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1 IN T R O D U C T IO N

Stochastic differential equations (SDE’s) on infinite dimensional spaces arise from such 
diverse fields as nonlinear filtering, infinite particle systems, neurophysiology, etc.

Some of the earliest examples come from nonlinear filtering theory in which the 
conditional distribution of the signal process satisfies a nonlinear measure-valued 
stochastic differential equation (SDE) obtained by Kushner [16] and studied by 
Fujisaki, Kallianpur and Kunita [1]. A more easily handled equation is the SPDE for 
the “unnormalized conditional density” derived by Zakai in [19].

K. Ito [7 ] and M. Hitsuda and I. Mitoma [5] considered the limit behavior of the 
empirical measure of interacting diffusion processes and characterized the limit 
processes by SDE’s on the duals of nuclear spaces. The uniqueness of the solution
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for such SDE’s was proved by I. Mitoma [21] and deduced by G. Kallianpur and 
V. Perez-Abreu [12] from a general result.

This paper is motivated by the applications to neurophysiology, specifically, to the 
behavior of voltage potentials of spatially extended neurons.

In the absence of stimuli, the voltage potential V(x, t) at time t and at a point x of 
a spatially extended neuron satisfies a partial differential equation (PDE) which is 
called the cable equation. The stimuli received by the neuron can be modeled by 
a Poisson random measure or its limit case, a Gaussian white noise. Hence, with 
stimuli, the voltage potential is governed by a partial differential equation subject to 
random perturbations, i.e. a stochastic partial differential equation (SPDE).

SPDE’s and infinite dimensional SDE’s are closely related in the sense that a solution 
u(t, x) of a SPDE may either be regarded as a random field in (t, x) or as a process u(t, •) 
taking values in a suitable function space, e.g. the Banach space of continuous func­
tions C[a, b]. However, a formally written SPDE may have a solution only in a space 
of distributions (See Walsh [18]).

Treated as infinite dimensional SDE’s, linear models for voltage potentials of 
spatially extended neurons have been studied by Walsh [18], G. Kallianpur and R. L. 
Wolpert [14]. We refer the reader to these papers for details.

More realistic problems of neuronal behavior, such as reversal potential problems 
lead to more complicated kinds to stochastic models. Suppose that the impulses arise 
from various types of ions with different equilibrium potentials passing through the neuron 
membrane. Each of them arrives according to independent Poisson processes. The change 
of voltage potential is determined not only by its magnitude but also by the difference 
between its equilibrium potential and that neuron’s voltage potential at that moment.

The SDE’s corresponding to the reversal potential problem are no longer linear. 
G. Kallianpur and R. L. Wolpert [13] studied this problem when the neuron can be 
looked as a single point and pointed out the importance of this problem for spatially 
extended neurons. There is an essential difference between a spatially extended neuron 
and a point neuron as the latter corresponds to a real valued SDE while the SDE  
corresponding to the former is infinite dimensional.

A Banach space valued SDE with non-linear coefficients and driven by a semimar­
tingale (including a compensated random measure) has been studied by Gyongy [2], 
Both his paper and ours rely on the Galerkin method but there are several differences. 
The conditions imposed on the coefficients in [2] (especially the coercivity assumption) 
are not the same as ours and seem to be dictated by the choice of the solution space. In 
addition, our approach differs from that of [2] in an important respect. Gyongy, 
following the method of Krylov and Rozovskii [3], directly aims for a unique strong 
solution. In this paper we first obtain a weak solution via the solution to a martingale 
problem. Up to this step, the monotonicity condition is not involved. The existence of 
a unique strong solution is then established by a separate argument that used 
a monotonicity condition on the coefficients.

A brief explanation is needed to point out the relevance of nuclear-valued SDE’s 
instead of Banach space or Hilbert space valued SDE’s. First of all, when we regard the 
solution V(x, t) of a SPDE as the solution Vt o f  an infinite dimensional SDE, it is 
natural to consider Vt as distribution-valued and determined by the values of Vt [0 ]  =  
\V(x,t)(j>(x)dx for all “smooth” functions <j). The set of all “smooth” functions



usually turns out to be a nuclear space <i> (the simplest example is the space of all rapidly 
decreasing functions) and hence, Vt is a O'-valued process.

Next, the solution considered is for all t ^  0 and not for t restricted to a fixed interval 
[0, T]. As we will see at the end of Section 3, for t e [ 0, T] ,  we obtain a solution taking 
values in a Hilbert space H  _ (r). But in general, there is no Hilbert space in which the 
solution lies for all t ^  0.

Finally, even if we are only interested in a finite interval, using <5' still has some 
technical advantages. Mitoma's paper [17] about the weak convergence of measures 
on D ([0, T],4>') provides a powerful tool for establishing a solution in <5'. After we 
obtain this solution, the regularity of the process is decided by finding the Hilbert space 
in which its paths lie.

Non-linear nuclear space-valued SDE’s driven by Wiener processes have been 
studied by Kallianpur, Mitoma and Wolpert [11], In this paper, we study the equations 
driven by Poisson random measures. Namely, we consider the following SDE’s

* ,  =  * o  +
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y4(s,̂ £Ts)ds +
Jo Jo J

G(s ,Xs_ ,u)N (duds) (1.1)
v

on the duals of a countably Hilbertian nuclear spaces <5, where A: R+ x G:
R + x x [/-><&', (U, n) is a (T-finite measure space, N(duds)  is a Poisson random 
measure on [R+ x U with intensity measure fi(du)ds and N(duds)  is the compensated 
random measure of N(duds).

To begin with, in Section 2, we consider a sequence of ^'-valued processes {X"} 
which are the solutions of a sequence of SDE’s of the form (1.1) with coefficients (A", G”) 
and fixed intensity measure ft. We first prove the tightness of this sequence under 
suitable conditions. Then we show that any cluster point of the distribution sequence of 
{X"} has to be a weak solution of (1.1) while the coefficients (A, G) is the limit of the 
sequence (A", G"). Martingale methods are employed to provide a connecting idea in 
passing to the limit.

In Section 3, the existence of a weak solution for the SDE (1.1) is established under 
the continuity, coercivity and growth condition of Section 2 by making use of the 
results of Section 2 twice. First, we prove the existence of the weak solution when $  is 
finite dimensional. Second, we project the SDE (1.1) to a sequence of finite dimensional 
spaces and apply the results of Section 2 to this sequence.

In Section 4, the unique strong solution of (1.1) is obtained under an additional 
monotonicity condition by introducing the “G ood” processes to implement the 
Yamada-Watanabe argument in this setup.

Because of the limitations of space, the application to reversal potential models and 
the derivation of diffusion approximations for 3>'-valued SDE will be deferred to 
another paper. Some of the results of this paper have been announced in [15] by the 
first two authors.

2 WEAK CONVERGENCE THEOREMS

We begin this section by giving some facts about nuclear spaces and their duals.



D e fin it io n  2.1 O is called a countably Hilbertian nuclear space, if O is a separable 
Frechet space, whose topology is given by an increasing sequence of Hilbertian norms 
|| • |[„, n ^  0, such that the following is satisfied: If H„ is the completion of <5 with respect 
to the norm || • ||„, then for each n there exists m > n, such that the canonical injection 
H m -> H„ is Hilbert-Schmidt.

Let H _ n and <£>' denote the duals of H n and $  respectively. Then identifying H 0 with 
its dual H'0,vfe  have the following sequence of canonical injections:

<&-> ■■ ^ H 2-+H1->H0 = H'0 ^ H _ 1- * H _ 2 ^> (2.1)

It is well known that

oo co

® = C ) H n and < 5 '= U H _ „ . (2.2)
n = 1 n = 1

The following assumptions will be made throughout this paper: There exists 
a sequence (h of elements in <5, such that (ht) is a complete orthonormal system  
(CONS) in H 0 and is a complete orthogonal system (COS) in each space H n, n e Z.

The following notation will be used throughout the paper:

(1) h • s  ^  || ht II” 1, n e Z, ie N +. It is easy to see that (h.") is a CO NS in H n.
(2) For ue<5' and <£e<i> define u[</>] =  the value of the continuous linear functional 

v at the point (f>.
(3) Vp =  N +, 6p will denote the surjective linear isometry H _ p-+Hp given by

(
oo \ oo

1 ^ K P) =  (2-3)

It is easy to see that 6p(j>6 $  for any p e N  + and c/>e<I>.
(4) V p e N +, M >  0, let

A>M = { Z e B ( [ 0 , T l H _ py. sup ||Z ,||_ p < M } . (2.4)
O^t^T F

The following basic proposition can be demonstrated by standard Hilbert space 
techniques.

P r o po sit io n  2.1 (a) Vme N and ie N +, we have that || ht ||m || ht || _m =  1;
(b) V m ,ieN + and z e H _ m,w e  have ( z , h ; m} _ m = z [h?];
(c) Vme^J+ and ueO', we have v = Y* L l i w h e r e  the expansion is in the 

strong topology o f  O'.

To study the SDE (1.1) we need the following definition of a weak solution.

D e f in it io n  2.2 A probability measure Q on 0 ([0 , T], O') is called a weak solution on  
[0, T ] of the SDE (1.1) with initial distribution Q0 on the Borel sets of O' if there exists 
a stochastic basis (Q, 2F , P , ( ^  t)) and a Poisson random measure N  with tr-finite



intensity measure fi, a 3>'-valued process X  defined on it such that Q and Q0 are the 
distributions of X  and X 0 respectively i.e., P X  ~ 1 =  Q and P X 0 1 =  Q0. Further, for 
any </>eG>, te [0 , T ], we have

* , « > ] =  * o W > ] + A ( s ,X s) [ 0 ] d s  + G (s ,X s_ , u ) [</>]N(duds)  P-a.s. (2.5)

If [0, T ] can be changed to [0, oo] and (2.5) hold for any t ^  0, then we call Q on 
D>([0, oo], <t>') a weak solution o f SDE (1.1).

To show the existence of a weak solution of (1.1), we impose the following assump­
tion (I) for (A, G,n): VT >  0 ,3p0 = p0( r ) e N +, such that, V p ^ p 0, 3 q ^ p  and a con­
stant K  = K ( p , q , T )  such that

(11) (Continuity) V te[0, T ], A(t,-): H _ p ^ H _ q is continuous; Vfe[0, T] and 
veH _  p, G(t, v,-)e L2(U, pi;H_p) and, for t fixed, the map v-*G(t,  v,-) is continuous 
from H _ p to L 2(U, H  _ p).

(12) (Coercivity) Vre[0, T ] and <f>e®,

2A(t,<j>)[dp((l))'] ^ K ( \  -I-1| 0 II-p); (2-6)

(13) (Growth) V te[0, T] a n d i;eH _ p,

M M ) | |2 s$K (l +  Hull2. )  and f  || G(t, v,u)\\2_ j i(du)  ^  K(l  + \\v\\lp). (2.7)

N ow , let T  >  0 be fixed, we consider the limit behaviour of a sequence of SDE’s of the 
form of (1.1) on [0, T]:

A-t" =  x ;  +  j  A ”( s , X ”)ds +
(*t

G"( s ,X "_ ,u )N n(duds) (2.8)

under the following conditions:

(A l) (1°) The assumption (I) is satisfied by (A",Gn, jx") for each n. Furthermore, the 
continuity in (II) is uniform in n, the indexes p,q,p0 and the constant K  in (I) are 
independent of n.
(2°) For each 1, the SDE (2.8) has a weak solution Q" on [0, T ] with initial 
distribution Q"y Let X n be a O'-valued process on a stochastic basis (Q", P ”, ( ^ " ) )  
corresponding to the weak solution Q". We further assume that there exists an 
index p = p ( T ) ^ p 0(T)  and a constant K >  0 independent of n such that 
X"(co”)eD([0,  T \ H  _ p(T)) P n-almost surely and

E p" sup ||Z t" | |ip m ^ K .  (2.9)
O^t^T

(A2) (1°) f  = p,
(2°) Vre[0, T ) , v e H _ p and we have A n(t, y)[<jl>] ->A(t, v)[<fi];
(3°) V t e [ 0 , T ] , v e H _ p, u e U ,  f v ll G"(t, v,u) -  G(t, v,u) ||2_ pn(du) -►0;
(4°) {gp} converges to Q0 weakly.



It follows from the assumption (Al) that Q" are supported on B( [0, T ], H _p(T)). Let 
Pj(T) ^  p(T) be an index such that the canonical injection from H _ p{T) into H _ pAT) is 
a Hilbert-Schmidt operator. As H _ p(T) <= H  _p iT), Qn can be regarded as probability 
measures on D ([0, T ) ,/ /_ p(r)).

L emma 2.1 Under the assumption (Al), {Qn} is tight in B ([0, T ], H _ Pi(T)).

Proof  For any <£e<I>, let

C" = A ” (s, X ") [0 ]  ds and M" = G ”(s ,X ^_ ,u )W N "( d u d s) .  (2.10)

Note that, Ve > 0 , 3<50, VO <  d < S0, we have

supP" sup |C" — C g |> £
0 < p  — <x<d

=  supP"( sup
>0< -̂a<(5

A" (s ,X ”)[(!)'] ds > e

< s u p \ e p”( s 2 sup \An(s ,Xns)\_4>']\:
" 8  y  o <s <T

' S \2
) E P"[K[  1 +  sup m 2_p(r)) im i4V )

(2.11)

i.e. {C"} is C-tight. Similarly we can prove the C-tightness for Hence, it
follows from ([8], p. 317, Corollary 3.33 and p. 322, Theorem 4.13) and the assumption 
(A2)(4°) that, V</>e<5, the sequence of semimartingales X"\_4>~] = X"0[(j)'] +  C ” +  M" is 
tight in D([0, T], IR). So, it follows from Mitoma’s argument ([17]) that {Qn} is tight in 
B([0, T ],0 ').

Making use of the assumption (Al)(2°) and by the same arguments as in (2.11) we 
have that, Ve >  0, p >  0 ,3<5 >  0 such that, for any n ^  1, </>e<l>, then || S || p(T) ^  6, implies

<2"<j Z eB ([0 , T ],0 '): sup |Z ,[0 ] | >  e}> sc p.
O^tiT

(2.12)

i.e. {Q "} is uniformly p(T)-continuous (see [17]) and hence, {Q"} is tight in 
D ([0 ,T ] ,t f_ Pi(r)).

Let Q* be a cluster point of {Qn} in B([0, T], H _ p (r)). To characterize Q*, we need 
a connecting idea which is the martingale problem formulated below. Let

’ =  -> IR/3/ieCo (R) and </>e<£ s.t. F(v) = h(v(<j>))} (2.13)



and, for Fe@Q (<&'), consider the operator J?SF: $ ' -» IR defined by

& sF(v) =  A(s, v)[(i)]ti(vl(j)~]) +

-  h(v[<j)]) -  G{s, y,u)[0]/i'(t;[^])}/i(du).

For Z e B ([0 , T ], <D'), let

M F(Z), =  F(Z(tj)  -  F(Z(0)) -  P ' J?sF(Z(s))ds.

(2.14)

(2.15)

D e fin it io n  2.3 A probability measure Q on D ([0, T],<D') is called a solution on 
[0, T ] of the ^-martingale problem with initial distribution Q0 if, (<£'),
{ M F(Z)t,0  <  t ^  T} is a g-martingale and Q->Z(0)~ 1 =  Q0. If Q is a probability 
measureon B ([0, oo),3>') such that (<£'), {M F(Z)t, 0 ^  t <  oojisag-m artingale
and g °Z (0 )-1 =  g 0, we call Q a solution of the !£ -martingale problem with initial 
distribution Q0.

Now, we proceed to prove that { M F(Z)„ 0 <  t ^ T }  is a Q *-martingale for every 
Fe@o(&').  Let M F(Z)t be defined similarly. From the assumption (Al), it is easy to see 
that {M F(Z ),, 0 ^  t ^  T } is a Q"-martingale. To pass to the limit, we need the following 
Lemmas.

L em m a  2.2 Under assumption (Al), we have

£ G"|M f(Z),\2 ^\\h'\\lK\\<t> ||2p m (K  +  1) T, V F e @ % m  

where || h! =  sup|/i'(x)|.
xeR

Proof  Applying Ito’s formula ([8 ], p. 57, Theorem 4.57) to (2.5), we have

(2.16)

W W > ] ) - W W > ] ) - sensF ( x : ) d s

{ W -  M  +  G”( s , X ; _ , u ) W ) - h ( X : _  [<!>-])}N"(duds). (2.17)

Hence

E Q" \ M F(Z),\2 = E pn
oj

|fc(X ,"-M  +  G"(s, x*s, «)[<£]) -  h(X"s_ W ) \ 2nn(du) ds

\\h'\\2 E p" |G "(s,X",u)[^]| /i"(du)ds

\G"(S,X :_ ,u ) \ \ 2_p m \\<]>\\lm iin(du)dS

• (2.18)



L emma 2.3 Under assumption (Al), we have

E 2- sup \ \Zt \ \ iPiiT)^ K .  (2.19)
o==i=sr

Proof  As Q* is a cluster point of {Q”}, without loss of generality, we may assume 
that Qn converges to Q* weakly. By Skorohod’s Theorem ([6], p. 9, Theorem 2.7), there 
exists a probability space (Q,-F, P) and B ([0 , T ] ,H _ p (T))-valued random variables 
c" and £ on it, such that I" and £ have distributions Q" and Q* respectively, and 
converges to £ almost surely. It follows from (Al) that

E  sup H ”\\2- pAT)^ E  sup I 0 2- P(r ) ^ -  (2.20)
O ^ f ^ T  O ^ t ^ T

Let n oo, using Fatou’s Lemma, we have 

E Q' sup ||Z ( ||2- Pi(r) =  £ 0 SUP U t \ \ - Plm

=  £ lim  sup | | ^ | | i Pi(r)^  lim £ 0 SUP II II-Pi(t) ^  (2-21)
rt-*oo O ^ t ^ T  n-»oo 0 < f < !T

The following Lemma 2.4-Lemma 2.6 are elementary and we leave their proofs to  
the reader.

Lemma 2.4 Let C be a compact subset o f  D([0, T~\,H_p (r)). Then, there exists  
a compact subset C 0 o f  H _ p^ T) such that

C < = {Z 6 D ([0 ,T ],H _ Pi(T)):Z ,6C o /or se [0 ,T ]} . (2.22) 

L emma 2.5 For /ieCq (IR),/et

H(x,y) = h(x + y) — h(x) — h'(x)y, Vx, ye[R. (2.23) 

Then, for any x , y , x 1, x 2, y 1 and v2eK, we have the following inequalities:

\H(x ,y ) \<  II/i"II.y2; (2.24)

\H{xu y ) - H { x 2, y ) \ ^  \\h"’ \\00y 2\xi - x 2\; (2.25)

\H(x ,y1) - H ( x , y 2) \ ^ \ \ h " \ \ xl{\y1\ + \y2\)\y1 - y 2\. (2.26) 

L emma 2.6 Let C 0 be a compact subset o f H _ p (Tj. Under the assumption (A2), we have

sup || A" (s, v) -  A(s, v) || _ (T) -> 0; (2.27)
veC o

sup I II G"(s, v, u) -  G(s, v, u) II i  ,T) n(du) -> 0 (2.28)
i?eC0 U

where q ^ T )  is obtained from p l(T) f rom assumption (I).



T he following Lemma is the major step in passing to the limit.

Lem m a 2.7 Suppose (A,G,p.) satisfies assumption (I) and {(An,G n,p.")} satisfies the 
assumptions  (Al) and (A2). Let  £" and £ be B( [0, T~\ ,H_p (Ty)-valued random variables on 
a  probability space (Q, 3F, P) such that converges to £ almost surely.

Then, for Fe£^(5>') and re[0, T ]\ J f ,  M F{£”)t converges to M F(£,)t in probability, 
w h e r e  J f  =  {t: P{w: /  £t_ ) >  0}.

P r o o f  As converges to c, then, for any e >  0, there exists a compact subset C of 
D ( [ 0 ,  T ],Z f_P](r)) such that

P(a>: £"eC)  >  1 — £ and P(a>: £eC ) >  1 -  e. (2.29)

L e t  C 0 be the compact subset of H _  (r) given by Lemma 2.4 and let M  >  0 be such that

C0 c  { x e t f  _Pi(r): || x || _pAT) ^  M ) .  (2.30)

F o r  (O'), there exist he  Cq (R) and such that F(v) =  h(t>[<£]) for any ueO'. 
B y  the definition of M F(Z)t and M F(Z)„ for oj such that £"(«) and £(co)eC, we have 
(suppressing co for convenience)

\M F( ? ) t - M F( a \

< M M ] )  -  H U M )  -  H ? 0W } )  +  h ( u m

+ \A*(s, £ ) W ] /.' ( £  [</>]) -  A(s, U [ £ | W(£, W ) I ds

+
0 JU 

= / l  + 12 + 13- 

N o t e  that

(2.31)

' t

0 u

'V
+

o *

ft
+

* o *

|H (^ s ld>lGn(s, t : , u ) W )  - H ( a n  Gn(s,£,*,u)W]) \nidu)ds

G"(s> ^  « )« -])  -  #  ( u < « ,  g(s, u w m m d s

I Jf (£, [<«> G(s, £", u) [<fl) -  fl(£ , [£ ] , G(s, 5„M )[^])| nidu) ds



+
0 J

J h'" I! „ | G"(s, n:, u)[0 ]  I ■21 [(/»] -  £s [<£] |nidu) ds

II h” IL ( | G"(s, £ u) [</>]| + 1 G(s, z : ,u )W]\ ) \  g *(s , f t  u) [<fl

0 J

+  | G(s, f t  u)[</>] |) | G(s, £ ,  u) [</>] -  G(s, f t  u) [</>] | n(du) ds 

=  J31 +  / 32 +  ^33> say, (2.32)

where the second inequality follows from (2.25) and (2.26). For co such that £"(co) and 
c(oj)eC, we have (again suppressing co),

/ 3 i ^ l l ^ " L X ( i  +  M 2)||</.|| P i
\ W - W \ d s ^ 0 ,  a.s.; (2.33)

/ 322 < | | f c " | (| G"(s, f t  u )[0 ] | +  | G(s, f t  u )[0 ] | )2 ii(du) ds

and

o J
IG" (s, 4", u) [0 ]  -  G(s, f t  u) [0 ]  | ■2 /i(du) ds

sup
0 yeCo«

II G"(s, I), u) -  G(s, I’, u) II 2_pJT)[i(du) ds -*•0;

J33^!|fc"IL 4K T (l +  M 2)||tf>||
0 J

|G (s ,f tu )

-  G(s, f t  u) || i pAT)fi(du) ds -►0.

(2.34)

(2.35)

Hence, for co such that £"(co) and c(oj)gC, we have / 3-> 0. The some arguments yield 
that / 2 ~*0. It is easy to see that, tfcjV,  we have that 11 ->0 almost surely. So, combining 
with (2.29), we see that, for M£(£")( converges to M F(c)t in probability.

The following Theorem characterizes Q*.

T heorem  2.1 Suppose (A, G ,p ) satisfies the assumption (I) and { (An,G",fin)} satisfies 
the assumptions (Al) and (A2). Then Q* is a solution on [0, T ] o f  the !£-martingale 
problem.



Proof  Let c„ and c be as given in the proof of the Lemma 2.3. By Lemma 2.2, for 
fixed t, we can easily see that {M In(cr')t }ne,, are uniformly integrable. Hence, for any 
bounded continuous ^-m easurable function /  on D ([0, T], H p (T)), we have that 
{/(£") M F(£n)t} nsN are uniformly integrable, So, by Lemma 2.7, for t, s$..V and s < t ,  we 
have

E Q M F(Z) t f ( Z )  =  E M F( H \ m  = \ i m E M F„ ( n , m n)
n

=  lim E Q"M F(Z)t f ( Z )  = lim E ^ M Fn( Z ) J ( Z )  =  lim£M„F(£")s/(£")
n n n

=  £ M F( a / ( £ )  =  E Q’ M F(Z)sf ( Z) .  (2.36)

i.e.

E Q‘ M F(Z)tf ( Z )  =  E ? M f(Z ) J ( Z ) .  (2.37)

For general s e t ,  as .1' is at most countable, we can find two sequences s„ and t„ 
decreasing to s and t respectively and such that s„ <  t„. Then, (2.37) still holds with (s, t) 
replaced by (s„, f„) as/  is also .^-m easurable. By the right continuity and the uniform 
integrability of M F{Z)u f ( Z )  and M F(Z)Snf ( Z ) ,  passing to the limit, we see that (2.37) 
still holds for any t > s. Define two signed measures on 0HS by

' T t{A) = E Q’M F( Z ) t \ A{Z) and i r s{A) = E Q M F(Z)s l A(Z). (2.38)

Then, from above, we see that the integrals of /  with respect to signed measures “f ,  and 
t " s coincide for any bounded continuous ^-m easurable functions / .  Hence ' f ,  = 'V, 
on & s. i.e. { M F{Z \}  is a g*-martingale.

It remains to prove Q* is a weak solution on [0, T] of the SDE (1.1). The idea is to 
show that the martingale M^(t, Z),  defined to Lemma 2.9 below, can be represented as 
a stochastic integral with respect to a Poisson random measure. We do this by proving 
that M 0(t,Z) is purely-discontinuous in Theorem 2.2 and characterizing the jump 
process AM <#>(f, Z) in Lemma 2.11.

The proof of the following Lemma is left to the reader.

L em m a  2.8 There exist two sequences o f  real functions {p m}, {gm \ on IR and a constant 
L  such that, V m e N ,  pm€C^  (IR) and

(1) pm{x) =  x when |x | <  m — 1 and |pm(x)| <  L |x | for  any xelR;
(2) || p'm || „ <  L, || p'm || „ <  L/m, and || pmp"m || „ ^  L;
(3) gm(x) are nonnegative smooth functions that increase to |x | as m tends to oo.

Furthermore, there exist two sequences o f  positive numbers {dm} and {Dm} such that 
9m(x ) =  0 when |x | dm or |x | ^  Dm.

L em m a  2.9 let

M f i ,  Z) =  Z, [< /,]-  Z o[ 0 ] - ^l(s,Zs)[^ ]d s. (2.39)
o



Under the conditions of Theorem 2.1, { M ^ t ,  Z ) } , ^ T is a <2*-square integrable martin­
gale.

Proof  Let pm be given by Lemma 2.8. Let FmeS>o(*l>') be given by 
Fm(v) = pm( v W ) .  Then, for Z e A f ^ . ^ ^ ,  we have |Z s[</>] I «= m -  1 and hence,

M Fm{Z), = M J t , Z )  ■ H J Z M  G(S,Z s,u)[</.])^(dM)ds, (2.40)
m v s

U

where H m is defined as in Lemma 2.5 with h replaced by pm and A ^ (nV) ^,-,(T|) denoted 
by A Pi(T\  is given by (2.4). Hence, by (2.40), Lemma 2.5, assumption (13) and (2.19), we 
have

£«' |M Fm( Z \  -  M J t ,  Z) 1 apA Z )  ^  E Q"
o j

p'm II oo I G(s, Z s, u) [0 ]  |2n(du) dsm it co

u

^ { L / m ) t K {  l +  X ) ||$ ||p i(T)->0 as m-> co. (2.41)

On the other hand,

Q * ( ( ^ P l (T ) ) c )

=  6 * (Z e O ([0 ,T ] ,i f_ Pi(r)): sup ||Zr||_Pi(T)> (m -  1)||0 1|“ (V,)
O^t^T

as (142)

So, Ve >  0, we have

Q *(Z eD ([0 , T l H _ Pi(T)): |M Fm(Z)t -  A^(t,Z)| >  s)

<  Q*((A”^ f  ) + ( l / s )E Q"\MF"'(Z)t -  M ^ t ,  Z ) \ AP,„ ( Z ) -*0. (2.43)

i.e.

M Fm(Z)t - * M <t>(t,Z)  in Q* probability. (2.44)

Next, by assumption (I) and the properties of pm, it is easy to show that there exists 
a constant C'  independent of m such that

M fm(Z),| <  C' 1 +  sup IIZ( ||ip i(r) • (2.45)
\  o«t«r /

Hence, by Lemma 2.3, the left hand side of (2.45) is integrable with respect to Q* 
uniformly in m. Then, by (2.44),

E a' \ M Fm{Z)t — M ^ t ,  Z)|-*-0. (2.46)



But { M Fm(Z) t} are 2*-martingales, so Z)} is a g*-martingale. Finally, by
assumption (I), it is easy to see that there exists a constant C"  such that

\ M J t , Z ) \ 2 ^ C " [ l +  sup | |Z J 2_ PAT)  ■ (2.47)

Hence, by Lemma 2.3, { M ^ t ,  Z)} is a g*-square-integrable-martingale.

L em m a  2.10 Let  <M ^)(t,Z) foe t/ie quadratic characteristic o f  the square integrable 
martingale M U n d e r  the conditions o f  Theorem 2.1, we have

< M , ) ( t ,Z )  =
o j

(G(s,Zs,u)[<f>'])2 fi(du)ds. (2.48)

Proof  V$e<X>, let

N t (t, Z)  =  Z,[<^>]2 -  Z 0[<£]2 -  2 A{S>ZS) [$ ]  Z s [</>] ds

o j
(G(s, Z s,u)[<f)J)2 /x(du) ds. (2.49)

Then, by a similar argument as in the proof of Lemma 2.9, {iV^(t,Z)}t^T is a Q*- 
martingale. By the definition of M , ,  it can easily be seen that

(2.50)

where M £ and Z [ 0 ] c are the continuous parts of the semimartingales and Z[</>] 
respectively. By Theorem 4.52 of ([8],p55), we get

[ Z M ] 1= Z ( A Z s[^ ])2 +  <Z[</)r>( =  [M ^](, (2.51)

where [Z  [(/>]] and are the quadratic variation processes of the semimartingales 
Z f f l  and M , respectively. By (2.50) and (2.51), it is easy to show that

Z,[<^]2 =  Z 0[</>]2 +  2 ^(s,Z,)[0] Z , [0]d 5

+ 2 z s- M ^ ( s) +  [ Z f f l ] , . (2.52)

Hence, by the definition of N A t , Z )  and (2.52), we have

N J t , Z )  = 2

=  2

Z s- W d M J s )  + [ _ Z W l - (G(s,Zs,u)[</>])2/i(du)<is
OjU

Zs_[£M M ^(s) +  [M 0] ( -  (G(s,Zs,u )[0 ])V (d u )d s. (2.53) 
0 Jo Ju



Hence

< A O ( f ,Z ) -
o J

(G(s, Z s, u ) l ^ ) 2fi(du) ds

=  « M 0>(t,Z) -  [ M J () +  N J t , Z ) -  2 Z ,_ [0 ]d M .(s )  (2.54)

is a local martingale as all three terms on the right hand side of (2.54) are local 
martingales. On the other hand, it easy to see from the left hand side of (2.54) that it is 
a predictable process which has finite variation on any finite time interval. Hence, by 
Corollary 3.16 of ([8],p32), we have (2.48).

T he o r e m  2.2 Under the conditions o f  Theorem 2.1, M^(£, Z) is purely-discontinuous.

Proof  Let Cj(IR) be non-negative and such that g(x) = 0 when |x | ^  a for som e 
a > 0. Let Y" and F ” be functionals defined on B([0, T], H p (T)) by

Y"(Z) =
o j

g((Gn(s, Z s, u) [0 ]  )2) n(du) ds (2.55)

and

F"(Z) =  X  0((AZS[4>])2)-Y " (Z ) (2.56)
0 <s^r

Similarly, we define functionals Y  and F  on B([0, T], H _ Pi(r)). Let and £, be as given  
in the proof of Lemma 2.3. By the same arguments as in the proof of Lemma 2.7 it 
follows that Y ”(£") converges to Y(c) in probability. As

E  9(iA ^C ^])2) — I  g m sm 2) a.s.,
0<s^t 0<s^t

(2.57)

F"(£") converges to F(£) in probability. 
On the other hand, from

A n(s,X")[4>]ds

+
o j

G"(s,X"^,u)[(f>]Nn(duds) (2.58)

we have

(2.59)



where pn(-),D" are the point processes and jumping sets corresponding to the Poisson 
random measures N n. Hence

I  frt(AX"[0])2) =  X  g((Gn( s , X : _ , p " ( s ) ) W l D„(s))2

0 J
g{(Gn{s, X ns_,u)[(j)2)2) N ’,(duds). (2.60)

So

F n( X n) = g ( ( G » ( s , X ^ , u M ] ) 2)N"(duds). (2.61)

Hence

E ( F n(£n)) = E p,,(Fn{Xn)) = 0 (2.62)

and

E{Fn(£,"))2 = E pn(F”(X"))2 = E p”
o j

"2((G"(s, ^ , h)[< « )2) ^ ) *

0
K  ( G"(s, X " , u ) [<£])2ii(du) ds

< K gE p"
O j U

Gn(s, X ”, u) ||2 Pi(T) || cj) ||2pAT)n(du)ds

^ K g\\<j)\\2pAT)K ( l + K ) T , (2.63)

where K g is a constant such that \g2(x) \ <  X 9|x|. So, { £ ”(£")} are uniformly integrable 
and, passing to the limit, we have £(£(£)) =  0. i.e.

E  £  g((AU<t>])2) = E  
0 0 J

g((G(s, £s, w) [<£] )2) /i(du) ds. (2.64)

So

£ *  £  6,((AZs[ 0 ] ) 2) =  £2- g((G(s,Zs_ ,u ) [0 ] )2)/x(du)ds. (2.65)



Let gm be given by Lemma 2.8, then gmeC j(R ) non-negative and vanish in a neighbor­
hood of 0. (2.65) still holds with g replaced by gm. As gm(x) T |x | when m]  co, we get

£ *  £  (AZs[> ])2 =  £ q' f  (G(s,Zs,« ) [ 0 ] )2n(du)ds
0 < s i t  J O J V

(By M onotone Convergence Theorem) 

=  ( t , Z ) (By Lemma 2.10)

=  £ e'[M J (f ,Z )  =  £2 '[Z [< /.]]I. (By (2.51)) (2.66)

Hence

£ e'<M ‘ >(t,Z) =  0 (2.67)

i.e. Vt, <MJ,)(t, Z) =  0 a.s.. Then, by the continuity of Z) in f, we get
<M£>(t,Z) =  0 Vt, a.s.. This proves that <M^>(t,Z) is purely-discontinuous.

We next identify the compensator of the point process AZS.

L em m a  2.11 L et

r  =  I A e & {H  _p(T)\  {0}): E Q’ £  l yl(AZs) < o o , V 0 < t < T l .  (2.68)
I ‘  0 < s i t  J

Then, for Ae V,

r i r
1 A{G{s,Zs,u))n(du)ds (2.69)I  U A Z S) - P

0<s^f JO, c;

is a Q*-martingale.

Proof  Let h be a bounded non-negative continuous .^-measurable function on 
D([0, T ] ,H _ Pi(r)) and /  on IR+ be given by

/(x )  =  e x p ^ - ^ - ^  0 x sc 1 

=  0 x S s l.

F o r 0 < a < a ' ,  let

S„,a' =  {X e H - Pl(Ty a ^  W -p .m  ^  a'} (2-70)

and, for any closed subset F  of H _ p (r) contained in Sa a, and k  ^  3, define

gk(x ) = f ( k p ( x ,F ) / a )  (2.71)



w h e r e  p(x ,F)  is the distance from x to set F  in H _ p(r). Then gk(x) ^  0 iff || x ||_Pi(r) <  I- 
L e t  {X"}, {£"} and £ be as defined in the proof of Lemma 2.3 and F nk t be functionals on 
[0(110, T~\,H_pAT)) defined by

o j
F l ( Z ) =  X  9k( A Z , ) -

0<s^t

D e f in e  the functional Fk t similarly. Then, for fixed k,

gk{Gn{s,Zs,u))fi(du)ds. (2.72)

+

X  gk( A O -  I
0 <ss$r

gk{G"{s, £",u)) — gk(G(s, £s,u))fi{du)ds
•f

. 0 , t/
(2.73)

T h e  first term converges to 0 almost surely and, for the second term, let 
b "  =  p(G"(s, £",«),F), b = p(G(s,£s,u),F)  and let /  on IR+ be defined by f { t ) - f { y / t ) .  
T h e n  we have

gk{G"(s, u)) -  gk(G"{s, £s, u))/i(ds)
o J

<
0 J

(:gk(G "(S> £"> “ )) -  0 k(G(s, Zs, «))) h ^ a / 2 ,b ia /2 P(du) ds

dk(G (s>^jiu)) ^b"ial2,b>a/2^(du)ds
0 JU

+

< 11 /1

0 J
9k(G(S, ZS,U)) 1bn>a/2 ,bia/2 lJ'(dU)ds

1

k ^ 2 '

o J
|p ( G " ( 5 ,e ,« ) ,F ) 2

— p(G(s, £S,U),F)2 |

&(G"(s, u)) rfs+

+ gk(G(s, z„u) )  1 bn>a/2 , b S a /M du) ds



o J
I G " ( s , £ »

G(s, £s, u) II _p ^ { b  +  b) l(,nga/2.6:Sa/2At(^U) ds

+ 2 / i j u : | b " - b | > Q - i  )ayds

o J u
II G"(s, Z",u) G(s, u) II _Pi(T)( || G"(s, £;,«) II _ Pi(T)

+  li G(s, £s,u)H _p (T))/i(du)ds  

8 k2 r '
+

(k — 2) J o J
G"(s, m) -  G(s, £s, u) || I  Pi(T)n(du) ds (2.74)

which converges to 0 in probability by the same arguments as in the proof of 
Lemma 2.7. It follows as in the proof of Theorem 2.1 that, for fixed k  and t, {F"kJc,")} 
are uniformly integrable and

E h ( ^ ) { F l t( n - F nk,s( n )  = 0. (2.75)

Let n tend to oo, we get

Eh(t)(F"k, t f ) - F nk, M  = 0 (2.76)

Hence, we have

E°h(Z) [  £  gk( A Z r) ~ gk(G{r, Z r, u))fi(du) dr ) =  0. (2.77)

Since gk decreases to 1F as k -+ oo, by the monotone convergence theorem, we have

E ^ h ( Z )  £  M A Z r) = E * h ( Z ) 1 F(G(r,Zr,u))fi(du)dr (2.78)

for any closed subset F  of Sa tt„ As both sides of (2.78) define two measures on Sa a, and 
coincide for all closed sets, (2.78) holds for any Borel subset of Sa a.. Letting a —>0 and 
a'-> oo, (2.78) holds for any Borel subset of H _ p (T). This proves the lemma.



T h e o r e m  2.3 Under the conditions o f  Theorem 2.1, Q* is a weak solution on [0, T] o f  
the SDE (1.1).

Proof  From Lemma 2.11 we know that the point process A Zs has compensator

q(t,E,co) = fi{u: G( t ,Zt_ ,u ) eE }  (2.79)

then, using Theorem 7.4 of ([6 ], p93), there exists an extension (Q, P , ^ t) of the 
stochastic basis

( 0 ( [0 , T \ , H _ pAT)) , # ( B ( [ 0 ,  n H ^ Pi(T)) ) ,Q * , 3 t)

and a stationary J^-Poisson point process N  on (Q, . F ,  P, .‘F t) with characteristic 
measures n(du), such that

# { s  5% t : A Z se E }  —
o j

1 E{G(s,Zs_,u))N(duds).  (2.80)E 
V

By the definition of and (2.80), we have

AM,(s)  = AZ(s) =  G(s,Zs_ , p ( s ) ) M  l D(s) (2.81)

where p( ), D are the point processes and jumping sets corresponding to the Poisson 
random measure N.  But M(l| is a purely-discontinuous martingale, so that, by definition 
1.27 of ([10],p72), we see that

M 4 t )  =

and hence

Z(t) = Z(  0) +

g(s, Z s _,«)[</>] N(duds),  (2.82)
o Jv

^4(s, Z s)ds  +
o o j

g(s ,Zs_,u)N(duds).  (2.83)
u

3 EXISTENCE OF A WEAK SO LUTIO N

In this section, we use the basic results of the last section to derive the existence of 
a weak solution of the SDE (1.1). The idea is as follows: first, we prove the existence of 
the weak solution on [0, T] of (1.1) when the nuclear space <5 is finite dimensional, say 
Ud. Then, employing the Galerkin method, we project the coefficients of the equation
(1.1) to a sequence of finite dimensional subspaces and consider the corresponding SDE  
on these subspaces. We get the desired existence by proving that this sequence of 
equations satisfies the assumptions (A l) and (A2) of §2. Applying the results to the 
intervals [0, T], [2 T, 3 T ],. . . ,  we get a sequence of solutions of (1.1) in these intervals 
and, connecting them, we obtain a solution on the interval [0, oo].



First of all, let us consider (1.1) when <£ =  Rd. In this case, H p =  IRd for all p. The SDE
(1.1) can be rewritten as

x ,  =  Z + a(s, x s)ds +
o o J

c(s,xs_,u)N(duds)  (3.1)

where a: R+ x Rd -» !Rd and c: R + x Rd x U  -> Rd are two measurable mappings, N  is 
a Poisson random measure on IR+ x  U with respect to a stochastic base (Q, $F, P , { ^ , ) )  
and £ is a ^ -m easu rab le  Revalued random variable.

In the present setup, we make the following assumption (F): V T  > 0, there exist 
constants K l and K  2 such that

(FI)(Continuity) V fe[0 , T],a(t,-): Rd->R d is continuous; V te [0 ,T ] and x e R d, 
c(t ,x,-)eL2(U,fi; Rd) and, for t fixed, the map x->c(t ,x ,  •) is L 2(U,n,  Rd) continuous. 
(F2) (Coercivity) V te  [0, T],

2 < a (f ,x ) ,x > ^ K 1(l +  |x |2); (3.2)

(F3) (Growth) V te[0 , T] a n d x e R d,

\a(t,x)\2 < X 2(1 +  |x |2) and \c(t,x,u)\2n ( d u ) ^ K 1{l + |x |2) (3.3)

where <■, • > and |-| are the inner product and norm in IRd respectively.

Remark 3.1 If we replace K l and K 2 by K  = m ax( K l , K 2), the assumption (F) is 
just a re-statement of the assumption (I) of §2 in the present setup. We distinguish 
and K 2 for technical reasons which will become clear later on.

Even in the finite dimensional situation, to solve the SDE (3.1), we follow [3] and 
assume an additional monotonicity condition (FM): There exists a constant L >  0, such 
that

2 ( x - y , a ( t ,  x) — a(t,y)> + |c(t,x, u) — c(t,y,u)\2fi(du) ^  L \ x  — y \2, Vx, y e 0 t d.
u

(3.4)

It is one of the major points made in this paper that the assumption (F) is needed for the 
existence of the solution of (3.1) and the role played by (FM) is for the uniqueness of the 
solution. But, to make use of the existing results, we still impose the condition (FM) to 
solve (3.1) and remove it in Theorem 3.1. The estimate (3.5) given below is of crucial 
importance for this paper.

L em m a  3.1 Under the assumptions (F) and (FM), the SDE (3.1) has a unique solution. 
Furthermore, i f  £ |£ |2 <  co, then, there exists a constant K  = K ( K 1, T , E \ £ \ 2) such that

E  sup |x (|2 <  K ( K t , T,£|<!;|2) <  oo. (3.5)
O^ t ^ T



Proof  The existence and uniqueness of the solution of (3.1) is a special case of the 
Theorem 1 of ([3], p. 5). So, we only need to prove the estimate (3.5). Applying It6’s 
formula to (3.1), we get

w 2 = m2 + 2 <xs,a(s, x s) ) d s  +
o j

\c(s,xs,u)\2 fi(dti)ds

+
Oj

{ |c (s ,x s_ ,« ) |2 +  2 ( x s_ ,c ( s ,x s_,u)}}N{duds) .  (3.6)

Let i m =  inf {t ^  T:  | x t | >  m} be a sequence of increasing stopping times. Hence, by (3.6), 
we have

|x tAJ 2 ^ m 2 +  2 K x (1 +  |x j 2)rfs

+
' t  A t m

{\c{s,xs_,u) \2 + 2 ( x s_,c(s ,xs_,u)}}N{duds).  (3.7)

Let

then

f m(t) =  E  sup |x ,|2 and M ,=
r  ^  t  A t m

<xs_ ,c (s ,x s_,w)>JV(dwrfs), (3.8)

* t  A t m

f m( t ) ^ E \ £ \ 2 + 2 K l t + 2 K l E  I \ x f d s  + 2E  sup M r
Jo

+ E sup
r^ tA xn 0 J

\c{s,xs_,u)\2 N{duds) f. (3.9)

Note that

: sup j [ 
( J o  .

|c(s, x s_,u)\2N(duds)

^  E  sup
r<rAt» 0 J

\c{s,xs_,u) \2N(duds)  + \c(s,xs_,u) \2 [i(du)ds

= 2 E
' t  A t m

\c(s,xs,u)\2fi(du)ds <  2 K 1t + 2 K 1E
' t  A  t m

lxJ2ds. (3.10)

On the other hand, M, defined in (3.8) is a local martingale with quadratic variation 
process

[M ],= (3.11)
O j U



by the same arguments as in (2.60). It follows from the Burkholder-Davis-Gundy 
inequality that

2£ sup M r^ 8 £ [M ],1'2Im =  8£

^ 8 £

( x s,c (s ,xs, u ) } 2N(duds)}112

\xs\2\c(s,xs,u)\2N(duds)}112

< 8 £ (  sup |x r|
r < t A tm

< - £  sup |x r|2 +  8£  
2 r=S( At„

1.

|c(s, x s,u)\2N(duds)}1/2

|c(s, x s,u)\2N{duds)

< ^ £  sup |x r|2 +  &Kxt +  8 X j£
2 r i t Atm

Hence, by (3.9), (3.10) and (3.12), we have

/ m(f) <  £ |£ |2 +  l 2 K 1t +  12K1E 

Hence

/ m(t)^ 2 ^ £ |^ |2 +  12K1t + 1 2 K 1

and so

|x j 2 ds. (3.12)

\ x s \2 d s + - r ( t ) .

f m{s) ds

(3.13)

(3.14)

f m(t) ^  2 (£ |£ |2 +  12XjT) + 2(£t^ |2 +  12K lS)e12KiT~s)ds = k ( K u  T ,£ |£ |2) <  oo.

(3.15)

Letting m-> oo, we get our estimate.

The following Theorem yields the existence of a weak solution on [0, T] of the SDE
(3.1) without the monotonicity condition (FM).

T heorem  3.1 Under assumption (F) and E\c \2 <  oo, the SDE (3.1) has a weak solution 
x  on [0, T] and

E  sup |x t|2 ^  K ( K 1, T , E \ ^ \ 2) < co. 
oit  s r

(3.16)



Proof  Let J  be the Friedrichs mollifier and

a"(t, x) - a(t ,x — n 1z)J(z)dz  for |x |^ n

=  a”(f, n x /|x |) for Ixl > n (3.17)

and

c"(f, X, u) ■■ c{t,x — n 1z,u)J{z)dz  for |x |^ n

=  cn{t, nx/ \x\ ,u) for |x l> n . (3.18)

It is easy to verify that, for each n, (a", c", p) satisfies the assumptions (F) and (FM) 
with

K \  =  3 K 1 + 4 ^ / k ~2, K ”2 = 3 K 2

and

L =  8(l +  (n + l ) 2)n2 

Hence, by Lemma 3.1, the SDE

J(z) (i-M 2y:d z m a x ( K 1, K 2)-

x? =  £ + a"(s,x")ds  +
o j

cn(s,x"_ ,u)N(duds)

has a unique solution x" and

E  sup |x"|2 ^  K ( 3 K X +  4 ^ / k ~2, T ,£ |^ |2) < oo.

(3.19)

(3.20)

(3.21)

(3.22)
o < i < r

This proves that the sequence {(an, c n, /*)} satisfies the assumption (Al) with

K  =  m ax(3K j +  4 ^ / k ~2, 3 K 2) and K  = K ( 3 K 1 + 4 ^ /x ^ ,T,E\%\2). (3.23)

The assumption (A2) is easy to check. Hence, by Theorem 2.3, the SDE (3.1) has a 
weak solution x on [0, T]. Applying the proof of Lemma 3.1 to this weak solution we 
obtained the estimate (3.16).

Now, we come back to our original problem and project the SDE (1.1) onto 
a sequence of finite dimensional subspaces. Let ad: IR+ x Rd->(R‘i and gd: 
R+ x [R4 x U  - » be defined by



wherex =  (x1, . . . , x <i)eR ‘'. Let Q0 be a probability measure on H _ ro such that

E Q°\\v | | i ro <  oo. (3.25)

Letp(T) =  max(p0(T),r0) and n: H _ p(r)-> Rd be a mapping given by

n {v)k = v [h£(T)] ,  k = \ , 2 , . . . , d  P-26)

and let Qd0 =  Q0° n ~ 1 be the induced measure of Q0 on IR*'.

Lemma 2.2.2 Under the assumptions (I) and (3.25), the SDE

rt r t
x? = x d0 + a (s, x d)ds + 

o Jo J
gd(s,xd_,u)N(duds)  (3.27)

on with initial measure Qd0 has a weak solution x d on a stochastic basis 
(Qd, ^ i, P d,{ ^ rdt )) and

E pd sup |xf |2 <  K(K, T , E Q° ll^ll-p(T)) <  co. (3-28)
0 < t ^  T

Proof  For each d, it is easy to see that the assumption (F) is satisfied by (ad, gd, n) 
with

K \  = K  and K \  =  max(|| hk||2(r)| | 1 ^  d ) K .  (3.29)

The assertion of the Lemma follows from Theorem 3.1.

Remark 3.2 That K d in (3.29) depends on d is the reason that we do not like the 
estimate (3.16) depending on K 2 and we distinguish K t and K 2 in the assumption (F).

For the weak solution x d, we define the corresponding H  _ p{T)- valued cadlag process 
X d by

x ? = £ ( * ? ) A - pm- (3-3°)
k= l

Then

sup E Qsup ̂  || X d || i  p(r) <  K(K,  T, E  || X 0 1| 2_ p(T)). (3.31)

Let A d: R + x $ ' - * 0 '  and Gd: R + x  $ ' x  U -»$ ' be two sequences of measurable 
mappings given by

A d(s,v)= £  ^ t s ,  Z u [/ifr)] / i / p(r,W (r,] / ik- p(T) 
fc=l \  j= l  J

(3.32)

Gd(s,v,u)= £  g ( s ,  Z  v l h f T>-]hr«T\ u X h * T>] h;«r\  
k=l \  j=l J



Let y : H _ p(T)^>H_p(T) be a mapping given by

y ( v ) = ' i v i h « T>]h;«T> (3.33)
1

and let Qd0 =  Q0° y ~ 1 be the induced measure of Q0 on H  _ p{Ty Then X d is a solution of 
the SDE

X d = X d0 + A d( s , X ds)ds +
o J

G d{s ,X d_,u)N{duds ) (3.34)

on the stochastic basis (£2 , 8F , P  , with initial measure Q0.

T h e o r e m  3.2 Under the assumptions (I) and (3.25), the SDE (1.1) has a weak solution 
X  on [0 , T ]  with initial distribution Q0 and

E  sup \ \X , \ \ ip m ^ K ( K , T , E ^ \ \ v \ \ 2_p(T)). (3.35)
ost^r ^

Proof  By Theorem 2.3, we only need to check that (A4, Gd, p.) satisfies the as­
sumptions (A l) and (A2). By the continuity of A(t,-) on H _ p, V w e H _ p, V e> 0 , 
3<5(w),Vw'eH_ p with j|w — w '||_p <<5(w), we have \\A(t,w) — A(t,w')\\_q <e.  For 
fixed v0e H _ p, let

C =  | x  t)oC V P] /j7 P:d6^ j u ( t;o} and S(w,S(w)) = { w ' eH  _ p:\\w — w'\\_p <d(w)}.

(3.36)

As C is a compact subset of H _ p and {S(w, S(w)/2: w e C }  is an open covering of C, there 
exist Wj, . . .  ,w„eC such that

C c  [J S{wk,d(wk)/2). (3.37)
fc= 1

Let 2<5 =  min{(5(w)l):fc =  l , . . . ,n } .  If w eC  and w’e H _ p, || w — w' || _ p <  d, we have 
a k such that || w — wk || _p <  d(wk)/2, and hence

II W k -  w' II _ p  ^  II w -  w j  _ p +  II w -  w' II _ p <  5(w k) (3.38)

so that

|| A{t, w) -  A(t,w')  || _q ^  || A(t, w) -  A(t ,wk) || +  || A(t, wk) -  A(t, w')  || _q < 2s.

(3.39)



Hence, Ve > 0 , 33 > 0 ,V v eH _ p, || v —1>0 || _ p <6 ,  let w =  y(t>0) and w' =  y(i>), then weC  
and || w — w' || _ p < S. Hence, by (3.39),

\\Ad( t , v ) - A d(t,v0)\\2_q = || £  {A( t ,Y>' ) -A( t ,w)[hH]h^  ||2_ ,
k =  1

|| A(t,  w') -  A{t, w) II 2_ q < 4s2. (3.40)

This proves that A d(t,v) are continuous in v uniformly in d and assumption (A l) is 
satisfied. Assumption (A2) is verified similarly.

Finally, we construct a weak solution on [0, oo] for (1.1). First of all, let us construct 
a sequence of measures Qn on D" =  D ( [0 ,« T ] , / f_ p (nr)) by induction. If n =  1, take 
Ql = Q*. Suppose that Q„ on D" has been constructed, we now construct Qn+1 on 
D"+1.

For 0 ^  t ^  T, v ^  O' and ue  U, let

A(t,v) = A{t + nT,v)  and G(t,v,u) = G(t +  nT,v,u).  (3.41)

Then A  and G satisfy the assumption (I) with p0(T)  and K ( p ,q ,T )  replaced by 
p0((n +  l)T )and K(p,q, (n +  1) T)  respectively. With initial distribution Q0 — Q„-■ Z ~ j  , 
the SDE

-X, —X 0 +  ^4(s, X s)ds + G(s, X  s_ ,u ) N  (duds) (3.42)
v

has an H _ p((n+1)r))-valued weak solution Q* on [0, T]. As D 1,B+1 =  
D([0, T ] ,// ._ Pi((n + 1)T)) is a Polish space, the regular conditional probability measure

exists. Let

be given by

£ * (• )  =  £ 5"(Ze -|Z0 =  z0) (3.43)

n \ 2 ( n )  <= D" x D 1,"+1 -> D"+ 1 (3.44)

rl \ Z \ as O ^ t ^ n T

where 9(n)  =  {(Z 1,Z 2)eD" x D 1’n+l: Z 1nT = Z 20}. 
Define a measure Q*+ j on D" x D ‘-"+1 by

Q:+1(A x B) = ^ Q ^ W Q M Z 1) (3.46)

and B e D 1- ^ 1. It is easy to show that Q*+1(S>(n))= 1, and hence, 
Qn+l induces a measure Qn+l =  2 * +1°7T 1 on D"+1.



{Q„} can be regarded as probability measures on B ([0, oo), O') and

Qn+lWnT = Qn (3-47)

where 38NT is the natural c-algebra on D( [0, oo], O') upto time nT.  Hence, the following 
set function

Q(B) = Qn(B) for B e@ nT. (3.48)

on the algebra u „ J i7. is well-defined and cr-additive. Hence Q can be extended to 
a probability measure on v„i?nJ. =  M. Denote this extension also by Q, we have

e i^ „ r  =  e„. (3.49)

L em m a  3.3 Q is a solution o f  the J?-martingale problem.

Proof  We only need to show that, for any (O'), 0 ^  s <  t <  oo and B e & s, we 
have

( M F(Z)t — M r (Z)s)Q(dZ)  =  0. (3.50)
J b

The proof is by induction. If t <  T, (3.50) follows from Lemma 2.1. Suppose (3.50) holds 
when t ^ n T ,  we prove it still holds when t ^  (n +  1) T.

First, we assume that n T  ^ s < t ^ ( n  + l )T .  Let and M F be defined by (2.15) 
with A  and G replaced by A  and G of (3.41) respectively. As B e & s, 
n ~ 1(B r) B "  + 1)e38lT x it follows from standard arguments of measure theory
that we may assume n ~ 1( B n B " +1) = C x D with C e J ^  and De3 i2s_nT in the 
following calculations:

( M F( Z ) , - M F(Z)s)Q(dZ)
B

(M f( Z \  — M F(Z)s)Qn+1(dZ)
B n  D ” ' - 1

( M F( Z 2)t_nT -  M F(Z 2)s_nT)Q*iT(dZ 2)Qn(dZ1)
n  — 1( B n D M)

Qn{dZl )E&{{MF{ Z 2)t^ nT- M F{Z2)s_nT) ) \ D( Z 2) \ Z l  = Z lnl 

Qn{ d Z ' )E& {E & ({M F{Z2\ _ nT

-  M F( Z 2)s_nT) ) \ D( Z 2) \ ^ 2- nT) Z 20 = Z„V) =  0. (3.51)



Finally, if s <  n T  < t sg (n + 1) T,  then

E q( M f(Z),\<g t ) =  E Q(EQ( M F(Z), \&nT\@s) = E Q( M F(Z)nT\ a s) =  M F(Z)SQ-a.s.

Similar arguments yield the following Lemma.

L emma 3.4 (1°) For any <£e<I>, {M </l(t,Z )} ,>0 given by Lemma  2.9 is a Q-square 
integrable purely-discontinuous martingale.

(2°) Let

is a Q-martingale on [0 , oo].

T heorem  3.3 Let assumption (I) hold and V^>e<5 , let E |X 0 [(/>]|2 <  oo. Then (1.1) has 
a -valued weak solution such that, V T  >  0 , 3 p x (T ) and we have

Then, it is easy to check the conditions of Lemma 2.2 of ([9], p l5). We have an index 
r such that, V (j) e <D, V(<p) <  9 ]| <j) || p. i.e.

By the definition of nuclear space, there exists an index r0 > r  such that £ k || hr° ||2 <  oo. 
Hence, by (3.57), we have

(3.53)

Then, for A e Y ,  we have

X  U A Z S) l^(G(s, Z s,u))/x(du)ds (3.54)
O J U

E sup || X , || i Pi(T) <  K (X, T, £  || X 0 1| i p(T)). (3.55)
O^t^T

Proof  Let

v(<t>)=(E\x0 t<i>-]\2y i 2. (3.56)

£ [ X oO ] |2 ^ 0 2 ||<R2. (3.57)

e  ll II = Z e \ x 0 IX°] I2 < Z e 2 ll K °  ll? < «>- (3.58)

The rest is exactly the same as in the proof of Theorem 2.3.

Before proceeding further, we return to the point made in the Introduction that in 
infinite dimensional SDE’s for which one seeks a Hilbert space valued solution one 
might encounter situations where there exists no Hilbert space in which the solution X,



will lie (almost surely) for all t ^  0. The following example, essentially due to Kallianpur 
and Ramaswamy ([10]), lends support to this view.

Example  Let H  be a Hilbert space with inner product < •,•), {A-} a sequence of 
positive numbers and {hj} a CONS of H.  Let

<£> =  {4>eH\ 11 </> ||r <  oo VreJ?} (3.59)

where

| 2 _

J

Suppose we have r1 > 0  such that

X(1 +  A.j) 2r> <  °o (3.61)
j

then <5 is a countably Hilbertian nuclear space. Let (U,jx) be a measure space with 
ju(U) — 1 and define mappings A  and G by

A(t,v) = 0 and G(t,»,M)[0 ] = /( r ) [ 0 ]  =  £ < M > ( 1 +  * / ,  (3-62)
j

it can be shown that SDE (1.1) with coefficients given by (3.62) has a unique solution

X t =
o J

f(s)N(dsdu)  (3.63)

and there is no p such that X te H _ p for all t ^  0.

4 EXISTENCE A N D  U N IQ U EN ESS OF THE STRONG SOLUTION

In this section, we shall impose an additional condition to ensure that the SDE (1.1) has 
a unique strong solution. This will be achieved by establishing path wise uniqueness and 
extending Yamada-Watanabe argument ([6 ]) to this setup.

To implement the Yamada-Watanabe argument, we need to realize the driving 
processes (the Poisson random measures in our case) in a common space. This space is 
to be chosen such that the regular conditional probability measures exist for any 
probability measures on it. Unfortunately, this property is not enjoyed by the space of 
all measures on R + x U. Based on these considerations, we shall establish an equival­
ence relation between the SDE (1.1) and another kind of SDE driven by an <f2-valued 
martingale which will be called a Good process. As the Good processes can be realized 
on the Polish space D ([0, T ] , / 2), the Yamada-Watanabe argument is applicable and 
we obtain the uniqueness of the solution for the new equation. Hence, by the 
equivalence, we get the uniqueness of the solution for the SDE (1.1).



We first state some basic definitions.

D e f in i t io n  4.1 Let (Q, P, F) be a stochastic basis and N(duds) a compensated 
Poisson random measure on [0, T ] x U. Suppose that X 0 is a H _ p-valued random 
variable such that £  || X 0 | | i  <  oo. Then by an H _ p valued strong solution on Q to the 
SDE (1.1) we mean a process X t defined on Q such that

(a) X t is an H _ p-valued -measurable random variable;
(b) ArsD ([0 , T ] ,H _ p);
(c) There exists a sequence (<r„) of stopping times on Q increasing to infinity, such 

that, V n

r T A < ! „  r

£  ||G (s,X s,u ) | | i pju(du)ds< co, (4.1)
Jo Jo

T  A f f „

\A ( s , X s)\\2_ [i(du)ds<co-, (4.2)
o

(d) The SDE (1.1) is satisfied for all fe [0 , T] and almost all m e Q.

D efin it io n  4.2 (pathwise uniqueness) We say that path wise uniqueness of the / / _  ,,- 
valued solution for the SDE (1.1) holds if X  and X '  are two H _ p-valued solutions 
defined on the same probability space (Q,J7,P)  with respect to the same Poisson  
random measure N  and starting from the same initial point X 0e H  _ p, then the path of 
X  and X '  coincide for almost all w e Q.

Now, we impose the monotonicity condition (M): Vfe[0, T ] , v 1,v2e H ^ p, we have 
that

< A(t, Dj) -  A(t, v2), v l -  v2> + 11 G(t, v1, u ) ~ G ( t , v 2,u) || 2_ q fi(du) \\v1- v 2 \\1_ q
u

(4.3)

where q is introduced in assumption (I).

L em m a  4.1 Under the assumptions (I) and (M), SDE (1.1) satisfies the pathwise unique­
ness property.

Proof  Let X  and X '  be two f f _ p-valued solutions. Without loss of generality, 
suppose the same sequence (<7„) of stopping times such that (c) of the Definition 4.1 
holds for X  and X'.  For <^eO, we have

(X ,-X ;)[< £ ]=  | {A(s ,X , ) -A(s ,X 'M<l>]ds

+  (G(s, X s_,u) — G(s, X's _,«))[</>] N(duds). (4.4)
o u



By Ito’s formula, we have that

E e - K^ l ( X t - X ,t ) W V

= 2 E
11 A <Jn

e ~ K°(Xs -  X's) m ( A ( s , X s) - A ( s , X ' M M  ds

- E K e ' Ks( (Xs - X ' s) W ) 2 d s + E e - Ks((G(s,Xs,u)

G(s,X's, u))[4>])2/j(du)ds. (4.5)

Let (j) = h l , k e N  and adding, we have

E e - w J  \\Xt - X ' , \ \ 2- q

=  2 E
’ t A o „

e~Ks<Xs -  X ’, A(s, X . )  -  A(s , X's} d s - E K e - Ks\ \ X ' - X ' J 2_„ds

E +
t  A <Tn

| G(s, X s, u) — G (s, X's, u) II 2_ n [du) ds ^  0, (4.6)

Hence, by the right continuity of X  and X ’ and (4.6), X  = X '  almost surely. ■

D e fin it io n  4 .3  (Uniqueness in law) Uniqueness in law holds for (1.1) if, for any two 
stochastic bases (Q \ Jrk,P fc, Fk), two Poisson random measures N k on IR x U with 
characteristic measures fi and two H _ p-valued solutions X ,  X '  of (1.1) with the same 
initial distribution on p, (k =  1,2), we have that X  and X '  have the same probability 
distribution on D ([0, T ] , H _ p).

The following assumption will be made throughout the rest of the paper: (U, ty, fi) is 
a separable measure space.

Now, we introduce the G ood processes which will play an essential role in the 
implementation of the Yamada-Watanabe argument.

D e fin it io n  4 .4  Let (Q, 1F,P,  F) be a stochastic basis. An / 2-valued process H t on 
(Q,£F,P,  F) is called a Good process with respect to a CONS (<£„) of  L2(U, ?/, y) if
3 a Poisson random measure N(duds)  on x U with intensity measure p such that

(f)„(u)N{duds)e„ (4.7)
o j u

where en =  (0 ,. . . ,  0 ,1 ,0 ,...  ) e / 2.



It is easy to see that the series in (4.7) converges and, with respect to the same 
CONS(</>„) of L2((/, !JH , /i), all G ood processes have the same distribution on 
( 0 ( [ 0 ,T ] , / 2) ,$ ? { B ( [0 ,T ] ,/2)}) which will be denoted by P G and called the Good 
measure.

For any s e [0, T] and ueH _p , define the linear operator ij/(s,v) from i 2 to H _Pi, by

Let X  be an H _ p -valued cadlag process on the stochastic basis (Q, 3F, P, F), then it is

Now, we demonstrate how to couple two solutions of (1.1) and discuss some 
properties of the coupled process.

Suppose X '  and X "  are two solution of the SDE (1.1) on stochastic bases 
(Q', P', F') and (Q", , P", F") with initial random variables X'0 and X I  (having the 
same distribution A on H _ p (T)) and Poisson random measures N'  and N"  (having the 
same intensity measure on U)  respectively. Let H'  and H"  be defined in terms of (4.7) 
with respect to the same CONS (</>„) of l3{U,9J,ji) with N  replaced by N'  and N"  
respectively. Then ( X ' , H \  X'0) and (X" ,H",X"0) are two solutions of the SDE (4.10) on 
the stochastic bases (Q',$>',P',  F') and ( Q " , P " ,  F") respectively. Let Q' and Q" be 
the probability measures on D ([0, T ] ,H _ p (T)) x D ([0, T ] , / 2) x H _ p (T) with product 
Borel (T-field induced by (X ' , H ' ,X '0) and (X", H", X I )  respectively. Define a mapping

by ^(Wj.Wj.x) = (w 2,x). Then, Q ' o n ' 1 = Q " ° n ~ 1 = P G®A.
Let Q'Wl’x(iw 1) and Q"ŵ x(dwl ) be the regular conditional Probability of W; given 

w2 and x with respect to Q' and Q " respectively. This is possible since D( [0, T], H  _Pi(r)) 
is a Polish space. On the space

(4.8)

easy to see that

G(s ,Xs_ ,u )N (du ds )=  <p(s,Xs__) dHs. (4.9)
o j u 0

Hence, the SDE (1.1) can be written in a different form

(4.10)

204) =  fK H  1J4(wi>w2)w3>x)Q 'Ws'x^ w 1)Q"w- 5C(dw2) ) P G(dw3)A(dx) (4.13)



for As&(£l),  where :M(Q) is the topological c-field of Q. Then, it is easy to show that 
(w1,w3,x) and (X ' , H ' , X ' 0) have the same distribution and as does (w2,w 3,x) and 
(X" ,H" ,X"0).

L em m a  4.2 For any Ae3S,( D ([0, T],  H_  p(T))), we define two functions j \  and f 2

f \ { w , x) =  Q 'W,X(A) and f 2(w,x) = Q"w-*(A). (4.14)

Then, f 1 and f 2 are measurable with respect to the completion o f  the a-field 
.:#,(D([0, T],<f2)) x :%(H Pi(7)) under the probability measure P G% k.

Proof  For fixed t >  0 and A e @ t(B([0, T \ , H  _p(T))), let Q'W’X(A) be defined as 
Q'W,X(A) with Q'  replaced by its restriction to sub-a-field ^ ,(D ([0 , T ] , H _ p (T))) 
x  .# ,(B ([0 , T ] , / 2) x & t(H _p(T)), then (w, x)t—>Q'tw'x(A) is measurable with respect to 

the c-field <%t(B ([0, T ] , / 2)) x 3S(H ̂ p(T)). Now, we only need to show that

Q ’tw'x(A) = f 1(w,x)  for P G(g) A-a.s (w,x). (4.15)

i.e. for any C e & ( D([0, T ] , / 2)) x & ( H _ p), we have to show that

|  Q'”’x(A)PG(dw)Hdx) = Q'(A x  C). (4.16)

Consider a continuous mapping p: D([0, T],*f2) x  D ([0, T - i ] , / 2)-*’D([0, T ], / 2 
given by

p(w1, w 2)s = wl  if s <  t

=  w2_( +  w(1 if s ^ t .  (4.17)

From the definition of P G, we have

P G{weD)([0, T ] J 2):w(t - )  /  w(r)} =  0 (4.18)

and hence, p  has a continuous inverse p ~ l . So, we only need to prove (4.16) for C of the 
form

C =  {w eD ([0 , T],<?2y .p~ 1w e A 1 x  A 2} x  D, (4.19)

where A xe ^ ( D ([0 ,f ] , / 2)), A 2e@(B([0,  T  — t] ,S 2)) and D e ^ ( H _ p (T)). As Good  
processes are of independent increments, PG°p = P l ® P 2, where P x and P2 are prob­
ability measures on D([0, T],*f2) and D ([0, T  — t ] , f 2) respectively. Furthermore, as 
Q'tw,x(A) is .#,(□([(), 7’] ,^ 2)) x :i3(H_ p {T)) measurable, we can find a measurable 
function g in D ([0, T ] / 2) x H _ Pi(r) such that

Q'”’x(A) = g ( p - 1(w) \x ).  (4.20)



Hence

Q r x(A)PG(dw)Hdx)

g(wl , x ) P 1{w1) P 2(w2)X{dx)
AiX Ai* D

g(w1, x) P  i (w:1) ?,{dx) P 2 (A2)

Q 7 ’x( A ) l f, - HWy sAM x ) P G(Wn ( d x ) P 2{ A 2 )

=  Q'(A  X { { p - ' w Y e A ^  x D ) P 2{A2)

=  P ’i X ' s ^ H ' ^ e A ^ X ' ^ P ' i H ' i t  +  ■) -  H '( t ) e A 2)

= P ' { X ' e A , H ' \ l0'(1e A 1, X ’0eD,H'{ t  + - ) - H ' { t ) e A 2)

= P ' ( X ' e A , ( H ' , X '0)eC)  = Q'(A  x C). (4-21)

L emma 4.3 Let 3S’t be the completion o f  

0 ,(D ([O ,T ],H _ Pi(T))) x » f(D ([0 ,T ] ,H _ J,i(r)) ) x  a ((D ([0 ,T ],^ 2)) *

(4.22)

Then w3 is a G ood process on an extension (Q, J?, Q, .#,) o f (Q,

Proo/ By the definition of P G, there exist a stochastic basis (Q, !F, P, IF) and a G ood  
process H  on it such that P G is the distribution of H. We prove our lemma in four steps.

Step I. w3 is an <f2-valued Q-square-integrable martingale.
Let Aj, A2e » ,(D ([0 ,T ] , H _ pi(r))), A 3e ^ s(D([0, T ] / 2)), A ^ ( E - MT)) and a e £ \  

Then we have

FSIJ(o.Wj(!)-Wj(s)>/2| 1

A3 x  .4 *

m ^ f i  (W3, x ) /2(w3, x)PG(rfw3)A(dx)

=  £C e K«.w.»-w,W>/ 2 g (i4i X A 2 X X 3 X v4J. (4 .23)



Hence, vv3 is of independent increments. It follows from

E % w 3\)  = Ep(Ht) = 0,

and

E<2|(w3)t |2 =  E W =
n= 1 “

that w3 is an / 2-valued g-square-integrable martingale.

Step 2. ' i a e f 2, the quadratic variation of the square-integrable martingales <w3. 
given by

<w3X(a, a) = *£-§•
n

We only need to prove that

R t =  < (w 3) „ a ) r - t Y J %
n n

is a g-martingale. In fact,

EQ( R , - R S \&t)

C
=  £ Q(K(w3)t -  (w3)„ a ) 2, + 2<(w3)( -  (w3)s, a ) ^ ( ( w 3)s, a ) ^ )  - ( t -  s ) ^ f 2

n n

=  £e<(w 3)( -  (W3)s,a> 2, |  =  £ P<H( -  H s>a } 2, -  (t -  s ) £  ^  =  0.
« n n n

Step 3. <w3,a>^2 is purely-discontinuous.
It is easy to see that the mapping

w 3 ^ £  |A < ( w 3)s, a > , 2|2

from B ([0, T ], ( 2) into IR is measurable. Hence 

E Q £  |.A < (w3)s, |:2 =  E p 1 1 A  <HS, a >,, |2

_ £ p y

n,m= 1 ™  J

00 a2

o j
<t>n(u)<t)m(u)N{duds)

=  I  = E Q( w 3),(a,a).
r i  nn = 1

(4.24)

(4.25)

a)^2 is

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)



So, it follows from the same argument as in the proof of Theorem 2.2 that < w3, a)^2 is 
purely-discontinuous.

Step 4. As w3 and H  have the same distribution, the point process Aw3(s) has the 
same compensator as the point process AH(s)  which is

f 00 1
q(t,E,o)) = p \ u :  £ -< £ ,,(« )e„e£} V £e^(*f2). (4.31)

(. n= l n

It follows from the same arguments as in the proof of the Theorem 2.3 that there exists 
a Poisson random measure M  with intensity measure p. on an extension of (Q, $',) 
such that

00 1 f  C
(W3) < = Z ~  <t>„(u)M(duds)e„. (4.32)

n = l n J o  JU

Hence, w3 is a G ood process on an extension of (Q, M', Q,88't).

We leave the proof of the following elementary lemma to the reader.

L em m a  4 .4  Let P l and P 2 be two probability measures on a Polish space X  with metric 
p. I f  (Pj x P 2){ (x 1,x 2):x 1 =  x 2} =  1, there exists a unique x e X  such that  
P 1 = P 2 = S{X].

T h eo rem  4.1 Under assumptions (I) and (M), uniqueness in law holds and the SDE (1.1) 
has a unique strong solution.

Proof  Let X ' and X " be two solutions of the SDE (1.1). From the arguments above, 
we see that (wl5 w3,x) and (w2, w3,x ) are two solutions of (4.10) on the same stochastic 
basis (Q, J?, Q, 3#t). Let N  be the Poisson random measure on this stochastic basis 
corresponding to the Good process w3. Then (w t , N , x) and (w2, N , x) are solutions of
(1.1) on the same stochastic basis. By the pathwise uniqueness proved in Lemma 4.1, we 
have that g (w 2 =  w1) =  1. Coming back to the original probability space, we have 
Q{w2 =  Wj) =  1. But, by (4.13),

e (w 2 =  Wl) =  JjQ'"'*®g""'*(W2 =  w2)PG(dw)k(dx), (4.33)

so, for Pg(x)A-a.s. (w,x), we have

Q'w'x®Q " w’x{w 1 = w2) =  1. (4.34)

By Lemma 4.4 and (4.34), we have a mapping

F : D ( [ 0 ,T ] y 2) x H _ Pi(r)^ D ( [0 ,T ] ,H _ Pi(r)) (4.35)

such that

(4.36)



For any / l e ^ t(IB([0, T], H _ p(T))), by (4.36), Lemma 4.2 and

1 f - hA)(w , x ) =  Q 'w’x(A ), (4.37)

F - \ A )  is in the completion of ̂ ((0>([0, T], t f2)) x .%{H _ p(T)) under P o l a n d  hence, 
F(w, x)  is adapted. Then, for any Poisson random measure N  and initial H  _ (r)-valued 
random variable X 0, corresponding to a Good processes H  with respect to a fixed 
CONS ((/)„) o f L2(U, cy ,  jx), F(H, X 0) is a strong solution of the SDE (1.1).

The uniqueness of the strong solution follows directly from the pathwise uniqueness 
of the SD E  (1.1). The uniqueness in law follows from (4.36).

Finally, we consider the strong solution of (1.1) on [0, oo].

D e f in it io n  4.5 Let (Q,J^,P, F) be a stochastic basis and N(duds) a compensated 
Poisson random measure on !R+ x U. X 0 is a ^'-valued random variable. Then by 
a ^'-valued strong solution on C2 to the SDE (1.1) we mean a process X,  defined on 
fl such that

(a) X ,  is O'-valued, immeasurable;
(b) X eD ([0,oo],<5');
(c) There exists a sequence (a„) of stopping times on Q increasing to infinity and 

independent of 4> such that, VneM and

Th eo rem  4.2 Under assumptions (I) and (M), SDE (1.1) has a unique <f>'-valued solution 
i f ' i ^ e <£, we have E |X O[ 0 ] |2 <  oo.

Proof  (1°) (existence) By the proof of Theorem 3.3, we have an r0 such that X 0 lies 
in H _ ro and E  [|X0 1!2 <  oo. For every nef^J, by Theorem 4.1, there exists an H _ p(n)- 
valued solution X ” for the SDE (1.1) in [0,n], As p y(n) ^  p l {n+  1),X"+1 and X "  are 
two 1(-valued solutions for the SDE (1.1) in [0, n] and hence, by the uniqueness
of H _ p(n +1(-valued solution in [0 ,« ] of Theorem 4.1, we see that X"  =  X"+1 for t ^  n. 
Let =  X "  for n — 1 ^  t < n, neN , then it is easy to see that if is a O'-valued solution of 
the SDE (1.1) on [0,oo).

2° (uniqueness) Let X  be any other 3>'-valued solution of SDE (1.1). By (c) of 
definition 4.5 we have

(4.38)

E  \A ( s , X s) W \ 2d s < c v , (4.39)

£ |X 0[<?!>]|2 <  °o; (4.40)

(d) X ,  [<£] =  X 0 [0 ]  +  A  (s, X s) [<£] ds +
o

G(.s, X s_, u) [0 ]  N  (duds), for each t >  0.

E  sup (X ,[$ ])2 < o o .
0 Affn

(4.41)



It follows from the same arguments as in the proof of Theorem 3.3 that there exists an 
index p„ such that X,  lies in H _p when t ^ n A a n. By the proof of 1°, we may assume 
without restricting the generality that also lies in H _ p when f n A <r„. By the same 
arguments as in the proof of Lemma 4.1 we get our uniqueness.
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