision
samples are equivalent to 100 perfectly supervised
samples. Of course, such an analysis depends upon a
knowledge of the above parameters; these parameters
can be estimated from a pilot sample of stochastically
or perfectly supervised samples. In an earlier article,'”
we have given methods of estimating these parameters
under stochastic supervision.

5. SUMMARY

Motivated by some situations in medical diagnosis
and remote sensing, we consider the problem of
discriminant analysis when the supervisor’s class-
ification is stochastic and deal with the problem
of efficiency of this supervision relative to perfect
supervision. For this, we formulate a model for
stochastic supervision in terms of the beta distri-
bution; this distribution enables us to include a variety
of situations from perfect supervision to complete
lack of supervision and also to quantify the amount
of stochastic supervision. Our model which assumes
the supervisor classification to be independent of the
feature vector is not totally realistic; however, this
independent situation is the most unfavourable case
from the point of view of efficiency and hence it is
worth studying. Under this model of supervision and
for the case of two p-dimensional normal populations
with a common dispersion matrix, we derive formulae
for Efron efficiency of stochastic supervision, which
is an index of the amount of statistical information
contained in the stochastic supervision vis-a-vis perfect
supervision; another way of looking at Efron efficiency
is the relative sample size required under stochastic
supervision compared to perfect supervision to
achieve the same estimation efficiency of the discrimin-
ant function coefficients. We present tables and charts
of this efficiency for various values of parameters
of the two p-dimensional normal populations (the
relevant parameters are the distance between the two
populations and the mixing proportions) and various
supervision situations in terms of our beta model. We
find that stochastic supervision is quite useful unless
the two beta parameters are nearly the same; and if
the cost of stochastic supervision is much less than
perfect supervision, it is quite worthwhile to use it.
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APPENDIX—NOMENCLATURE

B(m, n): beta distribution with parameters m, n.
Beta(.,.): complete beta integral.
ER: Error Rate; AER: Asymptotic Error Rate; Eff: Efron
efficiency.
L: loglikelihood.
X : p-dimensional feature-vector and x: values taken thereof.
Z: classification of stochastic supervisor, indicating the
probability of unit belonging to group ;0 < Z < 1, z: values
taken thereof.
y: actual group
fo + B'x: Bayes discriminant function.
ny(no): proportion of group 1(0); ny + =, = 1.
g, i, : mean vectors of X in groups 0 and 1 respectively.
2: common dispersion matrix of X in the two groups.
N: sample size from the mixture of the two groups.
(ag,a)y, (bg,b)y, (co,C)y: estimates of (B,,f) based on a
sample of size N by various schemes.
A: Mahalanobis distance between the two groups.
e:(1,0,...,0).

3
A =log -
M = ((m,})): variance-covariance matrix of estimates (a,, a)y7
of (8. B).
I information matrix (with various subscripts and with or
without an asterisk) of (8, B).
Ji{x): density of X in group i,i=0, 1.
Jix, z): density of X, Z in group i,i =0, 1.
m{x): posterior probability of group i given x, i =0, 1.
n{x, z): posterior probability of group i given x, z, i =0, 1.
U=n+mov=n—m
A, B, C: information matrices of all the parameters.
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