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Abstract— W e consider the problem o f discriminant analysis o f two multivariate normal populations 
having a com m on dispersion matrix, where the initial samples are classified stochastically. We assume a 
beta model for this classification variable and assume it to be independent o f the feature vector X , given 
the group. We study the Efron efficiency o f  this procedure compared to the situation where the initial 
classification is done deterministically and correctly. W e present tables and charts o f this efficiency and 
conclude that stochastic supervision contains a great deal o f information on the discriminant function.

Discriminant analysis Stochastically classified initial samples Asymptotic relative efficiency

1. INTRODUCTION

Discriminant analysis is traditionally perform ed 
assuming that the classification o f  initial samples is 
done deterministically and correctly. Recently, some 
applications in rem ote sensing and in medical diag­
nosis have led to interest in considering discriminant 
analysis where the initial classification is prone to 
error.*u Aitchison and Begg<2> identify the need for 
statistical diagnostic techniques based on  data sets 
containing cases which have not been allocated to a 
single diagnostic type with certainty but for which 
only an assessment o f  the probabilities o f  the types is 
available. They give an exam ple from  medical diag­
nosis o f  C on n ’s syndrom e. They discuss som e m ethods 
o f  discriminant analysis based on  the logistic trans­
form.

In this article, we consider initial samples o f  this 
type, for the case o f  a feature vector X  having 
p-dim ensional norm al distributions J-'piHo,!.) and 

i , 2 )  in tw o groups, occurring in proportions 7t0 
and 7i] respectively; we denote by A, the M ahalanobis 
distance between the tw o groups. W e denote by 
Z (0  <  Z  <  1), the variable indicating the supervisor’s 
assessment o f  the chance o f  an unit com ing from 
G rou p  1 (and (1 — Z ) from  G rou p  0). W e denote by 
y  the actual group.

In a series o f  articles in this journal.*3^5* we have 
investigated the problem  o f  im perfect initial samples. 
In K atre and Krishnan,(3) we considered the problem  
where the initial samples are classified determinist­
ically and are subject to a constant and unknown 
probability  o f  misclassification; this misclassification 
was assumed to  occur independently o f  the feature 
vector X ; we derived here the m axim um  likelihood 
estim ators o f  parameters and gave various procedures 
for com puting them. In Krishnan,(4) we studied the 
efficiency o f  this error-prone supervision scheme com ­
pared  to  a perfectly supervised scheme; this efficiency 
a la E fron<5) called the Asym ptotic Relative Efficiency

(Eff) is a measure o f  the amount o f  information 
contained in the error-prone initial samples relative 
to  perfectly supervised initial samples; this efficiency 
can also be interpreted in terms o f  the relative sample 
sizes required in the tw o schemes to achieve the same 
expected error rates o f  the classification scheme using 
the estimates o f  the discriminant function derived 
from  these parameter estimates. W e,4) presented tables 
o f  this E ff for various values o f  the parameters and 
interpreted them; our calculations gave an idea o f 
the w orth o f  error-prone initial samples for various 
param eter values. In Krishnan and N andy'5' we 
turned to  stochastically supervised initial samples and 
used the m odel described here; we derived the EM  
algorithm  o f  Dempster, Laird and Rubin,6) for 
m axim um  likelihood estimation o f  parameters. In the 
present article, we work out the Eff o f  the stochastic 
supervision scheme com pared to a deterministically 
and correctly supervised scheme to answer questions 
on  the relative inform ation contained in stochastically 
supervised initial samples and the relative sample size 
required under stochastic supervision.

Stochastic supervision model

W e consider a m odel for stochastic supervision in 
which Z  is distributed as the beta distribution with 
parameters m and n (denoted M m , n)) and independent 
o f  X  when y  =  0 and as M n, m) and independent of 
X  when y  =  1. Various choices o f  m, n give a whole 
range o f  cases from  the com pletely unsupervised 
case (when m =  n) to  the (perfectly) supervised case 
(|m — n\ -> oo ) as seen from the cumulative probability 
curves o f  Fig. 1. F or  m =  n, the distribution is the 
same for y  — 0 and y  =  1 and hence it is the unsuper­
vised case; it does not matter what the com m on  value 
o f  m, n is. W e show that our efficiency formula when 
m =  n is the same as that obtained in the unsupervised 
case. F o r  m #  n, the supervisor assessment is probabil-



Fig. 1. Cumulative distribution curves of beta distribution for various values of m and n.

istically more on  the correct side; the larger |m — n\ 
is, the m ore correct it is, approaching perfect super­
vision as |m — n| -*• oo. From  the nature o f  the curves 
it appears that the wider apart the tw o curves are the 
better is the supervision. The correctness o f  the 
supervision depends not merely on \m — n\; for the 
same value o f  |m — n\, low er values o f  m, n seem 
to indicate better supervision. Thus som e kind of 
normalised values o f  \m — n\ m ay be a suitable indi­
cator o f  the level o f  supervision. W e discuss this 
further in Section 4. Thus the beta m odel m ay be a 
reasonable way to describe stochastic supervision. 
The assumption o f  n) and M(n, m) m odels for Z  
makes the stochastic supervision have a symmetric 
structure with respect to the groups 0 and 1; it 
simplifies the mathematics considerably. Although 
the assumptions o f  symmetry or that o f  Z  and X  
being independent given y, may not be com pletely 
realistic, it is a useful first m odel to begin investigation 
o f  this phenomenon. A reasonable form ulation in 
which X  and Z  are dependent is to  make the prob ­
ability o f  misclassification larger when X  is close to 
the means o f  both the groups. From  the evidence 
available from the studies o f  Chhikara and M cK eon (I) 
and Lachenbruch,<7) the efficiency o f  such a scheme 
is higher than when X  and Z  are independent. 
Thus it is seen that such independent (random) 
m isallocation is the least favourable situation for 
efficiency and hence is worth studying. Recently 
Titterington'81 has proposed an alternative to our

supervision m odel using the logistic-norm al distri­
bution and w orked ou t the E M  algorithm  for estim­
ation o f  parameters under his m odel. W e p ropose  to 
study efficiency under this model.

The Eff is the ratio o f  the Asym ptotic E rror Rates 
(A E R ) o f  the correctly supervised and stochastic 
supervised schemes. The A E R  o f  a scheme is a function 
o f  the elements o f  the variance-covariance m atrix o f  
the estimators o f  the linear discriminant coefficients. 
This A E R  o f  a perfectly supervised schem e depends 
on  7i t and A and the A E R  o f  a stochastically supervised 
scheme and its Eff depends on  tc j.A  and the par­
ameters o f  the stochastic supervision m odel. Thus in 
our m odel, Eff depends on  n iy A, m and n. E fron|9) 
has derived the AER o f  a perfectly supervised scheme. 
Thus it only remains for us to  derive the A E R  o f  
the stochastically supervised scheme. Thus fo llow in g  
Efron<9) we make a linear transformation o n  X  to 
reparametrise the m odel in terms o f  71!, A, m, n 
and other parameters o f  the model. The variance- 
covariance matrix o f  the discriminant coefficients is 
what is required for com puting the AER. This A E R  
is a function o f  the elements o f  the variance-covariance 
matrix o f  estimators o f  the linear discrim inant 
coefficients. This variance-covariance matrix can  be 
obtained from  the likelihood function as fo llow s : 
obtain the inform ation matrix as the expected value 
o f  the negative o f  the matrix o f  second mixed deriva­
tives o f  the loglikelihood with respect to the par­
ameters: invert this matrix to  get the required vari­



ance-covariance matrix. D enoting loglikelihood by L, 
we have

L(x, z, y) =  L(x, z) +  L(y/x, z). (1.1)

These loglikelihoods (Ls) respectively correspond 
to the perfectly supervised scheme, the stochastically 
supervised scheme and the logistic regression based 
on X  and Z . The inform ation matrices being minus 
o f  expected values o f  second derivatives o f  these 
Ls satisfy a similar additive condition. Thus the 
inform ation matrix o f  the stochastic supervision sch­
eme can be w orked out from those o f  the perfectly 
supervised and logistic regression schemes. W e p ro ­
ceed to  derive this here. N ote that we are using 
logistic regression estimators only as a technique 
for com puting the required inform ation matrix, and 
logistic regression as such is not our concern  in this 
article. A n application o f  this technique was m ade by 
O ’Neill*10) to study the efficiency o f  an unsupervised 
initial sample vis-a-vis a perfectly supervised initial 
sample.

2. ASYMPTOTIC RELATIVE EFFICIENCY

transformations on  the feature vector X ,  we assume 
a canonical form  for ( / /„ ,£ )  and (p.\, £ )  to be

^ — ^ e i ’ Ip j  ar|d ( ^ e i ’ IpJ where A  is the M ahal-

anobis distance between the tw o groups, e x is the 
vector ( 1, 0, . . . ,  0) and Ip is the p x  p identity matrix; 
this canonical form can be obtained by a linear 
transformation on  X . Let (a0,a )N denote the estimate 
o f  (P0,P) based on a sample o f  N  by a certain 
procedure and let ER(a0, a)N denote the error rate on  
using (a0,a )N for (|30,/S) in (2.1). Let X =  log (7t i /7t0). 
Then ji0 =  / ,  /?' =  Ae, .

Efron<9) shows that if

s/ N i(a 0,a )N -  (p0, m  i  „ r p+ ,(0, M ) (2.3)

then

N lE R (a 0,a )N -  ER(0o ,/?)] -  £ )

' I  ~  ( x ) r° ri +  Q )  r i +  +  ■ ■ ■ +  r2pJ  (2.4)

F o r  the case o f  p-dim ensional norm al populations

and JTp( / i j .E )

in tw o groups, occurring in proportions n0 and re, 
respectively, the Bayes rule uses

Po +  P'x (2.1)
where

where -»  means convergence in law (distribution), 
r =  (ro>r i>r2> — , rp) ~  jVp+ ,(0 , S), <j> is standard nor­
mal density function, and 0 the (p +  l)-null vector. 
The A E R  o f  a procedure with estimates (a0,a )N is 
then defined to be the expectation o f  the limit above, 
which is equal to

2A 1 2 A
Po =  l°g (rci/«o) -  V i  -  n'oZ V o );

P =  ~ n 0) (2.2)

as the discriminant function. The Bayes rule is the 
on e with the least error rate. The A sym ptotic Error 
Rate (A E R ) o f  a procedure based on  estimates (a0 ,<a% 
o f  vector  (/S0, /]') from  a sample o f  size N  is defined to 
be the limiting value (as N  -> oo) o f  the additional 
error o f  (a0,a ') over the Bayes error. This A E R  will, 
naturally, depend on  the nature o f  the learning 
procedu re  and the values o f  the parameters. F or 
perfectly supervised, unsupervised and stochastically 
supervised procedures it will be different and for the 
sam e param eter values, the unsupervised procedure 
will have a larger A E R  than the stochastically super­
vised procedure, and the stochastically supervised 
proced u re  will have a larger A E R  than the supervised 
procedu re. W hen several procedures less efficient than 
the supervised one are considered, the supervised 
p roced u re  may be used as the basis o f  the com parison. 
T h is  leads to  Efron’s Asym ptotic Relative Efficiency 
(E ff).

S ince error rates o f  discriminant rules based on  
(30 ,[ i  o r  their estimates are invariant under linear

soo ' (2.5)

where ((sy)) =  S. This is denoted for convenience by 
AER(a0 ,a). Then the Asym ptotic Relative Efficiency 
Eff o f  a procedure with (c0,c )N with respect to  a 
procedure yielding estimate (b0,b )N is

E ff. =  AER(&0, 6)/A E R (c0 ,c). (2 .6)

In order to com pute this efficiency for stochastically 
classified initial samples relative to a perfectly super­
vised sample we need the matrices S for these cases 
for the m axim um  likelihood estimates. This is done 
by com puting the inform ation matrix o f  and 
inverting it; Efron has already com puted this for the 
supervised case as

Ic ^ 1

where

/ T 1 =

H 0

0 (1 +  A 27I07C1)
(2.7)

1 +  A 2/4 

-  (7t0 -  rci)A/2

~ ( n 0  -  7t,)A/2~| 

1 +  2tc07t1A 2 j



3. EFFICIENCY OF STOCHASTIC SUPERVISION SCHEME

W e have observations =  1, 2, N. Let
f i x )  represent the density o f  2), i =  0, 1. Then

/o(*>z) = / o M  

f i ( x , z ) = f d x )

1
Beta(m, ri) 

1
Beta(n, m)

zm -1 (1 -  z) " ' 1 

z " - ‘ ( l - z f - 1 (3.1)

where Beta stands for the com plete beta integral, give 
the density o f  observation (x ,z) in the two groups. 
F or what follows, we need full, various marginal 
and conditional likelihoods. W e use L to  denote 
loglikelihood, whose arguments and the conditioning 
sym bol ‘/ ’ indicate which loglikelihood is being con ­
sidered.

L (x ,z ,y ) =  log { [?r 1/ 1(x, z)]y[w0/ 0(x, z ) ]1 ~y}  (3.2) 

L (x,y) =  lo g { [*  ̂ ( x f l W o t o ] 1 - » }  (3.3) 

L (x ,z )  =  lo g { [7c1_/'1(x ,z) -I- 7C0/ 0(x ,z )} (3.4) 

L{x) =  logjTTj/ifx) +  7I0/ 0(x)} (3.5)

L(y/x,z) =  lo g { [7c1(x ,z )] ,’[jco(x,z) ] 1 *»'}, (3.6) 

where

1
0+/3'x + (n —m)w’1 +  e1

where w =  log [z /( 1 — z)] and

Uy/x) =  l o g t f ^ x f l W * ) ] 1-» } ,  (3.8)

where

n0(x) =  1 -

TC0/ 0(X )

observation (x, z, y), (x, z) and (y/x, z). T he in form ation  
matrices in this case are denoted with an asterisk; 
thus we have Jj$c , J* and I*R. N ote  that:

( 1) we are interested in the parameters p 0 , P and 
the inform ation matrices for them;

(2) the estimates o f  p 0, P remain the same whether 
L(x, y) or L(x, z, y) is maximised, since evidently, 
given y, inform ation o f  z is redundant as per 
our m odel;

(3) I t c  corresponds to  the case o f  stochastically 
classified initial samples.

Let us now reparametrise m, n, n t as

Q =  K\Hl + n0^0 
R =  2  +  -  HotHi ~  t*0y

Po, p, u =  n +  m, and v =  n — m.
This reparametrisation o f  m, n into u, v is chosen 

because the logistic regression involves on ly v.
Let A, B, C  denote the inform ation m atrices o f  (Q, 

R, j80, ft, u, v) based on  (3.2), (3.4), (3.6) respectively;
l* c  and H r are parts o f  these matrices respectively 

corresponding to the parameters p 0, P only.
Let us partition A  corresponding to (Q, R), (P0 ,P), 

0u, v) as

(3.11)

(3.7) and similarly B  and C also.
It can be easily checked that because o f  the inde- 

pendenc o f  X  and Z  given y, assumed in ou r m odel 
^ i 3> ^ 31, A 32 are all 0 matrices. Thus

=  1 — 7ti(x,z) ■'4 n ^12 a 13

n0f 0(x ,z) A = A 21 ^22 ^23
n0f 0(x ,z )  +  n j y(x ,z) „A 3l ^32 •433-

A i2 0 '
A  = A 21 A 22 0

=  1 -  « l M .  0 0 ^33-

% /o (x )  +  ’ t i / i W  
1

1 +  ePo + P’x ' (3.9)

In what follows, we need to deal with inform ation 
matrices arising out o f three types o f  situations—  
when the actual group y  is known (called conditional), 
when y  is not known (called unconditional) and o f  
the logistic regression type; the observations are 
correspondingly o f  the type (x, y), (x) and (y/x). W e 
denote the inform ation matrices based on  a single 
observation for the parameters /?0 ,j? o f  these three 
types by I with subscripts C ,U C  and LR  respectively. 
The relation between Iv c , lc and lLR is obtained by 
using

(3.12)

Further, since L (y jx ,z )  does not involve (Q ,R ), the 
partitioned matrix C  is as follow s:

(3.13)
' 0  0 0 '

C = 0 C 2 2 C 23
_0 C 32 ^33_

Further, because o f  (1.1), A = B +  C. H ence

li ^12 0
B = A 2 i A 22 — C 22 c 23

_ 0 — C 32 ^33 ~  C 33-

L (x ,y ) =  L(x) +  L(y/x). (3.10)

In what follows, we shall also need to consider the 
case where the stochastic supervision observation z 
is also available; then, we have again three types o f

(3.14)

N ow , L(x, z, y) breaks up into tw o factors, on e 
involving m, n and z on ly and another not involving 
m, n and z. Thus on  the basis o f  the reparam etrisation 
we can break up L(x, z ,y )  into tw o factors, one 
involving u, v and z only and the other not involving 
these. W e can obtain the inform ation matrix 
using observation z only because o f  the structure o f  
A. Then



A-i-i —  T
1 l ‘ ‘ l - f

M
- 1  1 1 1

(3.15)

where the inform ation matrix M  o f  m, n is easily seen 
to be

M  =

*20 a io Q11 fl01a 10 
a oo a ooaoo ^00

2
a l l  a01a 10 a02 a 01 

2 2 a00 a00 a00 a00

(3.16)

where

(logz)'(Iog (l - z ^ z " - ^ !  - z V ' d z

X ^ - l o g ^ x , - , ^ )  +  ( 1  -  _ V y ) l o g n 0 ( X j , Z j ) ]  

j

=  X  Vylo 8 exPW o +  P'xj +  (n -  m)Wj]
i

+  ? l0g 1 +  exp[j80 +  P'xj +  ( n -  m)w,]

=  I y , ( ^ o  +  p'Xj +  (n -  m)Wj) 
j

-  £ l o g [ l  +  exp(j30 +  [i'Xj +  ( n -  m)wj)']

=  { f i o , P , v ) T - ' l i { h ’ F ,v )  

ViJ =  0 ,1 ,2 .  (3.17) where

(3.21)

Let A 1 be partitioned similar to A  with superscripts, 
that is, with com ponents A 1’ , etc. Then

I* =  lc =  (A 22) ' 1

=  A Z2 — A 2i A t i A 12 

=  B 22 +  C 2 2 — B 2 lB xf B l2 . (3.18)
and

i t c = ( B 22r 1

=  b 22 — (B2l b 23i

T =  E l  x j\ y j

and

\j/{Po,P',v) =  £ l o g [ l  +  exP(/{0 +  P'Xj +  (n -
J

N ow

C  =  limN^ x j^ C o v M -,v

— b 22 — (B 2i c 23)

f i l l  813
B31 b 33

~ B u  0

*12
B  32

S l 2

C 32
where

— B 22 — B2iB l i B l 2 — C 23B 33C 32

— &22 — B2 1 B n l B 12 — C 23[^ 3 3  —  C 33]  ' C 32-

(3.19)

x  J (I ,  x, w )n!(x, z)n0(x, z)dF (x, z) 

w

'(1  -  2)"

(3.22)

dF (x, z) =  I n 0f 0(x)
Betafm, n)

Hence + " 1/1 w-
‘ ( i  -  zr - ‘ \

dxdz
Beta(n, m) J

I* =  I* c  +  C 22 +  C 23[ / l 33 — C 33]  1C 32■ (3.20) sjnce f ( x ,z )  is a mixture o f  f 0(x ,z ) and / , ( x , z) in

N ote that under the linear transformation we have proportions o f  n0 and 7t]. 
used, pQ =  k and /?' =  A e ,.  The matrix Ic  =  I£ was As in Efron,
com puted by Efron as (2.7).

N ow  it remains to com pute C. F or  this we follow  
the technique o f  Efron for his Lem ma 3, which makes 
essential use o f  the exponential family form  o f  (3.6) 
and (3.7). The conditional loglikelihood given {(Xj,Zj)} 
is

7Il (x)rc0(x)(7C0/ 0(x ) +  n J i i x M x
R ”

— 7to7ti
_______ e x p [—A 2/ 8] 0 (x)________
7t,exp[A x/2] +  Ji0ex p [ —A x/2 ]

dx.

(3.23)

Thus

£ (x iy ) =  M M
v/27iBeta(m, n) .

:d  -  Z)

x 'ex p [ —x 2/ 2]
07iiz " ‘ (1 — z f  ‘ ex p [A x /2 ] +  7t0zm '(1 — z)" 'e x p [—A x/2 ]

dxdz

_  7to7tte x p [ - A 2/8 ]  f ‘  

y^TcBetafm , n) Jo
log

1 — z
f-m + n~ 2;(1 -  z)

x 'e x p [—x 2/ 2]
jJtjZ" *(1 — z)m *exp [A x /2 ] +  n0zm ’ (1 — z)"~ 'e x p [  — A x /2 ]

dxdz

(3.24)



thus defining notation  D tj. 
N o w

'-22  '-23
.C 32 c 33_

— 7IoIt I

D<)0 0. . . 0 1 0 D 01
D io D 2 o 0 - 0 1 0 O n
0 0

* 
S3

 
0 0 0 1 0 0

0 0 0- Doo 1 0 0
- - - - -  - -
0 0 0 . . . 0 1 0 0

_ ^01 D u 0- 0 1 0 1
<NOQ

(3.25)

N ow  the matrix C 22 +  C 23[ / t 33 — C 33]  1C 32 
required in formula (3.20) becom es

F  =  C 22 +  C 23[/4 33 — C 33]  *C32 (3.26)

where

[^33 — C 33]  1 =
M u  M 12 

_M 21 M 22 — D02

1

M\ i (M 22 — D 02) — M l2

m 22 — D 02 
- m 12

- M 21

where the partitioned matrix M  is defined in (3.16). 
Let us take

Then

■F =
Doo +  dD o1 D 10 +  dD0 lD u  

D 10 +  dD0 iD lt  D 20 +  dD21 _

H ence we obtain the follow ing result giving a form ula 
for the asym ptotic efficiency o f  stochastic supervision 
relative to perfect supervision, where the stochastic 
supervisor’s classification follow s a beta m odel and is 
independent o f  the feature vector.

E ff/n ! , A, m, n) =

q (n i,A ,m ,n ,)E ffl(n l ,A ,m ,n ) +  (p — l)E ff0D(7t1, A ,m ,n) 
q(nu A ,m ,n) +  ( p -  1)

(3.29)

where

q{nu A ,m ,n) =
+  TT^qA2

d =  A f, J[_(M22 -  £>02) M , , -  M f J .  (3.27)

(3.28)

(3.30)

EfT](7t ,,A , m, n) and Eff x (n A, m,n) are asym ptotic 
relative efficiencies for estimating the intercept and 
angle respectively, o f  the discriminant function and 
are given by

Efr,(7t u A ,m ,n )

' • - i j w - n ' i 1- - *
(3.31)

Eff^(Tt,, A ,m ,n) =  1 -  D 0o(l +  « 0% A2). (3.32)

EfT] and Effx can also be interpreted as E ff w hen  the 
dimensions o f  the feature vectors are 1 an d  00 
respectively. The Effp is a convex com bination  o f  these 
tw o quantities.

W e observe easily that when m =  n, the m atrix  F  
in (3.30) and (3.31) reduces to (in 0 ’Neill’s(10) n ota tion )

aQ

a i a 2

where at =  D m, giving Effp as the same form ula as for 
the unsupervised case derived by O ’Neill.<10) Further, 
if 7t4 =  n0 — then k =  0, and Eff, =  EfTp =  E f f^ .

4. COMPUTATION OF EFFICIENCY AND 
INTERPRETATION

W e have com puted Effi and E ff, as given by  the 
formulae derived above for various values o f  n lt A, 
m and n. The formulae derived above involve single 
and double integrals. F or these integrals we have used 
subroutines o f  the N A G  (N um erical Analysis G rou p ) 
package. Efficiency values for som e selected values 
o f  the parameters are presented in Table 1. A  sum m ary 
o f  the efficiencies is presented in Fig. 2.

As noted earlier, our beta distribution is a m odel 
for the stochastic nature o f  the supervision and m =  n 
is a case o f  lack o f  supervision and as \m — n\ 
increases the supervision gets better, reaching perfect 
supervision in the limit as |m — n\ -*■ 00. The area 
between the cumulative distribution function curves 
o f  .Mm, n) and M(n, m), which is equal to  the difference 
between the means o f  the tw o distributions 3S(m,ri)

and
. . \m — n\ . 

n,m) is _ - i —. This quantity increases with
m +  n

|m — n\ from 0 for m =  n to 1 as |m — n| -> 00. H o w ­
ever, we find that the efficiency does not depend on ly  
on |m — n|; for the same |m — n|, it is larger for sm aller 
m and n; so a normalising factor should be a quantity 
less than m +  n. At the suggestion o f  the referee, w e

• j  /----------  j  \yn — n\tried ^fm  +  n and . seems to bear an m creas- 
s jm  +  n

ing relationship to efficiency in the range 1 to 5 o f  m, 
n that we have considered. This relationship is given 
in Fig. 2.

From  Table 1 and Fig. 2, we notice that:
(1) Eff increases with supervision;
(2) Eff increases with A, the distance between the 

groups;



Hg. 2. Eff for various values o f parameters and supervision index.

(3) F o r  n =  0.5, the dim ension o f  the feature vector 
is im m aterial for Eff; this is evident from the 
form u lae  also, whereby Eff, =  Effp =  E ff, as 
we n oted  earlier;

(4) E ff, decreases with the value o f  Jt, away from  
i :

(5) E ff , increases with the value o f  n t away from

(6) F o r  m =  n, Eff, and E ff, co in cide with the 
corresp on d in g  E ff o f  unsupervised learning as 
per O 'N eiH 's110' tables; this is also evident 
from  the fact that ou r form ula coincides with 
O 'N e ill 's  in the unsupervised case, as pointed 
out at the end o f  Section 3.

From (4) and  (5) above, it follow s that unsymmetric 
groups need  a larger num ber o f  features for the same 
distance betw een groups.

In an earlier article,14’ we had com puted these 
e fficiencies, fo r  a determ inistic but error-prone super­
vision schem e, with a constant probability  a o f  mis- 
s upervision. F rom  a com parison  o f  these two situ­
ations, it turns out that:

x =  0.01 and m =  2, n =  7 with the index

”1 =  1.67 are sim ilar with E ff in the range o f
sjm  + n
9 0 -9 5 % ;
a =  0 .05  and m =  2, n =  6 with the index 

=  1.42 are sim ilar with E ff in the range o f
J m  -f  n
7 4 -9 0 % ;

^  23:5-1

Table 1. Asymptotic relative efficiency of normal discrimi­
nation with stochastic (Beta) supervision

A == 2 A ■= 3 A == 4

7t, m n Eff, Effx Eff, Effjo Eff, EH*

0.5 1 5 0.8980 0.8980 0.9194 0.9194 0.9536 0.9536
2 4 0.4762 0.4762 0.6094 0.6094 0.7852 0.7852
3 3 0.1016 0.1016 0.3590 0.3590 0.6570 0.6570

0.667 1 5 0.8972 0.8988 0.9171 0.9217 0.9518 0.9554
2 4 0.4694 0.4844 0.5972 0.6223 0.7762 0.7943
3 3 0.0847 0.1217 0.3375 0.3820 0.6422 0.6719

0.9 1 5 0.9086 0.8958 0.9097 0.9312 0.9400 0.9647
2 4 0.4927 0.5026 0.5475 0.6801 0.7222 0.8403
3 3 0.0595 0.1996 0.2537 0.4892 0.5580 0.7483

a =  0.20 and m =  1 , n = 2 with the index
|m -  m|

,/m  +  n 
35 -8 0 % ; 
a =  0.35 and 

h  -  »l 
J m  +  n 
18-70%

=  0.4 are similar with Eff in the range o f

m =  4, n =  5 with the index 

=  0.3 are similar with Eff in the range o f

a =  0.5 and m =  n with the index — =  0 are
■Jm +  n

similar with Eff in the range o f  13 -75% .
Thus, our formula and the computations thereof 

give an idea o f  the worth o f  stochastic supervision. 
Stochastic supervision is useful if it is sufficiently far 
away from  an unsupervised scheme. In situations



wherein the design o f  supervision systems is under 
consideration and a choice o f  supervision systems is 
available at various costs, the formulae above may 
help one to choose a system on  the basis o f  cost- 
efficiency analysis. F or instance, when m =  2, n =  4, 
p =  l, A =  4, jtj =  0.667, Eff =  0.78; this means that 
for these parameter values, 78 stochastic supervision 
samples are equivalent to  100 perfectly supervised 
samples. O f course, such an analysis depends upon a 
knowledge o f  the above parameters; these parameters 
can be estimated from  a pilot sample o f  stochastically 
or perfectly supervised samples. In an earlier article/ 51 
we have given m ethods o f  estimating these parameters 
under stochastic supervision.

5. SUMMARY

M otivated by som e situations in medical diagnosis 
and rem ote sensing, we consider the problem  o f  
discriminant analysis when the supervisor’s class­
ification is stochastic and deal with the problem  
o f  efficiency o f  this supervision relative to perfect 
supervision. F or this, we formulate a m odel for 
stochastic supervision in terms o f  the beta distri­
bution; this distribution enables us to  include a variety 
o f  situations from  perfect supervision to com plete 
lack o f  supervision and also to  quantify the amount 
o f  stochastic supervision. O ur m odel which assumes 
the supervisor classification to  be independent o f  the 
feature vector is not totally realistic; however, this 
independent situation is the m ost unfavourable case 
from  the point o f  view o f  efficiency and hence it is 
worth studying. U nder this m odel o f  supervision and 
for the case o f  tw o p-dim ensional normal populations 
with a com m on  dispersion matrix, we derive formulae 
for Efron efficiency o f  stochastic supervision, which 
is an index o f  the am ount o f  statistical inform ation 
contained in the stochastic supervision vis-a-vis perfect 
supervision; another way o f  look in g  at Efron efficiency 
is the relative sample size required under stochastic 
supervision com pared to perfect supervision to 
achieve the same estimation efficiency o f  the discrimin­
ant function coefficients. W e present tables and charts 
o f  this efficiency for various values o f  parameters 
o f  the two p-dimensional norm al populations (the 
relevant parameters are the distance between the two 
populations and the mixing proportions) and various 
supervision situations in terms o f  our beta model. W e 
find that stochastic supervision is quite useful unless 
the tw o beta parameters are nearly the same; and if 
the cost o f  stochastic supervision is much less than 
perfect supervision, it is quite worthwhile to use it.
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APPENDIX— NOMENCLATURE

M(m, n): beta distribution with parameters m, n.
Beta(.,.): complete beta integral.
ER: Error Rate; AER: Asymptotic Error Rate; Eff: Efron 
efficiency.
L: loglikelihood.
X : p-dimensional feature-vector and x: values taken thereof. 
Z : classification o f stochastic supervisor, indicating the 
probability o f  unit belonging to group 1; 0 <  Z  <  1, z: values 
taken thereof. 
y: actual group
Po +  fix :  Bayes discriminant function.
7t j(7ro): proportion o f  group 1(0); k0 +  n L =  1 .

mean vectors o f  X  in groups 0 and 1 respectively.
Z : com m on dispersion matrix o f  X  in the two groups.
N : sample size from the mixture o f the two groups.
(a0,a)tf, {b0,b)n, (c0,c )N: estimates o f (P0,P) based on a 
sample o f size N by various schemes.
A: Mahalanobis distance between the two groups. 
e 1 : ( l , 0, . . . , 0).

M  =  ((my)): variance-covariance matrix o f  estimates (a0,a )N
o f  (/»„.«•
/ :  information matrix (with various subscripts and with or
without an asterisk) o f (P0>P)-
f ( x ) :  density o f  X  in group i, i =  0, 1.
f ( x , z): density o f X , Z  in group i, i =  0, 1.
n ix ): posterior probability o f  group i given x, i =  0, 1 .
7t;(x , z): posterior probability o f  group i given .x, z, i =  0, 1. 
u =  n +  m, v — n — m.
A, B, C: information matrices o f  all the parameters.
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