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In this paper, we study stochastic differential equations (SDE's) on duals of nuclear spaces driven by Poisson
random measures. The existence of a weak solution is obtained by the Galerkin method. For uniqueness,
a class of £2-valued processes which are called Good processes are introduced. An equivalence relation is
established between SDE’s driven by Poisson random measures and those by Good processes. The
uniqueness is established by extending the Yamada-Watanabe argument to the SDE’s driven by Good
processes. This is an extension to discontinuous infinite dimensional SDE’s of work done by G. Kallianpur, L.
Mitoma and R. Wolpert for nuclear space valued diffusions.
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1 INTRODUCTION

Stochastic differential equations (SDE’s) on infinite dimensional spaces arise from such
diverse fields as nonlinear filtering, infinite particle systems, neurophysiology, etc.

Some of the earliest examples come from nonlinear filtering theory in which the
conditional distribution of the signal process satisfies a nonlinear measure-valued
stochastic differential equation (SDE) obtained by Kushner [16] and studied by
Fujisaki, Kallianpur and Kunita [1]. A more easily handled equation is the SPDE for
the “unnormalized conditional density” derived by Zakai in [19].

K. It6 [7] and M. Hitsuda and I. Mitoma [5] considered the limit behavior of the
empirical measure of interacting diffusion processes and characterized the limit
processes by SDE’s on the duals of nuclear spaces. The uniqueness of the solution
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for such SDE’s was proved by I. Mitoma [21] and deduced by G. Kallianpur and
V. Perez-Abreu [12] from a general result.

This paper is motivated by the applications to neurophysiology, specifically, to the
behavior of voltage potentials of spatially extended neurons.

In the absence of stimuli, the voltage potential V(x,t) at time ¢ and at a point x of
a spatially extended neuron satisfies a partial differential equation (PDE) which is
called the cable equation. The stimuli received by the neuron can be modeled by
a Poisson random measure or its limit case, a Gaussian white noise. Hence, with
stimuli, the voltage potential is governed by a partial differential equation subject to
random perturbations, i.e. a stochastic partial differential equation (SPDE).

SPDE’s and infinite dimensional SDE’s are closely related in the sense that a solution
u(t, x) of a SPDE may either be regarded as a random field in (¢, x) or as a process u(z, )
taking values in a suitable function space, e.g. the Banach space of continuous func-
tions C[a, b]. However, a formally written SPDE may have a solution only in a space
of distributions (See Walsh [18]).

Treated as infinite dimensional SDE’s, linear models for voltage potentials of
spatially extended neurons have been studied by Walsh [18], G. Kallianpur and R. L.
Wolpert [14]. We refer the reader to these papers for details.

More realistic problems of neuronal behavior, such as reversal potential problems
lead to more complicated kinds to stochastic models. Suppose that the impulses arise
from various types of ions with different equilibrium potentials passing through the neuron
membrane. Each of them arrives according to independent Poisson processes. The change
of voltage potential is determined not only by its magnitude but also by the difference
between its equilibrium potential and that neuron’s voltage potential at that moment.

The SDE’s corresponding to the reversal potential problem are no longer linear.
G. Kallianpur and R. L. Wolpert [13] studied this problem when the neuron can be
looked as a single point and pointed out the importance of this problem for spatially
extended neurons. There is an essential difference between a spatially extended neuron
and a point neuron as the latter corresponds to a real valued SDE while the SDE
corresponding to the former is infinite dimensional.

A Banach space valued SDE with non-linear coefficients and driven by a semimar-
tingale (including a compensated random measure) has been studied by Gyongy [2].
Both his paper and ours rely on the Galerkin method but there are several differences.
The conditions imposed on the coefficients in [2] (especially the coercivity assumption)
are not the same as ours and seem to be dictated by the choice of the solution space. In
addition, our approach differs from that of [2] in an important respect. Gydngy,
following the method of Krylov and Rozovskii [3], directly aims for a unique strong
solution. In this paper we first obtain a weak solution via the solution to a martingale
problem. Up to this step, the monotonicity condition is not involved. The existence of
a unique strong solution is then established by a separate argument that used
a monotonicity condition on the coefficients.

A brief explanation is needed to point out the relevance of nuclear-valued SDE’s
instead of Banach space or Hilbert space valued SDE’s. First of all, when we regard the
solution V(x,t) of a SPDE as the solution V, of an infinite dimensional SDE, it is
natural to consider V, as distribution-valued and determined by the values of V,[¢] =
jV(x, t)¢(xydx for all “smooth” functions ¢. The set of all “smooth” functions
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usually turns out to be a nuclear space @ (the simplest example is the space of all rapidly
decreasing functions) and hence, V, is a ®'-valued process.

Next, the solution considered is for all t > 0 and not for ¢ restricted to a fixed interval
[0, T]. As we will see at the end of Section 3, for te[0, T], we obtain a solution taking
values in a Hilbert space H But in general, there is no Hilbert space in which the
solution lies for all ¢ > 0.

Finally, even if we are only interested in a finite interval, using @’ still has some
technical advantages. Mitoma's paper [17] about the weak convergence of measures
on D([0, T],®') provides a powerful tool for establishing a solution in @'. After we
obtain this solution, the regularity of the process is decided by finding the Hilbert space
in which its paths lie.

Non-linear nuclear space-valued SDE’s driven by Wiener processes have been
studied by Kallianpur, Mitoma and Wolpert [ 11]. In this paper, we study the equations
driven by Poisson random measures. Namely, we consider the following SDE’s

- p(T)

t

X,=X0+J A(s,XS)ds—i—th G(s, X,_,u)N(duds) (1.1)
0JU

0

on the duals of a countably Hilbertian nuclear spaces @, where 4: R, x ¥ - ', G:
R, x® x U—®,(U,%,py) is a o-finite measure space, N(duds) is a Poisson random
measure on R, x U with intensity measure u(du)ds and N(duds) is the compensated
random measure of N (duds).

To begin with, in Section 2, we consider a sequence of ®-valued processes {X"}
which are the solutions of a sequence of SDE’s of the form (1.1) with coefficients (4", G")
and fixed intensity measure u. We first prove the tightness of this sequence under
suitable conditions. Then we show that any cluster point of the distribution sequence of
{X"} has to be a weak solution of (1.1) while the coefficients (4, G) is the limit of the
sequence (4", G"). Martingale methods are employed to provide a connecting idea in
passing to the limit.

In Section 3, the existence of a weak solution for the SDE (1.1) is established under
the continuity, coercivity and growth condition of Section 2 by making use of the
results of Section 2 twice. First, we prove the existence of the weak solution when @ is
finite dimensional. Second, we project the SDE (1.1) to a sequence of finite dimensional
spaces and apply the results of Section 2 to this sequence.

In Section 4, the unique strong solution of (1.1) is obtained under an additional
monotonicity condition by introducing the “Good” processes to implement the
Yamada-Watanabe argument in this setup.

Because of the limitations of space, the application to reversal potential models and
the derivation of diffusion approximations for ®-valued SDE will be deferred to
another paper. Some of the results of this paper have been announced in [15] by the
first two authors.

2 WEAK CONVERGENCE THEOREMS

We begin this section by giving some facts about nuclear spaces and their duals.
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DeriniTIoN 2.1 @ is called a countably Hilbertian nuclear space, if @ is a separable
Fréchet space, whose topology is given by an increasing sequence of Hilbertian norms
|-II,,n =0, such that the following is satisfied: If H,, is the completion of ® with respect
to the norm |-, then for each n there exists m > n, such that the canonical injection
H, — H, is Hilbert-Schmidt.

Let H _,and @' denote the duals of H, and ® respectively. Then identifying H, with
its dual H;, we have the following sequence of canonical injections:

®—-->H,»H »Hy=H,—»H_,»H_,—-- > (2.1)

It is well known that

©®=()H, and &= QIH_". (2.2)

n=1

The following assumptions will be made throughout this paper: There exists
a sequence (h;) of elements in ®, such that (k;) is a complete orthonormal system
(CONS) in H, and is a complete orthogonal system (COS) in each space H,,neZ.

The following notation will be used throughout the paper:

(1) ki =h;lh;ll, ', neZ, ieN*. Tt is easy to see that (k") is a CONS in H,.
(2) For ve®’ and ¢e® define v[¢] = the value of the continuous linear functional
v at the point ¢.

(3) Vp=N", 8, will denote the surjective linear isometry H _ »— H, given by

OP<§ ocihi_”>—=- i oY (2.3)

i=1 i=1

It is easy to see that 0,¢e® for any peN* and ¢e®.
4) VpeN*, M >0, let

A% ={ZeD([0, TLH_,): sup ||Z,],<M}. 2.4)

The following basic proposition can be demonstrated by standard Hilbert space
techniques.

PrOPOSITION 2.1  (a) YmeN and ieN*, we have that |||, |kl _,,=1;
(b) Ym,ieN™ and zeH _,,, we have {z,h; ™) _, =z[h"];
() YmeN™ and ve®, we have v=32 ,v[h"]h; ™, where the expansion is in the
strong topology of @'.

To study the SDE (1.1) we need the following definition of a weak solution.

DEerFINITION 2.2 A probability measure Q on D([0, T], @) is called a weak solution on
[0, T] of the SDE (1.1) with initial distribution Q, on the Borel sets of @' if there exists
a stochastic basis (Q, # ,P,(# ) and a Poisson random measure N with o-finite
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intensity measure u, a @’-valued process X defined on it such that @ and Q, are the
distributions of X and X, respectively ie., PX ~!=Q and PX ;' =Q,. Further, for
any ¢e®, te[0, T'], we have

X, [p]1=X, 1]+ JtA(s, X )[¢plds + th G(s, Xs_,u)[(b]ﬁ(duds) P-as. (2.5)
0 0JU

If [0, T] can be changed to [0, 00] and (2.5) hold for any > 0, then we call Q on
D([0, co], ') a weak solution of SDE (1.1).

To show the existence of a weak solution of (1.1), we impose the following assump-
tion (I) for (4, G, u): VT > 0,3p, = po(T)eN", such that, Vp > p,,3g > p and a con-
stant K = K(p, q, T) such that

(I1) (Continuity) Vte[0,T], At,): H_ ,—~H_, is continuous; Vie[0, T] and
veH_,,G(t,v,)eL*(U, ; H _,) and, for ¢ fixed, the map v — G(t, v,") is continuous
from H_  to LU, ; H_ ).

(I12) (Coercivity) Vte[0, T] and ¢e®,

24(t, ))[0,(D)I <K + 412 ); (2.6)
(13) (Growth) Vte[0,T] and veH _,

A2, <K(1+]v|%,) and jlIG(t,v,u)IIZ_,,#(du)SK(1+Ilvllz.,,} 2.7

U

Now,let T > 0 be fixed, we consider the limit behaviour of a sequence of SDE’s of the
form of (1.1) on [0, T']:

t t
X,"=X3+J A"(s,X:)ds+J J G"(s, X"_,u)N"(duds) (2.8)
o] oJU

under the following conditions:

(A1) (1°) The assumption (I) is satisfied by (4", G", u") for each n. Furthermore, the
continuity in (I1) is uniform in n, the indexes p,q,p, and the constant K in (I) are
independent of a.

(2°) For each n>1, the SDE (2.8) has a weak solution Q" on [0, T] with initial
distribution Qf. Let X" be a ®'-valued process on a stochastic basis (Q", #", P",(#7}))
corresponding to the weak solution Q". We further assume that there exists an
index p=p(T)=p,(T) and a constant K >0 independent of n such that
X w"eD([0, T1, H_ 1)) P"-almost surely and

EP sup || X725 <K. (29)
O<t<T
(A2) (1°) p" = p;
(2°) Vte[0,T),veH_,and ¢e®, we have A"(t,v)[¢]— A(t,v)[];
(3°) Vte[0, T, veH _, uel, [, G"(t,v,u) — G(t,v,u) |2, u(du) —0;
(4°) {Q3} converges to Q, weakly.
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It follows from the assumption (A1) that Q" are supported on D([0, T], H _ 7). Let
p,(T) = p(T) be an index such that the canonical injection from H_ ,into H_, 5, 1s
a Hilbert-Schmidt operator. As H_ ,,, < H_, ., Q" can be regarded as probability
measures on D([0,T),H_ ,1)).

LemMA 2.1 Under the assumption (A1), {Q"} is tight in D([0, T], H_, ).
Proof For any ¢e®, let

c::JtA"(s,X:)[qs]ds and M,"=Jt J G"(s, X", u)[¢1N"(duds). (2.10)
0 U

0

Note that, Ve >0, 364, V0 < 6 < J,, we have

supP"( sup |Cy—Cgl> e>

O<f—a<d

r A(s, XJ)[p]ds

S

=supP"( sup
n O0<f~a<éd

1 _,.
<sup;E" (52 sup IA"(S,X:)[¢]|2>

O<s<T

\2 ..
<sgp<g> E* <K<1 + oquT” X7 llz.,,m> ¢ H§m>

<K& 2,1+ K)/e? <e. (2.11)

ie. {C"} is C-tight. Similarly we can prove the C-tightness for {{M")}. Hence, it
follows from ([8], p. 317, Corollary 3.33 and p. 322, Theorem 4.13) and the assumption
(A2)(4°) that, V¢ e®, the sequence of semimartingales X"[¢] = X §[¢]+ C] + M is
tight in D([0, T'], R). So, it follows from Mitoma’s argument ([ 17]) that {Q"} is tight in
D([0, T], ®).

Making use of the assumption (A1)(2°) and by the same arguments as in (2.11) we
have that, Ve >0, p > 0,36 > 0 such that, for any n > 1, ¢pe®, then || § | pr) < 0, implies

» Q"{ZeID([O,T],(D’): sup |Z,[¢]|>s}<p. (2.12)

Ost<T

ie. {Q"} is uniformly p(T)-continuous (see [17]) and hence, {Q"} is tight in
D([0, T], H

—Px(T))'

LetQ* be a cluster point of {Q"} in D([0, T],H _, (1,). To characterize Q*, we neea
a connecting idea which is the martingale problem formulated below. Let

"D (@)={F:® >R/3heCT(R) and ¢e®s.t. F(v)=h((¢))} (2.13)
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and, for Fe9 ('), consider the operator £, F: @' — R defined by
L Fo)=Als, ) p1h (vl $]) + f {h(v[$] + G(s,v,u)[¢])
U

—h(v[$]) — G(s,v,u)[¢]H (v[$]) } u(du). (2.14)
For ZeD([0, T], @), let

M¥(Z), = F(Z(t)) — F(Z(0)) — ft,?sF(Z(s))ds. (2.15)

DErFINITION 2.3 A probability measure Q on D([0, T],®’) is called a solution on
[0,T] of the #-martingale problem with initial distribution Q, if, VFe2g(®'),
{M"(Z),,0<t< T} is a Q-martingale and Q-Z(0)"*=Q,. If Q is a probability
measure on D([0, 00),®')such that V Fe 23 (@), {MF(Z),,0 < t < oo} is a Q-martingale
and Q-Z(0)™' = Q,, we call Q a solution of the #-martingale problem with initial
distribution Q,,.

Now, we proceed to prove that {M¥(Z),,0<t< T} is a Q*-martingale for every
Fe2{(®'). Let ME(Z), be defined similarly. From the assumption (A1), it is easy to see
that {M7(Z),,0 <t < T} isa Q"martingale. To pass to the limit, we need the following
Lemmas.

LemMMA 2.2 Under assumption (A1), we have
EC|MEI2) P < | HIZK (120K + 1) T, VFedy (@) (2.16)
where || 1’|, = sup|h/(x)].

xeR

Proof  Applying Itd’s formula ([8], p. 57, Theorem 4.57) to (2.5), we have

hX7[¢]) —h(X3[¢])—J ZIF(X])ds
0

= j t f (WX [$] + G"(s, X", u)[¢]) — h(X"_[$])} N"(duds). (2.17)
0JU

Hence

E¥|M(2)* = E”"th |W(X2_[@]+ G"(s, X3, w)[¢]) — h(X]-[$])1* 1" (du) ds

0

<K IlﬁoE”"J J |G"(s, X5 u)[§]1> u"(du)ds
ovvU

<|I# lliEP"JOJU 1G™ (s, X5— )12 oy | @ U3y 1" (dus) ds

<IHIZ 112K +1)T. " (2.18)
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LemMma 2.3 Under assumption (A1), we have

~

E? sup |Z,2, <K (2.19)

O0=<t<T

Proof As Q¥ is a cluster point of {Q"}, without loss of generality, we may assume
that Q" convergesto Q* weakly. By Skorohod’s Theorem ([6], p. 9, Theorem 2.7), there
exists a probability space (Q, #, P) and D([0, T}, H_, 5,)-valued random variables
&" and ¢ on it, such that " and & have distributions Q" and Q* respectively, and £"
converges to £ almost surely. It follows from (A1) that

~

E Sup & ”2 p (DS <E Sup fiés 12 —pT) <K. (2.20)
Let n— o0, using Fatou’s Lemma, we have

[ 2 _ 2
E Sup IIZ,H_,,,m~EoossttlgT||é,ll_,,,(T)

=E lim sup “én”_pm\hmEo sup & ||_p(T K. (221

now 0<t<T n-w ostsT

The following Lemma 2.4—Lemma 2.6 are elementary and we leave their proofs to
the reader.

Lemma 24 Let C be a compact subset of D([0,T1,H_, ). Then, there exists
a compact subset Co of H_, ) such that

Cc{ZeD([0,TLH_, ): Z,C, for se[0,T1}. (2.22)
LemMA 2.5 For heC3 (R), let
H(x,y)=h(x + y)— h{(x) - W' (x)y, Vx,yeR. (2.23)

Then, for any x,y,x,,X,,y, and y,€R, we have the following inequalities:

|Hx, )| < Th" | o v (2.29)
[H(xy, y) — HOep IS " | y2 1%, — X515 (2.25)
|H(x,y,) — Hex, y ) < TR Lo (v |+ [y2)yy — pal. (2.26)

LemMa 2.6 Let C, be a compact subset of H _, . Under the assumption (A2), we have

sup || A"(s,v) — A(s,0) [ -, 1y~ 0; 2.27)

veCo

veCo

supj || G"(s,v,u) — G(s,v,w) || 2 pT) u(du)—0 (2.28)

where q,(T) is obtained from p,(T) from assumption (1).
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The following Lemma is the major step in passing to the limit.

LEMMA 2.7 Suppose (A, G, ) satisfies assumption (I) and {(A", G", u")} satisfies the
assumptions(Al) and (A2). Let " and & be D([0, T], H _ , (1))-valued random variables on
a probability space (Q, F, P) such that £" converges to £ almost surely.

Then, for Fe2& (') and te[0, T]\ A", ME(£™), converges to MF(£), in probability,
where A4 = {t: P(w: &, #&,_) > 0}.

Proof As " converges to &, then, for any ¢ > 0, there exists a compact subset C of
([0, T1,H_, () such that

Pw:&"eC)>1—¢ and P(w:éeC)>1—e (2.29)
Let C, be the compactsubsetof H_, 1, given by Lemma 2.4 and let M >0 be such that
Coc{xeH_, qylxll_, m <M} (2.30)

For Fe2§ ('), there exist he C3(R) and ¢e® such that F(v) = h(v[¢])for any ve @".
By the definition of M¥(Z), and M¥(Z),, for @ such that ¢"(w) and &w)eC, we have
(suppressing w for convenience)

|M5(én)z - MF(é)t'

SIS [o1) — h(&,[¢]1) — h(E5[1) + Ao L4

+ L |A"(s, EHLTN (D)) — A(s, &)L @IH (S LoD ds

+J f |H(E[¢1,G"(5, &5, w)[d]) — HE,[ ], Gls, &, u)[@])| uldu) ds

0
=1, +1,+1,. (2.31)

Note that

Iy < J L |H(E[9],G"(s, &5, w)[]) — HE[9], G (5, &5, ) h])| pdu)ds

0

+J J |H(E[¢1,G"(s, &5 w)[9]) — HE[¢], G(s, &5, w)[9]) | u(du) ds
0JU

+J J |H(E,[6],Gls, €5 w)[$1) — H(E,[$], G(s, &, ) [§])| p(du) ds

0
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< f j LB 1P, £ w6112 7060 — &[] nldu)ds

0
+j J A" 1| o (1G™(s, &% W) [P +1G(s, &5, w[P1DIG"(s, & w)[ 4]
oJU

— G(s, &m w)[@]| p(du) ds + j

0

J A" 1 (1G(s, &5 w) L]l

+1G(s, & wP1NIGls, &, WPl — Gs, &, w1 u(du) ds
=I5 + 15, +1;;, say, (2.32)

where the second inequality follows from (2.25) and (2.26). For  such that {"(w) and
&w)eC, we have (again suppressing ),

Iy <R K(1+ M?)]) ¢HZ‘J 1&5[9] — E[1lds =0, as; (2.33)
0

t

Iizéllh"lle

0

J (1G"(s, &5, P11 +1Gls, &, u)[@11)* u(du) ds
U

J J 1G"(s, &5 u) (9] — G(s, &5, w)[$]1” u(du) ds

0

<A AKTA+ M) 15,

Jr sup j 1 G™(s,v,u) — G(s,v,u)||2 , g, pu(du)ds —0; (2.34)
U

0 veCo

and
I§3<Ilh"llw4KT(1+M2)Il¢ll“‘_[ j I G(s, &5, 1)
0JU

— G(s, £ W) 12 5,y i) ds 0. (2.39)

Hence, for @ such that £*(w) and &w)eC, we have I, —0. The some arguments yield
that I, —0. Itis easy to see that, t¢.4", we have that I, — 0 almost surely. So, combining
with (2.29), we see that, for t¢.4/", MF (&™), converges to MF(£), in probability.

The following Theorem characterizes Q*.

THEOREM 2.1  Suppose (A, G, p) satisfies the assumption (1) and {(A",G", ")} satisfies
the assumptions (A1) and (A2). Then Q* is a solution on [0, T] of the ¥-martingale
problem.
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Proof Let ¢, and ¢ be as given in the proof of the Lemma 2.3. By Lemma 2.2, for
fixed t, we can easily see that {MZ(£"),},. are uniformly integrable. Hence, for any
bounded continuous #,-measurable function f on ([0, T], H _ p.(ry)» We have that
{f(Ey M~ (€"),} ,en are uniformly integrable, So, by Lemma 2.7, for t, s¢ 4" and s < t, we
have '

E®M"(Z),f(Z)= EM"(&), (&) = li'{nEMf(é")tf(i")
=lim E2"M,/(2), f(Z) =lim E¥"M(Z), f(Z) = im EM ("), f (")

= EM™ (&), f(&) = E2 MF(Z),f(Z). (2.36)
ie.

ESM"(Z),f(Z)= ESM"(Z),f(Z). (237)

For general s<t, as 4" is at most countable, we can find two sequences s, and ¢,
decreasing to s and ¢ respectively and such that s, < t,. Then, (2.37) still holds with (s, t)
replaced by (s,, t,) as f is also Z, -measurable. By the right continuity and the uniform
integrability of M¥(Z), f(Z)and MF (2),, f(Z), passing to the limit, we see that (2.37)

tn

still holds for any t > s. Define two signed measures on %, by
¥V (A)=EC M*(Z)t1,(Z) and v (A)=ECMF(Z)s1,(2). (2.38)

Then, from above, we see that the integrals of f with respect to signed measures ¥, and
¥’ coincide for any bounded continuous % -measurable functions f. Hence ¥, = ¥
on %,.1.e. {M*(Z),} is a Q*-martingale.

It remains to prove Q* is a weak solution on [0, T] of the SDE (1.1). The idea is to
show that the martingale M (¢, Z), defined to Lemma 2.9 below, can be represented as
a stochastic integral with respect to a Poisson random measure. We do this by proving
that M(t,Z) is purely-discontinuous in Theorem 2.2 and characterizing the jump
process AM (t,Z) in Lemma 2.11.

The proof of the following Lemma is left to the reader.

LEMMA 2.8  There exist two sequences of real functions { p,,}, {g,.} on R and a constant
L such that, VmeN, p,,eCZ (R) and

(1) pulx)=x when |x| <m—1and|p,(x)| < L|x| for any xeR;
2 lowlle <L, llppl, < Ljm, and | p,o; 1, < L;
(3) g,,(x) are nonnegative smooth functions that increase to | x| as m tends to 0.

Furthermore, there exist two sequences of positive numbers {d,,} and {D,,} such that
Im(X) =0 when |x| < d,, or x| =2 D,,.

LEMMA 2.9 Voe®, let

My(t,Z)=Z,[$]—-Z,[¢] - j A(s, Z) 4] ds. (2.39)
0
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Under the conditions of Theorem 2.1, {M(t, Z) }, < r is a Q*-square integrable martin-
gale.

Proof Let p, be given by Lemma28. Let F,e23(®') be given by
F,,(v) = p,,(v[¢]). Then, for Ze 47:T) »we have |Z,[¢]| <m—1and hence,

m— 1}l p 4T

MPn(Z), = M (1, 2) j

j H,(Z,[9],G(s, Z, u)[¢]) u(du) ds, (2.40)
U

where H,, is defined as in Lemma 2.5 with h replaced by p,, and Af’;l‘_T)l)H ooy denoted

by 47D is given by (2.4). Hence, by (2.40), Lemma 2.5, assumption (13) and (2.19), we
have

t
E|M™™(Z),— M ,(t,Z)1 ;.(Z) <E? J
0

j I omll 1G5, Z,, ) [$11? u(du) ds
U

<(L/mtKA+K)[¢124~0 as m—ooo. (241)

On the other hand,
Q*((47 ™))
=0*ZeB(O.TLH pm): sup 1Z,]-p,>m = D¢ l,ir)
< L E? sup | Z,|? <"¢“‘2’*‘T’IZ 0, as m—ooo. (242
KT 5T - S—— K =), . K
m—172101,2, orer 1 POSm_1)

So, Ve > 0, we have
Q*(ZeD([0,T1,H_, (1): IMT™(Z),— M (1, Z)| > ¢)

< Q*((A"MY) + (1/e) EZ | MF(Z), — My(t, Z2)1 4p.» (Z) 0. (2.43)
1e.

MF(Z),— M,,(t,Z) in Q* probability. (2.44)

Next, by assumption (I) and the properties of p,,, it is easy to show that there exists
a constant C’ independent of m such that

MF“(Z),ISC’<1+ sup IIZtllz_p,m) (245)

0st<T

Hence, by Lemma 2.3, the left hand side of (2.45) is integrable with respect to Q*
uniformly in m. Then, by (2.44),

EQ | M™(Z), — M(t,Z)| 0. (2.46)
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But {M"m(Z),} are Q*-martingales, so {M,(1,Z)} is a Q*-martingale. Finally, by
assumption (I), it is easy to see that there exists a constant C” such that

|M¢(t,Z)|2<C”<1+ sup ||Z,||2_,,‘(T)>. (2.47)

0=t<sT
Hence, by Lemma 2.3, {M,(t, Z)} is a Q*-square-integrable-martingale.

LemMMA 2.10  Let {M;>(t, Z) be the quadratic characteristic of the square integrable
martingale M ;. Under the conditions of Theorem 2.1, we have

{MyH(t,Z)= J f (G(s, Z,, w[])* p(du)ds. (2.48)
0JU
Proof V¢ped,let

Ny(t,Z2)=Z,[$] — Zo[¢]* - 2J A(s, Z,)[91Z,[d]ds
0

— Jl J (G(s, Z,, u)[$])? u(du) ds. (2.49)
oJu

Then, by a similar argument as in the proof of Lemma 2.9, {N,(t,Z)},<r is a Q*-
martingale. By the definition of M, it can easily be seen that

AZ[¢]=AM(s,Z) and MG, =<Z[$I ). (2.50)

where M + and Z[¢]° are the continuous parts of the semimartingales M and Z[¢]
respectively. By Theorem 4.52 of ([8], p55), we get

[Z[$1), = X (AZ[$])* +<{Z[$]D,=[M,],, (2.51)

s<t

where [Z[¢]] and [M,] are the quadratic variation processes of the semimartingales
Z[¢] and M, respectively. By (2.50) and (2.51), it is easy to show that

Z,[¢=Z,[4] + 2J A, Z)[$1Z,[d]ds
0

t
+ 2f Z,_[¢ldM(s) + [Z[¢]], (2.52)
0
Hence, by the definition of N (¢, Z) and (2.52), we have

Ny(t,Z2)=2 f Z,_[$]dMy(s) +[Z[¢]], - J L(G(S, Z,wl¢1)* u(du)ds
0 0

=2 JI Z,_[d]dM,(s) + M, ], — j f . (G(s, Z, u)[$1)* n(du)ds.  (2.53)
0o

[
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Hence

t

<M¢>(t,Z)—J J(G(&Zs,u)[ﬂ)zu(dwds

=((M>(Z2)~[M,])+ N,(t,2Z)-2 f Z,_[p1dM(s) (2.54)
0

is a local martingale as all three terms on the right hand side of (2.54) are local
martingales. On the other hand, it easy to see from the left hand side of (2.54) that it is
a predictable process which has finite variation on any finite time interval. Hence, by
Corollary 3.16 of ([8],p32), we have (2.48).

THEOREM 2.2 Under the conditions of Theorem 2.1, M(t, Z) is purely-discontinuous.

Proof Let Cy(R) be non-negative and such that g(x) =0 when |x| <a for some
a>0. Let Y" and F" be functionals defined on O([0, T], H_, (1)) by

Y"(Z)=f J g((G"(s, Zo, ) [$1)?) u(du) ds (2.55)
0JU
and

Y gUAZ DD~ Y"(Z) (2.56)

O<s<t

Slmllarly, we define functionals Y and F on D([0, T, H _ » (ry)- Let £"and ¢ be as given
in the proof of Lemma 2.3. By the same arguments as in the proof of Lemma 2.7 it
follows that Y"(£") converges to Y(&) in probability. As

Y 9(A&D) > X g(ALID)?) as, (2.57)

O<s<t O<s<t

F"(£") converges to F() in probability.
On the other hand, from

Xil9]= X3 [¢]+J A'(s, X{)[¢lds

+J J G"(s, X", u)[¢]N"(duds) (2.58)

0JU

we have

AX{[¢]=G"(s, X7, p"(9)[d11pn(s) (2.59)
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where p"(-), D" are the point processes and jumping sets corresponding to the Poisson
random measures N". Hence

X J(AXII81)) = ¥ 9((G"(s. X5, p"(9)[P11pn(9)?)

O<s<t O<s<t

= Y 9((G"(s, X2_, p"(5))[¢1)*) Lpnls)

O<sst

- f Lg((G"(s,X:_,u)[¢])2)N"<duds). (2.60)
So
Fr(X") = j J (675 X2 E4D?) ¥ duds). 61)
Hence
E(F"(6") = EP(F*(X") =0 262
and

E(F"(E")* = EV(F"(X"))? = E™" ftf g*((G"(s, X7, w)[¢1)*) p(du)ds
oJU

<E™ th K (G"(s, X3, w)[$])* u(du) ds
U

0

t
<K, E" L L 1G™(s, X3, W12, ey [ @ 115,y 1e(du) s

<K, 12 K1 +K)T, (2.63)
where K, is a constant such that |g*(x)| < K| x|. So, {F"({")} are uniformly integrable

and, passing to the limit, we have E(F(£)) =0. i.e.

E Y g((AL[¢))*)=E f tj g((Gs, &, W) [$1)*) u(du) ds. (2.64)
oJU

O<s<t

So

O<s<t

E® ¥ g((AZs[dJJ)z):EQ'J J gl(G(s. Z,_,wl$])* ) u(duyds.  (2.65)
oJU
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Let g,, be given by Lemma 2.8, then g,,€ C3(R) non-negative and vanish in a neighbor-
hood of 0. (2.65) still holds with g replaced by g,,. As g,,(x) 1|x| when m7 co, we get

E? Y (AZ[¢]) =EQ'J j(G(S,Zs,u)[d’])zu(du)ds
o0JU

O<s<t

(By Monotone Convergence Theorem)

=EY (M 2) (By Lemma 2.10)
=E?[M,](t,Z)=E?[Z[¢]]. (By (2.51)) (2:66)

Hence
EQ(MSY(1,Z)=0 (2.67)

ie. Vt, {M>(t,Z)=0 as.. Then, by the continuity of (M;)(s,Z) in ¢, we get
(M (t,Z) =0 V1, as.. This proves that (M, >(t, Z) is purely-discontinuous.

We next identify the compensator of the point process AZ,.
LEmMA 2.11  Let

O<sst

r= {Aega(H_pm\ (O}):E2 Y 1,(AZ)< o0, YO<i< T}. (2.68)

Then, for AT,

y 1A(AZS)—§t j 1,(G(s, Z,, u)) pu(du) ds (2.69)
U

O<s<t 0
is a Q*-martingale.

Proof Let h be a bounded non-negative continuous %,-measurable function on
D(fo, T}, H_, ) and f on R, be given by

f(x)=CXp(L) 0<x<1

x—1
=0 x>1.

ForO<a<d,let

Sew={x€H_, rra<|x|_, <d} (2.70)

and, for any closed subset F of H _ p,(ry contained in S, . and k > 3, define

9u(x) =1 (kp(x,F)/a) 2.1)
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where p(x, F) is the distance from x toset Fin H_ , 7. Then g, (x) # 0iff || x | oD SH
Let {X"}, {{"} and ¢ be as defined in the proof of Lemma 2.3 and F7} , be functionals on
O ([0,T],H_, ) defined by

Fi(2)= %, a(AZ)— f J 9iu(G"(s, Z,;, w)) p(du) ds. (2.72)

O<sst 0JU

Define the functional F, , similarly. Then, for fixed k,

IFe &) —F O1<] Y adA&)— Y il

0 <s<t 0<s<t

+ (2.73)

f t J 00(G(5, &%) — g4(G (5, £, ) (du) ds
U

0

The first term converges to 0 almost surely and, for the second term, let

b" = p(G"(s,&",u),F), b = p(G(s, £,,u),F) and let f on R, be defined by (1) =f(/2)-
Then we have

gi(G"(s, &5, ) — g (G™(s, &, w)) p(dls)

<

J J (9:(G"(s, &5, 1)) — g, (G s, fsa“)))lbnsa/z,bSa/zﬂ(d“)ds
U

0

-+

i
J j gk(Gn(S, 6‘:’ u)) 1b"$a/2,b>a/2.u(du) ds
U

0

t
J J 9i(G (8, &5 ) Lyn iy, p<carz (W) ds
v

0

<|7'||w<§) J J |p(G"(s, &7, u),F)?

- p(G(S, éss u)’F)zl lbngalz,bga/z,u(du) ds

_|_

t
Jfgk(Gn(s’ 50 Lpn < i, p>a2 (du) ds
v

0

_|_

t
j J' 9.(G(s, ‘fs,u))lb">a/2,bsa/k:u(du)ds
oJu
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- k 2 M
<\\f’\\w<;> j j I G"(s, &5, w)
0JU

- G(S, ésﬁ u) “ —pl(T)(bn + b)lbnsa/z_bsa/zﬂ(du) dS

! 1 1
+2L,u{u:\b —bl><§—ﬁ>a}ds

- k 2 ™M
< Ilf’||w<;) J J 1G"(s, €8, u) = Gs, & ) —p ry (1 G"(8, 5, - ey
U

+1G(s. &y )] gry) () ds

+ (kifg j j 675,88, = G, €2yl ds 274

0

which converges to 0 in probability by the same arguments as in the proof of

Lemma 2.7. It follows as in the proof of Theorem 2.1 that, for fixed k and ¢, {F} (")}
are uniformly integrable and

ER(E")(F (&™) — F (&™) =0. (2.75)
Let n tend to oo, we get
ER(E)(F (&) —F (&) =0 (2.76)
Hence, we have
EQ‘h(Z)< Y (AZ,)— th 9:(G(r, Z,, u)) u(du) dr) =0. (2.77)
s<r<t s JU

Since g, decreases to 1; as k — oo, by the monotone convergence theorem, we have

EShZ) ¥ 1,,(Az,)=EQ’h(Z)fJ 1,(G(r, Z,,u)) p(du) dr (2.78)
U

s<r<t ]

for any closed subset F of S, .. As both sides of (2.78) define two measures on S, , and
coincide for all closed sets, (2.78) holds for any Borel subset of S, .. Letting a—0 and
a’'— o0, (2.78) holds for any Borel subset of H_, . This proves the lemma.
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THEOREM 2.3  Under the conditions of Theorem 2.1, Q¥ is a weak solution on [0, T'] of
the SDE (1.1).

Proof From Lemma 2.11 we know that the point process AZ, has compensator
4(t, E, ) = p{u: G(t, Z, - ,W)e E} (2.79)

then, using Theorem 7.4 of ([6], p93), there exists an extension Q% PF o) of the
stochastic basis

(D([O, T]’ H—p,(T))’ .%’(ID([O, T]! Hap,(T)))’ Q*’ QZI)

and a stationary & -Poisson point process N on (Q, #, P, #,) with characteristic
measures u(du), such that

#{s<t:AZ€E} = fj 1(G(s, Z,_ ,u)) N (duds). (2.80)

By the definition of M, and (2.80), we have
AM (s5)=AZ(s)=G(s,Z,_, p(s))[¢11p(s) (2.81)

where p(°), D are the point processes and jumping sets corresponding to the Poisson
random measure N. But M, is a purely-discontinuous martingale, so that, by definition
1.27 of ([101, p72), we see that

M) = f tJ g(s, Z,_, u)[¢]1N(duds), (2.82)
U

0

and hence

J 9(s, Z,_,u) N (duds). (2.83)
U

3 EXISTENCE OF A WEAK SOLUTION

In this section, we use the basic results of the last section to derive the existence of
a weak solution of the SDE (1.1). The idea is as follows: first, we prove the existence of
the weak solution on [0, T7 of (1.1) when the nuclear space @ is finite dimensional, say
R Then, employing the Galerkin method, we project the coefficients of the equation
(1.1) to a sequence of finite dimensional subspaces and consider the corresponding SDE
on these subspaces. We get the desired existence by proving that this sequence of
equations satisfies the assumptions (A1) and (A2) of §2. Applying the results to the
intervals [0, T, [27,3T7],..., we get a sequence of solutions of (1.1) in these intervals
and, connecting them, we obtain a solution on the interval [0, oo].
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First of all, let us consider (1.1) when ® = R*. In this case, H,, = R* for all p. The SDE
(1.1) can be rewritten as

x,=E+ fra(s, x,)ds + fj c(s, xs_,u)ﬁ(duds) 3.1
0 0JU

where a: R, x R*>R?and c:R, x R? x U —R? are two measurable mappings, N is
a Poisson random measure on R, x U with respect to a stochastic base (Q, %, P.(%,))
and ¢ is a # ,-measurable R%-valued random variable.

In the present setup, we make the following assumption (F):V T > 0, there exist
constants K, and K, such that

(F1) (Continuity) Vte[0,T],a(t,"):R?*—R? is continuous; Vte[0,T] and xe R,
c(t,x,")e L*(U, u; R%) and, for ¢ fixed, the map x —c(t, x,*) is L*(U, u, R% continuous.
(F2) (Coercivity) Vte[0,T73,

2al(t,x), x) <K (1 +|x]*); (-2

(F3) (Growth) Vte[0, T] and xeR?,

la(t, )I* < K,(1 +|x[*) and JIC(t,x,u)Izu(du)SKl(l+IXI2) (33)
U

where (-, > and || are the inner product and norm in R respectively.

Remark 3.1 If we replace K, and K, by K =max(K,, K,), the assumption (F) is
just a re-statement of the assumption (I) of §2 in the present setup. We distinguish K
and K, for technical reasons which will become clear later on.

Even in the finite dimensional situation, to solve the SDE (3.1), we follow [3] and

assume an additional monotonicity condition (FM): There exists a constant L > 0, such
that

2{x—y,a(t,x)—a(t,y)y + j |e(t, x, u) — c(t, y,w)|* u(du) < LIx —y|?, Vx, yeR’.
U

(3.4)

It is one of the major points made in this paper that the assumption (F) is needed for the
existence of the solution of (3.1) and the role played by (FM) is for the uniqueness of the
solution. But, to make use of the existing results, we still impose the condition (FM) to

solve (3.1) and remove it in Theorem 3.1. The estimate (3.5) given below is of crucial
importance for this paper.

LemMA 3.1 Under the assumptions (F) and (FM), the SDE (3.1) has a unique solution.
Furthermore, if E||* < co, then, there exists a constant K = K(K 1» T, E|€|?) such that

E sup |x|*<K(K,,T,E|{]*) < 0. (3.5)

0st<T
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Proof The existence and uniqueness of the solution of (3.1) is a special case of the
Theorem 1 of ([3],p. 5). So, we only need to prove the estimate (3.5). Applying It6’s
formula to (3.1), we get

|x,|2=|€|2+2f'<xs,a(s,xs)>ds+ th lc(s, x,, u)|* u(du) ds
U

0 0

t
+ J J {le(s, X, ,u))? + 24 x,_,c(s, x,_,u)> } N(duds). (3.6)
oJvU

Lett,, =inf {t < T:|x,| > m} be a sequence of increasing stopping times. Hence, by (3.6),
we have

tATm

% psl” < I + 2K, f (1 +1x,%)ds

0

+fmmf (les, x,_, w2 +2<x,_, c(s,x,_,u)>} Nduds).  (3.7)
U

o]

Let
f™)=E sup |x,> and M,= f J (Xgs (s, X,_,u)) N(duds), (3.8)

rSEATm 0JU

then
f’"(t)<E|§]2+2K1t+2K1Ejmm|xs[2ds+2E sup M,
0 FStAtm
+E sup {th |c(s,xs_,u)12ﬁ(duds)}. (39)
r<thm | Jo Ju

Note that

E sup U J |C(S,xs_,u)lzl\7(duds)}
r<tAtm oJuU

<E sup {Jrj‘ Ic(s,xs_,u)lzN(duds)+Jrj Ic(s,xs_,u)lzu(du)ds}
U 0JU

r<tiAtm 0

tAtm

tAtm
=2EJ J Ic(s,xs,u)fz,u(du)dsg2K1t+2K1EJ‘ |x,|% ds. (3.10)
U

0 0

On the other hand, M, defined in (3.8) is a local martingale with quadratic variation
process

[M],=ftf Cxge s ofs, X, 4) Y 2N (duds) (3.11)
0JU
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by the same arguments as in (2.60). It follows from the Burkholder-Davis-Gundy
inequality that

tATm
2E sup M,<8E[M],1,/\Zrm=8EJ j‘ {x,,c(8,x5,u) > 2 N(duds)} '/
U

r<thAT, 0

tAtm
<8E{j~ j |x,|2|c(s, x,, u)| >N (duds) } '/
v

0

tAtm
< 8E( sup lx,l{ J J lc(s,xs,u)lzN(dudS)}m)
r<itAtm 0 U

1 tATm
<=E sup |x,|2+8EJ‘ J lc(s, x,, u)|* N (duds)
U

2 r<tAtm )

1 tATm
<3E sup lx,lz+8K1t+8K1EJ Ix,[2ds.  (3.12)

r<thAtm (4}
Hence, by (3.9), (3.10) and (3.12), we have

tAtm
fmO<E|EP+ 12K, t+ 12K1EJ

0

[x,]% ds +%f"‘(t). (3.13)

Hence

t

f"'(t)<2<E|§12 + 12Kt + 12K1J

0

S™(s) ds) (3.14

and so

T

MO <2E|E)*+ 12K1T)+j 2E[E1* + 12K 5)e! KT =9 s = K(K,,T,E|¢]?) < co.
0

(3.15)

Letting m — co, we get our estimate.

The following Theorem yields the existence of a weak solution on [0, T] of the SDE
(3.1) without the monotonicity condition (FM).

THEOREM 3.1  Under assumption (F) and E|¢)* < oo, the SDE (3.1) has a weak solution
x on [0, T] and '

E sup |x,|><K(K,,T,E|¢?) < 0. (3.16)

Osi<T
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Proof LetJ be the Friedrichs mollifier and
a™(t, xy= ~[a(t,x —n"12)J(2)dz for |x|<n

= a"(t,nx/|x|) for Ix|>n (3.17)
and

c"(t, x,u) = Jc(t,x —n"lz,u)J(z)dz for |x|<n

= c™(t,nx/|x|,u) for |x|>n (3.18)

It is easy to verify that, for each n, (a",c", u) satisfies the assumptions (F) and (FM)
with

K" =3K, +4/K,, K,=3K, (3.19)
and
2
L=8(1+(n +1)*)n? JJ(Z)( P )4dzmax(K1,K2). (3.20)
Hence, by Lemma 3.1, the SDE
t t -
x;=¢+ f a"(s,x7)ds + J J c"(s,x"_,u) N (duds) (3.21)
0 oJU
has a unique solution x" and
E sup |x'*<KQGK,+4./K,, T,E|&?) < 0. (3.22)

OsIsT

This proves that the sequence {(a", c", u)} satisfies the assumption (A1) with
K =max (3K, +4./K,,3K,) and K=KQGK,+4./K,T,E|E*). (323)

The assumption (A2) is easy to check. Hence, by Theorem 2.3, the SDE (3.1) has a

weak solution x on [0, T]. Applying the proof of Lemma 3.1 to this weak solution we
obtained the estimate (3.16).

Now, we come back to our original problem and project the SDE (1.1) onto
a sequence of finite dimensional subspaces. Let a?: R, x R‘>R? and ¢%
R, x R? x U — R be defined by

d
(s, XYy = < Z hTP(T))[h,;:(T)]’
) (3:29)
d
gd(S,X, u) = G(S, Z xjhj_”(T),u\,[hE(T)]
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where x = (x4,...,x,)eR% Let Q, be a probability measure on H_,_such that
E®|v|2, <oo. (325
Let p(T)=max(po(T),ro) and n: H_ 1, — R be a mapping given by
(), =o[h D), k=12,....d (3.26)

and let Q& = Q,on ™! be the induced measure of Q, on R
LemMa 2.2.2  Under the assumptions (1) and (3.25), the SDE
t H
x?=xd+ '( a’(s,x)ds + J j‘ g%(s,x?_, u)N(duds) (3.27)
0 0JU
on R with initial measure Q% has a weak solution x* on a stochastic basis

(@, 7, P4, (#7)) and

E™ sup |x/> <K(K,T,E® 0] ) < 0. (3.28)

0<IsT

Proof For each d, it is easy to see that the assumption (F) is satisfied by (a%, )
with

Ki=K and K&=max(lhl2plhlyd 1 <k <dK. (3.29)
The assertion of the Lemma follows from Theorem 3.1.

Remark 3.2 That K4 in (3.29) depends on d is the reason that we do not like the
estimate (3.16) depending on K, and we distinguish K, and K, in the assumption (F).

For the weak solution x?, we define the corresponding H _ ,1,-valued cadlag process
X?by
d
X¢= 3 (xt)hy 7. (330)
k=1
Then

supE sup | X{|12 i SK(K, T,E} X% ym)) (3.31)

Let AR, x @' >®@ and G*: R, x @ x U @ be two sequences of measurable
mappings given by

d d
A¥(s,0)= sz‘(s’ >, o[h2™] h;"‘”) Ay 7D
= ji=1

(3.32)

G (s,v,u) =

T

j=1

d
G(s, Y, v[h? D] hj—p<T>,u)[h,f‘T>]h,;P<”.
1
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Lety:H_ .~ H_ 1, be a mapping given by

/)= 3 o[R T #D (3.33)

k=1

and let 0% = 0,0y~ ! be the induced measure of Q, on H _ ory- Then X7 is a solution of
the SDE

t t
Xf:X‘(’,ﬁ-J A"(s,X‘s')ds+J f G%(s, X?_,u)N(duds) (3.34)
0Ju

0

on the stochastic basis (Q%, # ¢, P4, (%)) with initial measure 2.

THEOREM 3.2 Under the assumptions (I) and (3.25), the SDE (1.1) has a weak solution
X on [0, T] with initial distribution Q, and

E sup [ X%, a< KK, T,E®[[v)2 ). (339)

Proof By Theorem 2.3, we only need to check that (4% G¢ p) satisfies the as-
sumptions (Al) and (A2). By the continuity of A(%,") on H_,YweH_, Ye>0,
Ao(w),Vw'eH_, with [w—w'|_,<d(w), we have [|A(t,w)—AEw)|_,<e For
fixed voeH :

-p

_p let
d
C= { Y uo[hj"’]hj‘l’:deN}u{vo} and S(w,d(w)) = {weH_,|w—w]_, <o(w)}.
i=1
(3.36)

As Cisacompact subset of H_ ,and {S(w, 5(w)/2: weC} is an open covering of C, there
exist w,,...,w,eC such that

Cc U S(W,, 5(W,)/2). (3.37)

k=1

Let 26 = min {5(wk):k= 1,...,;n}. If weC and w'eH

w—w'|_,<d, we have
a k such that |w—w,| __ < d(w,)/2, and hence

-p°

I
[we—wll_, < w=—w_,+Iw—w]_,< 3(w,) (3.38)
so that

[ At w) — A, w) | g < [ A, w) — A, Wi ll - + [ A, wi) — AL, w') | -, < 2e.
(3.39)
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Hence, Ve>0,36>0,VveH_ , |v—v,f_, <, let w=y(v,) and w' = y(v), then weC
and ||w—w'[|_, <d. Hence, by (3.39),

1A%t 0) = A%t v) 12, = | Z (Al w") — At w)[h{Th 4012,

<At w) — AL w)12, < 462 (3.40)

This proves that A%(z,v) are continuous in v uniformly in d and assumption (A1) is
satisfied. Assumption (A2) is verified similarly.

Finally, we construct a weak solution on [0, co] for (1.1). First of all, let us construct
a sequence of measures Q, on D"= D([0,nT],H _ ».wmy) DY induction. If n=1, take
0, =0Q*. Suppose that Q, on D" has been constructed, we now construct Q,,, on
ID"+ 1.

ForO0<t< T, v<® and uelU, let

A(t,p)=A(t +nT,v) and G(t,v,u)=G(t +nT,v,u). (3.41)

Then 4 and G satisfy the assumption (I) with p,(T) and K(p,q, T) replaced by

pol(n+1)T)and K(p, g,(n + 1) T) respectively. With initial distribution Qy = Q,-Z ;,
the SDE

t

t
X,=X0+J Z(s,XS)ds+f
0 0

J G(s,X,_,u)N (duds) (3.42)
U

has an H_, . yp)-valued weak solution Q* on [0,T]. As D'"*l=
D([0,T1.H _, (u+1yr)) is a Polish space, the regular conditional probability measure

0% ()= E¥(Ze'|Z = 2,) (3.43)
exists. Let
T:2(m) D" x DI+l prtt (3.44)
be given by
Z! as 0<t<nT
ZI’ZZ — t =< E= .4
"Lz, {zf_,,, as nT<t<(n+1)T (349
where 9(n) = {(Z*,Z*)eD" x D1+ 2L = Z2).
Define a measure Q*,, on D" x D"+ 1 by
0. (4 x B) =j 03, (B)Q,(dz") (3.46)
A

for AeD" and BeD'"*1 It is easy to show that Or,1(2(n))=1, and hence,
Qr+ 1 induces a measure Q,, = Q*, ,on~ ! on D"* !,
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{Q,} can be regarded as probability measures on D([0, c0), ®’') and

Qn+1|‘%nT = Qn (347)

where %, 1 is the natural g-algebra on D([0, co], ®’) upto time nT. Hence, the following
set function

O(B)=0,(B) for Bed,,. (3.48)

on the algebra u,4,; is well-defined and ¢-additive. Hence Q can be extended to
a probability measure on v, %, = #. Denote this extension also by Q, we have

QB =0, (3.49)

LemMA 3.3 Q is a solution of the & -martingale problem.

Proof We only need to show that, for any Fe23(®'),0 <s <t < oo and Be&,, we
have

J (M*(2), — M*(2),)Q(dZ)=0. (3.50)

The proofis by induction. If 1 < T, (3.50) follows from Lemma 2.1. Suppose (3.50) holds
when t < nT, we prove it still holds when t <(n+ 1)T.

First, we assume that n”T <s<t<(n+1)T. Let % and MF be defined by (2.15)
with 4 and G replaced by A and G of (3.41) respectively. As Bed%,,
1 Y (BAD"* YYe Bl x B2, it follows from standard arguments of measure theory
that we may assume n~'(BAD"*')=C x D with Ce#!, and De#?_,; in the
following calculations:

J (M*(2),— M*(2),)0(dZ)
B

m

= (M*(2),— M"(2),)Q,,(dZ)

J BAD"+?

~

= (M™(Z?),_,p — M¥(22),_,r)0%, (dZ2)Q,(dZ")

J = Y(BnD")

= | Q.EZYEF(M*(Z?),_,; —MF(Z?)

JC

Wp(Z)Z25=2Z,y)

s—nT

= | Q,dZYEFET(M¥(Z),_ s

JC

~ MY (Z),_ ) 1p(Z2)| B2 1) 2= Z)1) = 0. (3.51)
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Finally, f s<nT <t <(n+1)T, then

EYM"(Z),|B,) = EAE®(M"(Z),|8,1|B,) = EXM"(Z),;\8,) = M"(Z),Q-as.
Similar arguments yield the following Lemma.

LemMA 3.4 (1°) For any ¢e®, {M,(t,Z)},,, given by Lemma 2.9 is a Q-square
integrable purely-discontinuous martingale.

(2°) Let

Fz{Ae@(fb'\{O}):EQ Y 1,(AZ) <, Vt>0}. (3.53)

O<s<st

Then, for AT, we have

Y 1,AZ)~ f f 1,(Gls, Z, w)n(du) ds (3.54)

O<s<st oJU
is a Q-martingale on [0, o0].

THEOREM 3.3 Let assumption (I) hold and ¥V ¢pe®, let E| X ,[¢]]|* < co. Then (1.1) has
a ®'-valued weak solution such that, YT >0,3p, (T) and we have

E sup | X112, o< KK, T,E| X% p) (3.55)

0st<T

Proof Let
V(¢)=(E|X,[4]1*)". (3.56)

Then, it is easy to check the conditions of Lemma 2.2 of ([9], p15). We have an index
rsuch that, Voe®d, V(d) < 0| ¢1,. ie.

E[X, (1 <0% 19} (3.57)

By the definition of nuclear space, there exists an index r, > r such that 3", || B |2 < 0.
Hence, by (3.57), we have

E|X,|2,, =Y EIX (k11> <3 0% [ )7 < 0. (3.58)
k k

The rest is exactly the same as in the proof of Theorem 2.3.

. Before proceeding further, we return to the point made in the Introduction that in
infinite dimensional SDE’s for which one seeks a Hilbert space valued solution one
might encounter situations where there exists no Hilbert space in which the solution X,
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willlie (almost surely) for all ¢ > 0. The following example, essentially due to Kallianpur
and Ramaswamy ([10]), lends support to this view.

Example Let H be a Hilbert space with inner product <-,->,{4;} a sequence of
positive numbers and {h;} a CONS of H. Let

&= {¢eH: | ¢|,<0VreR} (3.59)

where

I@12 =3, h;>* (1 + 2" (3.60)
J
Suppose we have r, > 0 such that

Y(142) < oo (3.61)

i

then @ is a countably Hilbertian nuclear space. Let (U, u) be a measure space with
#(U) =1 and define mappings 4 and G by

At,v)=0 and G(t,v,u)[¢]=f(O[d]= Z(q&, hi>(1+4), (3.62)

it can be shown that SDE (1.1) with coefficients given by (3.62) has a unique solution

X,=ft J f(s)N(dsdu) (3.63)
0JU

and there is no p such that X,eH _  for all t > 0.

4 EXISTENCE AND UNIQUENESS OF THE STRONG SOLUTION

In this section, we shall impose an additional condition to ensure that the SDE (1.1) has
aunique strong solution. This will be achieved by establishing pathwise uniqueness and
extending Yamada-Watanabe argument ([6]) to this setup.

To implement the Yamada-Watanabe argument, we need to realize the driving
processes (the Poisson random measures in our case) in a common space. This space is
to be chosen such that the regular conditional probability measures exist for any
probability measures on it. Unfortunately, this property is not enjoyed by the space of
all measures on R, x U. Based on these considerations, we shall establish an equival-
ence relation between the SDE (1.1) and another kind of SDE driven by an ¢?-valued
martingale which will be called a Good process. As the Good processes can be realized
on the Polish space D([0, T],#?), the Yamada-Watanabe argument is applicable and
we obtain the uniqueness of the solution for the new equation. Hence, by the
equivalence, we get the uniqueness of the solution for the SDE (1.1).
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We first state some basic definitions.

DEfFINITION 4.1 Let (Q, %, P,F) be a stochastic basis and N(duds) a compensated
Poisson random measure on [0, T] x U. Suppose that X is a H _,-valued random
variable such that E|| X |2 , < 0. Then by an H _, valued strong solution on Qto the
SDE (1.1) we mean a process X, defined on Q such that

(a) X,isan H_ -valued # -measurable random variable;
(b) XeD([O,TLH_));

(c) There exists a sequence (g, ) of stopping times on Q increasing to infinity, such
that, Vn

Ermj I1G(s, X ) 12, s(du) ds < o0, 4.1)

0
EJTM" Il AGs, X )12, u(du)ds < o0; (4.2)
0

(d) The SDE (1.1) is satisfied for all te[0, T] and almost all weQ.

DEFINITION 4.2 (pathwise uniqueness) We say that pathwise uniqueness of the H _ -
valued solution for the SDE (1.1) holds if X and X' are two H _-valued solutions
defined on the same probability space (Q, %, P) with respect to the same Poisson
random measure N and starting from the same initial point X ;e H _ , then the path of
X and X' coincide for almost all weQ.

Now, we impose the monotonicity condition (M): Vte[0, T],v,,v,€H _,, we have
that

-p>

CA(L,v1) = Alt,v,),0, — 0>+ J I Gt, vy, u) — G(t,05,0) |12 u(du) < K [[v, — 0,112,
U
4.3)
where g 1s introduced in assumption ().

LemMA 4.1 Under the assumptions (1) and (M), SDE (1.1) satisfies the pathwise unique-
ness property.

Proof Let X and X' be two H_ -valued solutions. Without loss of generality,

suppose the same sequence (o,) of stopping times such that (c) of the Definition 4.1
holds for X and X'. For ¢c®, we have

(X, = X)lo]= JI(A(S, X,) — A(s, X)) [$]ds

+ J j (Gls, X,_,u) — Gs, X', u))[$] N (duds). (4.4)
U

0

—
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By 1t&’s formula, we have that

Ee~KeroD[(X, - X;)[¢11?

=2E jt cr"e"“(Xs — XOLo1(A(s, X,) — Als, X)) [d] ds

0

tAon

—EJIM" Ke (X, — X)[¢1)ds +EJ‘

J e ®((G(s, X, u)
0 0 U

— G(s, X, u))[¢])* u(du) ds. 4.5)
Let ¢ = h{,keN and adding, we have

Ee™ K X, - X |2,

tAon tAon
=2Ef e"“(XS—X;,A(s,Xs)—A(s,X;>_qu—EJ Ke % | X, — X;| ds
0 0
tAan
E+ J J e | Gls, X, u) — G(s, X[, u) | ,u(dw) ds <O, (4.6)
V] U
Hence, by the right continuity of X and X' and (4.6), X = X’ almost surely. ||

DerINITION 4.3 (Uniqueness in law) Uniqueness in law holds for (1.1) if, for any two
stochastic bases (Q%, %, P* F¥), two Poisson random measures N* on R x U with
characteristic measures y and two H _ -valued solutions X, X" of (1.1) with the same
initial distributionon H_ , (k = 1,2), we have that X and X" have the same probability
distribution on D([0, T], H _ o) ]

The following assumption will be made throughout the rest of the paper: (U, %, u) 1s
a separable measure space.

Now, we introduce the Good processes which will play an essential role in the

implementation of the Yamada-Watanabe argument.

DEfINITION 4.4 Let (Q, %, P, F) be a stochastic basis. An #2-valued process H, on
(Q,F,P,T) is called a Good process with respect to a CONS (¢,) of L*(U,%, p) if
1 a Poisson random measure N(duds) on R, x U with intensity measure y such that

H, = i ! L L ¢, (W)N (duds) e, 4.7

n=1n

where e, =(0,...,0,1,0,...)e/2



116 G. KALLIANPUR et al.

It is easy to see that the series in (4.7) converges and, with respect to the same
CONS(¢,) of L*(U,%,u), all Good processes have the same distribution on
(D([0, T1,£%),2{D([0,T],£*)}) which will be denoted by P and called the Good
measure.

Forany se[0, T] and ve H _ , , define the linear operator Y(s, v) from¢2to H _ »0 DY

Yis, v)e, = nf G(s, v, u)p, () p(du). (4.8)

U

Let X be an H_ , -valued cadlag process on the stochastic basis (Q, #, P, F), then it is
easy to see that

JJ G(s, X,_,u)N(duds) = J t W(s, X, )dH,. 4.9

0 0
Hence, the SDE (1.1) can be written in a different form

t

X=X+ j Als, X,)ds + f V(s X, )dH
0

5
0

(4.10)

Now, we demonstrate how to couple two solutions of (1.1) and discuss some
properties of the coupled process.

Suppose X' and X” are two solution of the SDE (1.1) on stochastic bases
Q, %, P, F)and(Q", %", P", ") withinitial random variables X, and X (having the
same distribution A on H _ P‘m) and Poisson random measures N’ and N” (having the
same intensity measure y on U) respectively. Let H' and H” be defined in terms of (4.7)
with respect to the same CONS (¢,) of I>(U,%,y) with N replaced by N and N”
respectively. Then (X', H', X ;) and (X", H", X ;) are two solutions of the SDE (4.10) on
the stochastic bases (Q', %, P',F') and (Q", #", P",F") respectively. Let Q' and Q" be
the probability measures on D([0, T, H _ pn) X D([0,T],¢ Yx H_ (T with product
Borel o-field induced by (X', H', X;,) and (X", H", X)) respectively. Define a mapping

mD([0,TLH , ) x D([0, T1,£*) x H_, 1, »D([0, T1.¢*) x H_, (1, (411)
by m(w;,w,,x) =(w,,x). Then, Q'on ™' =Q"on~ ' = P,

Let Q"">*(dw,) and Q"™>*(dw, ) be the regular conditional Probability of w, given

W, and x with respect to Q' and Q" respectively. This s possible since D([0, T], H _ o)
is a Polish space. On the space

Q=D(0,TLH_, 7)) x D([0, TLH_, ) x D([0, T1,¢>) x H_, ;y  (4.12)

define a Borel probability measure Q by

Q(A) = fI(§T 1w, w5, w3, X) Q" (dw,) Q"> (dw,) ) Po(dw,) A(dx)  (4.13)
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for A %(Q), where #(Q) is the topological -field of Q. Then, it is easy to show that
(wy,w3,x) and (X', H', X)) have the same distribution and as does (w,,w;,x) and
(X",H", X7).

LEMMA 42 For any Ae%,(D([0, T], H_, 1)), we define two functions f and f,
f1w,x)=0"™*(4) and f,(w,x)=Q""*(A). 4.14)

Then, f, and f, are measurable with respect to the completion of the o-field
2.(D([0,T],22)) x #(H _, 1) under the probability measure P;® A.

Proof For fixed t >0 and Ae%,(D([0, T)LH_, 1)), let Q;"*(A4) be defined as
Q'"*(A) with Q' replaced by its restriction to sub-o-field Z,(D([0,T],H_ o))
x B,(D([0,T],7%) x B,(H_ p.my)s then (w, x)—Q;*(4) is measurable with respect to
the o-field 4,(D([0, T],£?)) x #B(H _ pu(n))- Now, we only need to show that

THA)=f1(w,x) for Pgi-as(w,x) 4.15)

ie. for any CeZ(D([0, T],£2)) x #(H _ ), we have to show that
J X (A)Pg(dw)A(dx) = Q' (A x C). 4.16)
C

Consider a continuous mapping p: D([0, T],£2) x D([0, T-t],£2)—D([0, T], £*
given by

p(wl,w?),=w! fs<t
=w2,+w ifsxt. 4.17)
From the definition of Pg;, we have
Pg{weD([0,T],2*):w(t—)# w(t)} =0 (4.18)

and hence, p has a continuous inverse p ~*. So, we only need to prove (4.16) for C of the
form

C = {weD([0,T),£2):p ‘wed, x 4,} x D, (4.19)

where A,e#(D([0,t1,7%)), A,eB(D([0,T—1],¢*)) and DeB(H_, ). As Good
processes are of independent increments, Pgop = P; @ P,, where P, and P, are prob-
ability measures on D([0, T1,#2) and D([0, T —t],£?) respectively. Furthermore, as

¥(A) is B,(D([0,T],£2)) x B(H _ ».(ry) measurable, we can find a measurable
function g in D([0,T],#%) x H_, 4, such that

X A)=g(p™ W), x). (4.20)
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Hence

j‘ Q" (A) Ps(dw)A(dx)
c
- J gw!, %) P, (1) P, (w3) A(d)
AixAxxD
=j 9w, )P, (W) ()P, (4,)
AsxD

= JQ;W"‘(A) s wysea, Lp(x) Po(w) Adx) P5(4,)

=Q'(Ax {(p~'w)'eA,} x D)P,(4,)
= P'(X'e A, H'|g 4€A,, X4eD) P'(H'(t + ) — H'(H)eA,)
= P'(X'€A,H'|g g€ Ay, XypeD, H'(t +-) — H'()eA,)

=P'(X'eA,(H,X,)eC)=Q'(4 x C). (4.21)

LEMMA 4.3 Let &, be the completion of

#0010, TV, H_, y)) x (D0, T}, H_, 1)) X BAD([0, T),£%)) x BH_, 1))
4.22)
Then w, is a Good process on an extension (ﬁ, B, Q, é?,) of (O %', Q,%,)

Proof By the definition of P, there exist a stochastic basis (Q, #, P, F) and a Good
process H on it such that Py is the distribution of H. We prove our lemma in four steps.

Step 1. w, is an ¢>-valued Q-square-integrable martingale.

Let A, A,eB (D0, T], H~p,m))a A,e% (D0, T),£%)), A@é&(H_MT)) and aef?.
Then we have

Qf Hila,ws(t)—wals)) g2
E {e w;s)>f 1A,xA2><A3xA,}

= j\ ei(a,w;(t)—w;(s)) /2Qlw3,x(A1)Q//w,,x(Az)PG(dw3);L(dx)
Az X A,

= jei@,w;m Tl fzfl (W3, x) f5 (w3, %) Pg(dw;)A(dx)

- EQei(a,W3(t)—wJ(s)>f2Q(Al X A2 X A3 X A4) (423)
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Hence, w, is of independent increments. It follows from

E%(ws),) = EF(H,)=0, (4.24)
and

[co)

t
E9|(w,),[> = EP|H > = Z 2 <® (4.25)

n=1

that w, is an ¢2-valued Q-square-integrable martingale.
3 £

Step 2. Vaef?,the quadratic variation of the square-integrable martingales (w,, a),. is
given by

a2
(Wyyla,0)=t Zn—';. (4.26)
We only need to prove that
a2
Rt = <(w3)n a >{22 —t z n—; (427)

is a Q-martingale. In fact,

E%(R,—R,| %))

[~

= EQ(({(Ws), — (W3)y @D} + 24(W3), — (W3)y @ (W3) @D 2| B) — (£ — ) ). 5

n

=

2
n

= E%((wy),— W)y a2 —(t—5) —Z—Z = EPH,—H, a2 —(t~5)Y %_2 =0, (4.28)

Step 3. {ws,a),. is purely-discontinuous.
It is easy to see that the mapping

w3 Y 1A((Wa)pa),a? (4.29)

skt

from D ([0, T], #2) into R is measurable. Hence

E2 Y |ACWa)p @) s = ET 3 |ACH a3 .

= EF z‘; 1 a_n"%" L L (U)o, ()N (duds)

= i Z—'zt = E%w;>,(a,a). (4.30)
n=1
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So, it follows from the same argument as in the proof of Theorem 2.2 that (w;,a),. is
purely-discontinuous.

Step4. As w, and H have the same distribution, the point process Aw,(s) has the
same compensator as the point process A H(s) which is

q(t,E,w)= u{u: i %d)"(u)eneE} YEecAB(£?). (4.31)

It follows from the same arguments as in the proof of the Theorem 2.3 that there exists

a Poisson random measure M with intensity measure z on an extension of (Q, %', Q, #,)
such that

(W3), = i % j t L ¢, (M (duds)e,. (4.32)

n=1 0

Hence, w; is a Good process on an extension of (0, %', Q, %;).
We leave the proof of the following elementary lemma to the reader.

LeMMA 4.4 Let P, and P, be two probability measures on a Polish space X with metric

p. If (P, x P){(x;,x,):x, =x,} =1, there exists a unique xeX such that
P,=P,=5,,

THeOREM 4.1  Under assumptions (I) and (M), uniqueness in law holds and the SDE (1.1)
has a unique strong solution.

Proof LetX'and X" be two solutions of the SDE (1.1). From the arguments above,
we see that (w,, w,, x) and (w,, w;, X) are two solutions of (4.10) on the same stochastic
basis (ﬁ, B, Q, @t). Let N be the Poisson random measure on this stochastic basis
corresponding to the Good process w,. Then (w,, N, x) and (w,, N, x) are solutions of
(1.1) on the same stochastic basis. By the pathwise uniqueness proved in Lemma 4.1, we

have that O(w, =w,)= 1. Coming back to the original probability space, we have
Q(w,=w,)= 1. But, by (4.13),

Qw,=w;) =[O @Q " (w, = w,) Pg(dw) A(dx), (4.33)

so, for P;®4-a.s. (w, x), we have

Q™ Q"™ wy=w,)= L. (4.34)
By Lemma 4.4 and (4.34), we have a mapping

F:D([0,T),¢%) x H_, > D0, TLH_, ) (439)
such that

Qlw,x — Qllw.x — 6F(w,x)' (4.36)



NUCLEAR SPACE-VALUED SDE’s 121

For any Ae4%,(D([0, T], H_, 1)), by (4.36), Lemma 4.2 and

Lps (W X) = Q™*(4), (4.37)

F ~!(A)is in the completion of ,(D([0, T1,72)) x B(H _ p.(myyunder Po® 1, and hence,
F(w, x)is adapted. Then, for any Poisson random measure N and initial H _ . ry-valued
random variable X, corresponding to a Good processes H with respect to a fixed
CONS (¢,) of L*(U,%, u), F(H, X,,) is a strong solution of the SDE (1.1).

The uniqueness of the strong solution follows directly from the pathwise uniqueness
of the SDE (1.1). The uniqueness in law follows from (4.36).

Finally, we consider the strong solution of (1.1) on {0, c0].

DerINITION 4.5 Let (Q, %, P, F) be a stochastic basis and N (duds) a compensated
Poisson random measure on R, x U. X, is a ®'-valued random variable. Then by

a @'-valued strong solution on Q to the SDE (1.1) we mean a process X, defined on
Q such that

(a) X, is ®'-valued, # -measurable;
(b) XeD([0, 0], ®’);

(c) There exists a sequence (o,) of stopping times on Q increasing to infinity and
independent of ¢ such that, VneN and V¢e®

E j " J G5, X, u)[ 4] u(dw)ds < oo, (439)
0 U
E j " Als, X[ ds < oo, (4.39)
0
E|Xo[$]2 < o0; (4.40)

t

oJU

d) X, [¢p]=X,[o]+ JIA(S, X)[$lds + j j G(s,Xs_,u)[¢]1\~J(duds), for each t > 0.
0

TueoreM 4.2 Under assumptions (1) and (M), SDE (1.1) has a unique ®'-valued solution
if Ye®, we have E|X ,[¢]]* < o0.

Proof (1°)(existence) By the proof of Theorem 3.3, we have an r, such that X, lies
in H_, and E| X, |I2_,0 < 0. For every neN, by Theorem 4.1, there exists an H_,
valued solution X" for the SDE (1.1) in [0,n]. As p;(n) < p,(n+ 1), X""! and X" are
two H_, ,.1y-valued solutions for the SDE (1.1) in [0, n] and hence, by the uniqueness
of H_, ,1-Valued solution in [0, 7] of Theorem 4.1, we see that X7 = X} for t <n.
Let &, = X7 for n— 1 <t <n,neN, then it is easy to see that ¢ is a ®’-valued solution of
the SDE (1.1) on [0, o).

2° (uniqueness) Let X be any other ®’-valued solution of SDE (1.1). By (c) of
definition 4.5 we have

E sup (X,[¢])* < o0. (4.41)

0<i<nAg,
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It follows from the same arguments as in the proof of Theorem 3.3 that there exists an
index p, such that X, lies in H _ . when t < n Ag,. By the proof of 1°, we may assume
without restricting the generality that &, also liesin H_, whent <n A ¢, By the same
arguments as in the proof of Lemma 4.1 we get our uniqueness.
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