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Abstract. This article is an elaboration of a talk given at an international conference
on Operator Theory, Quantum Probability, and Noncommutative Geometry held during
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1. Introduction

Quantum cohomology is a new mathematical discipline influenced by the string theory as a
joint venture of physicists and mathematicians. The notion was first proposed by Vafa [V],
anddeveloped by Witten [W] and others [B]. The theory consists of some new approaches to
the problem of constructing invariants of compact symplectic manifolds and algebraic vari-
eties. The approaches are related to the ideas of a (1 + 1)-dimensional topological quantum
field theory, which indicate that the general principle of constructing invariants should be
as follows: The invariants of a manifold M should be obtained by integrating cohomology
classes over certain moduli space M associated to M. In our case the manifold is a sym-
plectic manifold (M, w), and the moduli space M is the space of certain J-holomorphic
spheresa: CP! —s M ina given homology class A € Ha(M; Z). The relevant cohomol-
ogy classes on M are the pullbacks e*a of the cohomology classesa € H*(M, Z) under the
evaluation maps e: M —> M given by e(o) = o'(z) for fixed z € CP'. Then the integra-
tion of a top dimensional product of such classes (or equivalently, the evaluation of the top
dimensional form on the fundamental class [M]) gives rise to the Gromov—Witten invariant

/ efayn---ANeta, = (efar A--- N etap, [M]).
M .

These invariants are independent of the choices of zy,...,zp in CP! used in their
definitions, and can be interpreted as homomorphisms

G H(M,Z)Q--- @ H (M, Z) — C
given by’
(DA(al,---,ap):/ e*al/\"‘/\e*ap,
M
where a; is the Poincaré dual of ¢,

459



ki E

460 Amiya Mukherjee

The invariant ® 4 counts the number of mtersectlon pomts (w1th signs of their orienta-
tions) of the image of the p-fold evaluation map o + (0 (21), ... , 0(2p)) € MP with the
cycles representing the a;, where the dlmensmn of the homology class

ap X e X

is chosen so that if all the intersections were trahsversal there would be only a finite
number of such points. This is simply the number of J- holomorphrc spheres in the given
homology class A which meets the cycles representm0 ap, ..., p.

The importance of the J-holomorphic spheres and the Gromov——Wrtten invariants is that
they may be used to define a quantum deformation of the cup. product in the cohomology
ring H*(M) of a compact symplectic manifold M~ makmg 1t a quantum cohomology ring
QH*(M). PR R .

The description of the Gromov-Witten mvanants can be glven in terms of a general
Riemann surface X (see [RT]). However, we have made this exposrtory introduction some-
what simpler by taking ¥ = S2. The results that gu1ded our approach are to be seen in the
work of MacDuff and Salamon [MS2].

. J-Holomorphic curves

A symplectic manifold (M, w) is a smooth manifold M of dlmensron 2n'with a symplecuc
structure w on it which is a closed differential 2-form w such that the volume form " is
nowhere vanishing on M. The basic example is the Euchdean space R with the constant
symplectic form P

wo—dxl/\d)1+dX7Ad_)’2+ +dx /\d\ ,

where (X1, ..., X, Y1, .00 ),,) are coordmates in ]R'" The next basw example is provrded
by the phase space of a Hamlltoman system, that is, by the cotangent bundle T*N of any

n-manifold N with a symplectic structure Wthh is locally the pullback of the structure o

on R**. A sympletic manifold cannot be odd d1men51onal R '
A symplectic drffeomorphrsm ¢: (M 1, ®1) ——> M2 an) between two symplectlc
manifolds is a diffeomorphism ¢: M| —>, M such that¢* =W} Symplectlc geometry

is quite different from Rxemanman geometry, and also from Kahlenan geometry. The
Darboux theorem says that locally any two symplectxc manifolds of the same dimension
are diffeomorphic. Therefore locally all symplectlc manifolds are the same, and there is
- no local invariant in symplectic geometry, like, for example, the curvature in Rlemanman
geometry. The only possible invariants have to be global ;.1, FRE T
The Darboux theorem makes it difficult to study the global structure ona sy”rﬁbiéc-
tic manifold. Although variational techniques may.be employed to ‘tackle some: global
problems, it is the theory of J- holomorphrc curves of Gromov that apphes to-many . -

problems of symplectic mamfolds We have no other theory 10 1nvest1gate ‘these- globalfi
questions. B I

An almost complex structure on a mamfold M 1s a complex structure on 1ts tanoent
bundle T M, that is, an endomorphlsm JiTM =" TM such that .I 2’= _Id. Then, J ‘
makes T M a complex vector bundle, where’ the complex vector, space s ructure on each'
fibre T, M is given by (a + +/—1 b) v=aqav + b.l v.If M is already a complex manifold,
which is a manifold with holomorphrc changes of coordmates then the tangent bundle
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TM is a complex vector bundle, and its almost complex structure J is just multiplication
by +/—1. The standard almost complex structure j on R?" is given by

J(B/3x) =3/3yr,  j(Of0yx) = —3/dxx,

where z; = x+v=1 ¥k are the coordinates in C".

An almost complex structure J on a symplectic manifold (M, w) is called w-tamed if
o, Jv) > 0 for every nonzero vector v € T, M. This means that the restriction of @
to the complex line in 7: M spanned by v and Ju verifies the same condition, and 50 @
restricts to a non-degenerate form on each such line. An almost complex structure J is
called w-compatible if it is w-tamed, and

w(Jv,Jw)=w(,w) forallv,we TM.

The space J (M, o) of all w-compatible almost complex structures on (M, w) is non-
empty and contractible, because associated with the tangent bundle 7 M we have a bundle
J(M w) —> M with contractrble fibre Sp(2n, R)/U(n). Since J(M, w) is pathwise
connected, the complex bundles (T M, J) are isomorphic for different choices of J €
J (M, w). Therefore the Chern classes ¢i (M) of these bundles do not depend on J. The
assertions also apply to w-tamed almost complex structures (in this case the associated
bundle has ﬁbre GL(2n R) / Un)).

" A" smooth map ¢: (M, J) —> (M', J") between almost complex manifolds is called
Jy J )- holomorphlc if dgpy: oM —> TsxyM' is complex linear, that is, dpy o J, =
J] A m o d¢y for all x € M. These conditions are exactly the Cauchy-Riemann equations
in the case when (M, J) and (M’, J') are subsets of C". An almost complex structure J
on M is called integrable if it arises from a complex structure on M; in other words, if M
admits an atlas’ whose coordmate charts are (J, j)-holomorphic maps, where j denotes
the standard complex structure on C". If dim M = 2, a fundamental theorem says that
any almost complex structure J on M is integrable. However, the theorem is not true in
higher drmensrons The non mtegrablhty of J is measured by the Nijenhuis tensor N,
(see [MS1]). - "

A J- holomorphlc curve in (M J) is a (Jo, J)-holomorphic map o: & — M, where
(E,Jo) is a Riemann suiface (complex manifold of dimension 1) with complex structure
Jy. Very often we take (Z, Jo) as the Riemann sphere $%,and in lhls case a J-holomorphic
curve is referred toasa J- holomorphrc sphere.

If o is an embedding and C is the image of o, then o is called a J- holomorphic
parametnzatlon of C.In this case C is 2-submanifold of M with J -invariant tangent bundle
T C so'that each tangent space is a complex line in 7M. Conversely, any 2-submanifold C
of M with a J -invariant tangent bundle has a J-holomorphic parametrization o, because
the Testriction ‘6f Jto Cis integrable.

- For an w-tamed almost complex structure J on a symplectic manifold (M, ), the image
of J- holomorphtc parametnzatron is a symplectic 2-submanifold of M with J-invariant
tangent spaces. Conversely, given an oriented 2- submanifold C of M, one can construct
an w- tamed J such that T7Cis J -invariant (first define J on T C and then extend it to TM).
One may contrast thls srtuauon with that in complex geometry where one often defines
a curve as the set of common zeros of a number of holomorphic polynomials. Such an
approach makes no sense in the case when the almost complex structure is non-integrable,
since there may not exrst holomorph1c functions (M, J) —> C when J.is non-integrable.
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3. Moduli spaces

Let (M, J) be an almost complex manifold without boundary, and X be a Riemann surface
of genus g with complex structure Jy. Then a moduli space M(A4, J) is the space of all
simple J-holomorphic curves o: (2, Jp) — (M, J) which represent a given homology
class A € Ho(M; Z) (i.e. 0,{Z] = A), with the C"-topolagy, r > 0. Our first problem is
to provide a finite dimensional smooth structure on this space.

Note that a curve o is simple, if it is not multiply-covered, that is, it is not a composition
of a holomorphic branched covering (Z, Jo) — (X', Jy) of degree > 1 and a J-
holomorphic map £’ -—> M. We avoid multiply-covered curves because they may be
singular points in the moduli space M(A, J). Every simple curve ¢ has an injective point
z € I, which is a regular point of ¢ (i.e. do; % 0) such that o~ lo(2) = (z}. Moreover,
the set of injective points is open and dense in X [MS2].

The space S = C®(X, M, A) of smooth maps 0: ¥ — M that are somewhere
injective, and represent A € H>(M;.Z) may be looked upon as an infinite dimensional .
manifold whose tangent space at o € S is given by

TS = C®(*TM),

which is the vector space of all smooth vector fields of M along . :
We can view 6*T M as a complex vector bundle. Therefore we have a splitting of the
space of 1-forms

QUe*TM) = Q"0 *TM) @ Q' (0*TM),

where !9 and Q0! are respectively vector spaces of J-linear and J-anti-linear 1-forms
\_Nith values in o*T M. Since do € QU (o*TM), we can decompose do = 9,(c) +
ds(o), where

. 1
dj(o) = -2—(da — J odo o Jp),

- 1
“d3y(0) = -2-(dcr+Jodoo.10)

are respectively J-linear and J-anti-linear parts of do.

If £ —> S is the infinite dimensional vector bundle whose fibre &, over o € S is
the space Q%! (c*T M), then 3 4 is a section of the bundle £ — S. Moreover, the J-
holomorphic curves are the zeros of the section 3 7, that is, if Z denotes the zero section
of the bundle, then 4

M(A, Iy =@)7N@).
This will be a manifold if 3;: S — & is transversal to Z, that is, the image of
dd;(0): T,S —> Ty

is complementary to the tangent space of the zero-section Z for every o € M(A, J); in
other words, the linear operator Dy = n, 0 dd (o), where

b P T(g,())g =T,S®E — &y

is the projection, is surjective for every o € M(A, J).
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Expllcxt expression of the operator. - - . .
‘ Dy,: C®(6*TM) — o‘“(a TM

can be obtained by dlffercnnalmg ‘the: local expressions of. 8s(o’) in the direction of a
vector field along o. Thesc expressions show that the first order terms make up the usual
Cauchy-Riemann operator for maps C — C" = R>", Therefore D, is a first-order
elliptic ditferential operator, and hcnce it'is’ Fredholm Recall that a bounded operator
F: X —> Y between Banach spaces ‘X-and. Y is a Fredholm operator if F has finite
dimensional kernel and cokernel, and F(X) is closed..The index of F is defined by

index F = dim ker F — dim coker F.

These operators form an open subset F(X; Y) of the space of bounded operators B(X, Y)
with the norm topology. The Fredholm index is constant on each connected component of
F(X,Y), and therefore index F is not altered if F vanes contmuously

Although the domain and range of the Fredholm operator Dy are complex vector spaces,
D, is not complex linear, because J is not integrable. It will appear from the computations
for D, mentioned above that the complex’ anti-linear part of. D, has order 0. Then, by
multiplying the anti-linear part by a constant which tends to 0, we can find a homotopy of
D, through Fredholm operators. The final Fredholm operator of the homotopy commutes
with J, and is a Cauchy-Riemannian operator. It determines a holomorphic structure on
the complex vector bundle o*T M. Therefore we have by the Riemann-Roch theorem

(IGH], p. 243)

index D, = n(2 —2g) +2cl(cr TM)[E] = n(2 Zg) + 2c1(A),

where ¢ is the first Chern class of the complex bundle (TM J), and ¢c|(0*TM)[Z] =
(@*c)[Z] = c1(04[Z]) = ci(A).. et -

If the operator Dy, is surjective forevery o € M (A J ) then it follows from the infinite
dimensional implicit function theorem that M(A4, J) is.a ﬁmte dimensional manifold
whose tangent spacc at o is ker Dy

We suppose that the space of w-compatible almost complex structures J=JM,w)
has been endowed with the C*-topology. Let J; be the subspace of J consisting of those
structures J for which D, is surjective for all e € M(A, J).

Theol'em 3.1.
(@) If J € J,, then M(A, J) is a smooth manifold with a natural orientation such that
dim M(A, J)=n(2 - 2g) + 2c1(A)
(b) The subset 7, is residual in 7.
Recall that a subset of a topological space X is residual if it is the intersection of a

countable family of open dense subsets of X. A point of X is ‘called generic if it belongs
to some residual subset of X.

Proof. Part (a) follows from the above discussion, except for the orientation. The orien-
tation follows from the fact that a Fredholm operator D between complex Banach spaces

* induces a canonical orientation on its determinant line

det D = QP (ker D) ® Q9 (ker D*‘):
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where p = dimker D and g = dim coker D, provided D is complex linear. As described
above, we may suppose by using a homotopy of order 0 that our Fredholm operator Dy is_
complex linear with coker D, = 0. Therefore its determinant line, and hence ker Do’ ="
7o M(A, J), has a canonical orientation. These arguments are due to Ruan [R], also note
that earlier Donaldson [D] used similar arguments for the orientation of Yang—Mills modull '
spaces. =

Part (b) uses an infinite dimensional version of Sard—Smale theorem which is due to
Smale [S]. A non-linear smooth map f: X —> Y between Banach spaces is a Fredholm
map of index k, if the derivative df;: X —> Y is a linear Fredholm operator of index
k for each x € X. A point y € Y is a regular value of f if dfy is surjective for each
x € f~Y(3), otherwise y is called a critical value of f. Then the Sard-Smale theorem
says thatif f: X — Yisa C* Fredholm map between seperable Banach spaces | and
k > max(0, index f), then the set of regular values of f is residual in Y. The theorem
remains true if X and Y are Banach manifolds, instead of Banach spaces. It follows from
the implicit function theorem for Banach spaces that if y € Y is a regular value; then
f~1(y) is a smooth submanifold of X. Moreover, if f ~I(y) is finite dimensional, then its
dimension is equal to the Fredholm index of f.

For the completion of the proof of the theorem, we need to refine the space S usmg
the Sobolev W*-P-norm which is given by the sum of the LP-norms of all derivatives of
o € Suptoorderk, N

lole, =) L7 0),

Irl<k

where r is a multi-index and |r} is its order. It can be shown that the Sobolev space
Wk-P(Z, M), which is the space consisting of all maps ¥ —> M whose k-th order
derivatives are of class L? (and which represent the class A € H2(M; Z)), is the completion
of the space S with respect to the Sobolev WP _norm (see Appendix B in [MS2]). It
appears that we must assume the condition kp > 2 in order for the space wk-P(3, M) to
be well-defined. Under this condition, the Sobolev embedding theorem says that there is a
continuous embedding of WX-P(X, M) into the space of continuous maps C 0=, M ), and
the multiplication theorem says that the product of two maps of class WX-7 is again a map
of the same class.

Atthe same time we restrict the space of almost complex structures 7 (M, w), mtroduced
carlier. Let J¢, £ > 1, be the space of all almost complex structures of class C* which
are compatible with o, with the C* topology. We shall choose £ later according to our
requirement.

Then J°¢ is a smooth separable Banach manifold. Let End(T M, J, @) —> M be the
bundie whose fibre over p € M is the space of linear endomorphisms X: T,M —> Tp
such that

XJ+JX=0, oXv,w)+w®, Xw)=0, for v,weT,M.

Then the tangent space T; J¢ at J is the space of sections of this bundle. .

It can be proved by elliptic bootstrapping methods (see [MS2], Appendix B for details)
that if J € J¢ with € > 1, then a J-holomorphic curve o: & —> M of class W&? with
p > 2is also of class W{t1-P_ In particular, if J is smooth and o is of class C¢, then o
is also smooth. Thus if k < £ + 1 and J € J¢, then the moduli space of J-holomorphic
curves of class WX-P does not depend on k.
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** Inthe context of the Sobolev space of WX-P-mapso: £ —s> M forsome fixed p > 2, we
have the Banach space bundle £ — W*.P(Z, M) whose fibre over o € W5P(Z, M)
is the space

EP = LM(AY'T*E ®) o*T M)

of complex anti-linear 1-forms on T of class L” taking values in o*T M. The non-linear
Cauchy-Riemann equations determine a section 8, of this bundle, and the derivative of
a4 at o gives rise to the operator

Do: WP (0*TM) — WK12(AYIT*S @, 0*T M).

The explicit formula for D, is given by
1 1
D,§ = 5(VE + J(0)VE o Jo) + gN/(aj(O),E).

where V is the Hermitian connection on M, and Ny is the Nijenhuis tensor (see [M1]).
The first part has order | and commutes with J, while the second has order 0 and anti-
commutes with J.

- The ellipticity of D, can be established from the estimate

I§lwer < colll DaéllLr + liElLr),

which follows from the L”-estimate for Laplace operator (the Calderson-Zygmund
inequality) (see Appendix B in [MS2]). Therefore D, is a Fredholm operator of positive
index, by a previous argument in a similar situation.

The following space is also a smooth Banach manifold

MUA TY = {(a,J) e WhP(S, M) x T413,(0) = O}.

The tangent space T(o. s, ME(A, T) is the space of all pairs (X, Y) such that
1
DUX+§ Y(o)odo o Jy =0.

‘Let 7 MYA, T — TJ¢ be the projection. Then JT"(J) = MH(A, J), and the
derivative of 7 at (o, J),

(0, J): To. s MUA, T —> T, T*

is just the projection (X, Y) + Y. It follows that dzr (o, J) is a Fredholm operator having
the same index as D,. Moreover, a regular value J of 7 is an almost complex structure
such that D, is surjective for all J-holomorphic spheres o € 7! (/).

We denote the set of regular values of = by Jf. By the Sard-Smale theorem (stated
earlier), the set 7! is residual in J¢ with respect to the C¢ topology whenever £ — 2 >
index Dy = index 7, because 7 is of class Ct4.

Let A be a positive number, and j be the set of almost complex structures J € J =
J (M, w) such that D is surjective for every J-holomorphic sphere o with |jo (L~ < A.
Clearly, the intersection of the sets 7, over all A > 0 is the set J; of part (b) of the
theorem.

The set J, is residual, because each J; ¢ -, 1s open and dense in J with respect to the C=°
topology. We omit the details which may be found in §3.4 of [MS2]. a
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The above theorem can be extended further in order to understand how the manifolds
M(A, J) depend on J € J,.. Two almost complex structures Jp and Jj in 7, are called
smoothly homotopic if there is a smooth path [0, 1] — J, t — J;, from Jp to J).

Theorem 3.2, Let J be path-connected, and Jo, J, € Jr. Let T (Jp, J1) be the space of -
all smooth homotopies from Jy to J\. Then there is a dense set

Jr(Jo, 1) T T(Jp, J1)
such that for every {J;} € J,(Jo, J1), the space
M(A, {Jthep.) = {(t, 0)lo € M(A, J1)}

is a smooth manifold of dimension n(2 —2g) + 2¢((A) + 1 with a natural orientation and
with a smooth boundary which is given by

IM(A, {Jthero,1)) = M(A, J1) — M(A, Jy),
where the negative sign indicates the reversed orientation.

Thus moduli spaces M(A, Jp) and M(A, J1) are oriented cobordant. We may call the
elements of the set 7, (Jo, Ji) regular homotopies.

4. Compactness

The manifold M(A, J) will not serve any purpose unless some kind of compactness is
established for it.

For simplification we suppose that M(A, J) is the moduli space of J-holomorphic
spheres. The Rellich’s theorem says that the inclusion map

u/k+l,l)(52, M) _ Wk.[)(SQ, M)

is compact for all k and p (this means that a sequence {o,,} which is bounded in the domain
W¥+1.P(S2, M) possesses a subsequence which is convergent in the range W-1(S2, M)).
Moreover, ifk—2/p > m+awhereQ < o < 1,then WX#(§2, M) embeds compactly into
the Holder space C™*(S2, M). Using this one gets the main elliptic regularity theorem,
which contains a result of compactness.

Theoremd.1. Ifk > 1, p > 2,and 0 € WKP(S2, M) with 3,0 = 0, then o €
C®(S%, M). Moreover, for every integerm > 0, every subsetof 87 l (0) which is bounded
in Wk2(S2, M) has compact closure in C™(S2, M).

The details are in [M2].
An w-tamed almost complex structure J determines a Riemannian metric on M,

1
(v, w)y = 5[w(v, Jw) + o(w, Jv)).
The energy of a J-holomorphic sphere 6: §2 —s> M with respect to this metric is

E(o) = f1 ldall}.
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Thé group G = PSL(2,C) acts on‘C U {o¢}* =-Cs by ‘Mobius . transformations
¢L: COO — COO» i l

(1<,+[)

oL(2) = —— wrd

L= (c d) € SL(2;C)

We may identify $ with CP! ~ Cq by a stereographic projection =, and different

choices of 7 correspond to the action of SO (3) >~ SU(2)/{£ld} ¢ PSL(2,C) = G on

CP' = Cq. Then a J-holomorphic sphere S> —» M gets identified with a smooth J-

holomorphic curve o: C —> M such that the map C — (0} —> M givenby z — a(1/2)

extends to a smooth map C —> M. The space of -such maps remain invariant under
_composition with Mdbius transformations ¢ : Coo —> Coo? We say that a sequence of “

such J-holomorphic curves 6,;: € —>. M converges on C if both the sequences {o,, (4.)}

and {0, (1/2)} converge umformly with all denvanves on compact subsets of C. .

It can be shown that :

E(o):/ o*w = w(A)
C

' for all J-holomorphic curves o: C — M (J is w-tamed), where w is considered as an

integral valued form. Thus the L2-norm of the derivative of o satisfies a uniform bound
“ which depends only on the homology class A represented by.o. This does not imply
- compactness of the moduli space by the Sobolev estimate, because here p =2 (a uniform
bound on the L”-norms of do with p > 2 would guarantee the compactness).

It may be noted that the space M(A, J) can never be both compact and non- empty,
unless A = 0 in which case all o are constant maps. Because, the group G=PSL2,C)
of holomorphic maps § — §~ is non-compact and it acts on 5° by reparametnzatlon
o> cgo¢, ¢ € G, and so any o € M(A;J) has a non-compact orbit. However, it
is possible to compactify the quotient M(A, J)/G sometimes,-if A satlsﬁes a certain
condition.

One can show that if o, is a sequence in M(A, J) without any limit pomt in M(A, J),
_then there is a point z € S2 such that the derivatives do,(z) are unbounded. This implies

after passing to a subsequence that there is a decreasing sequence of neighbourhoods Uy
“of z in §2 such that the images 0,,(U,;) converge to a J-holomorphic sphere. If B is the

homology class of this sphere, then either w(B) = w(A), or else 0 < w(B) <w(A). In
the first case, the maps o,, can be reparametrized so that they convergé in M(A, J). The
second case is referred to as the phenomenon of ‘bubbling off’. Here one must proceed
with more care. The phenomenon was discovered by Sacks and Uhlenbeck [SU] in the
context of minimal surfaces.

The following theorem gives acriterion for the moduli space M(A, J ) / G tobe compact
This is the simplest version of Gromov’s compactness theorem.

A homology class B € H»(M,Z) is called spherical if it lies in the image of the
Hurewicz homomorphism w2 (M) —> H>(M, Z). It is customary to write B € ma2(M) if
B is a spherical homology class.

Theorem 4.2. If there is no spherical homolog) class B € Ha(M,; Z) such that 0 <
w(B) < w(A), then the moduli space M(A, J)/ G is compact.

The proof consists of showing that if o,,: CU{occ} —> M isasequenceof J -holomorphic
A-spheres, then there is a sequence of matricés L, € SL(2, C) such that the sequence
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op o ¢r,, has a convergent subsequence. Therefore if w(A) is already the smallest positive
value taken by w, then the moduli space is compact.
If the criterion of the theorem is not satisfied, it is still possible sometimes to compactify
M(A, J)/G by adding suitable pieces. This we shall explain in the next section in a more
- general context.

5. Evaluation maps

The Gromov-Witten invariants are constructed from the evaluation map
M(A, ) xS* — M

given by (o, z) = o(z). The group G = PSL(2, C) acts on the space M(A, J) x s by
¢ -(0,2) = (0 0@~ L, $(2)). Therefore we get a map by passing to the quotient

e=¢e;: W(A,J) = M(A, J) x¢ §? —> M.

For example, suppose that M = CP! x V with a product symplectic form, and A =
[CP! x {point}]. If m5(V) = 0, then A generates a spherical 2-class in M, and so w(A)
is necessarily the smallest value assumed by @ on the spherical classes. Therefore by
Theorems 3.1 and 4.2, the space W(A, J) is a compact manifold for generic J. Since
ci(A) = 2,dim W(A, J) = 2n which is the dimension of M. It can be shown that different
choices of J give rise to cobordant maps e,. Since the cobordant maps have the same
degree, deg ey is independent of all choices. In the case when J = Jy x J' is a product,
where Jg is the standard complex structure on CP!, it can be seen that the elements of
M(A, J) have the form o (z) = (¢(z), vo), where vy € V and ¢ € G. It follows that the
map e, has degree 1 for this choice of J and hence for every J.

In general, we have a p-fold evaluation map

ep: W(A, J, p) = M(A, J) xg (CPYP — MP
defined by
€p(@,21, ..., 2p) = (021, ..., O(Zp)).

Here, for a space X, X” denotes the p-fold product X x --- x X.
For a generic almost complex structure J, the space W(A, J, p) is a manifold with

dim W(A, J, p) =2n+2c1(A) +2p —6.
This manifold is not compact in general. However, in many cases the image
X(A,J, p)=ep(W(A, J, p)) C MP

can be compactified by adding suitable pieces of dimensions at most equal to
dim W(A, J, p) — 2. These pieces are called cusp-curves (the terminology is due.to
Gromov [G})), and they are connected unions of certain J-holomorphic spheres. By the
Gromov compactness theorem (which is a convergence theorem leading to compactness,
see [MS2}), the closure of X' (A, J, p) contains points that lic on some cusp-curves repre-
senting the class A in a sense that we shall describe in a moment little later. Therefore in
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order to compactify AX'(A, J, p) we must add ali simple cusp—curves in the class A to the
moduli space M(A, J). The compactlﬁcatlon is important because we want X(A,J, p)
to carry a fundamental homology class. We describe below some features of a cusp-curve.

A cusp-curve o in (M, w), which represents the homology class A, is ‘a collection
o =(oy,...,on)of J- holomorphlc spheres o;: :CP! —> M such’ ‘that Cu-- UCN isa
connected set, where C; = 0;(CP!yand A = At ot AN, A; being the homology class
represented by a;. The o; are called the components of o': A'cusp-curve o is called snmple
if its components o; are simple J-holomorphic spheres such thato; # g o¢fori #'j and
any ¢ € G. Any cusp-curve can be simplified to a snmple cusp—curve by replacmg each
multiply covered component by its underlying s:mple curve. Of course this operation will )
change the homology class A, but not the set of points that he on the curve. Also one can
order the components of o so that Cy U - U Ck 1s connected for all k < N. This means
that there exist integers ja, ... , jy with 1 < ji <'isuch that each C; mustmtersect some’
Cj, that is, there exist w;, z; € CP ! such that o, (w;) = 0; ). " ' T

A framing or intersection pattern- D of an ordered simple cusp-curve

"o =(0],...,0N)
is a collection
:{AlY"',AN’jz”';'.‘!.;iN]‘,

where A; = [C;] € H;(M,Z) and j; are integers with 1°< j; < i — 1 chosen so that
C; intersects Cj; (i.e. C; N Cj; # ¥). Then co(A ) < a)(A), and s0 there are only a finite
number frammgs D assoclated too.

For a fixed framing D = {Ay, ... AN j’),"..‘: ,jN} anda.l e J(M w), let

M(Ay, ... AN,J) M(A],.I)x xM(AN,J)

.1 b u,(

Let M(D, J) be the moduli space

M(D, J)CM(A|,.. AN,J)x(CP )“”
ons:stmg of all (o, w, z) where 0 = (01, ,aN), a, € M(A,, -/), '
w = (wa, ..,wN)e(CP )N " and z= (zz,.,g._,zN)e(CP )N ‘

such that ¢ is a simple cusp- curve w1th or,, (w,) = a, (z,) for i=2,:,N.>
For a generic J, M(D, J) will be an onented mamfold of dxmensnon

W Pt

22 1(4)) + 21 +4N -~ D).
p= R

The proof uses the extended evaluatlon map

_ep: M(Ay, ... AN,J)x((CP )2N -2 M-N

<a

given by

en(@,w,2) = (@ (W), 02(Z2), -+ » Oy (WN), ON ().
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The map ep is transversal to the multi-diagonal set
Ay = {(x2, 32, ..., xn, yn) € MPN 2 x; =y},

and therefore the inverse image e[,l (An) = M(D, J) is a manifold of the above dimen
sion.
The group G¥ = G x --- x G acts freely on M(D, J) by

¢ (0, wi,2) = (0 067", 8, (), $i(2), $ = (¢1,...,¢n) € GV,
The quotient space M(D, J)/G" for a generic J is a manifold of dimension
2c1(A1+ -+ AN) +2n - 2N — 4.

This is precisely our previous moduli space M(A, J)/G when N = 1 and 4| = A.

Let T denote a function {1,..., p} — {1,..., N}. This function will indicate which )
of the N components of C = C; U --- U Cy will be evaluated to get a point of M l”.v '
Define

W(D, T, J, p) = M(D, J) xgn (CPHP,

where the jth component of ¢ = (¢),...,dn) € G" acts on M(D, J) as above, and it
acts on the ith factor of (CP!)? if and only if T7@) = j. Then W(D, T, J, p) will be a
manifold of dimension

N
2)  ci(A)+2n+2p—2N - 4.
j=l

We have an evaluation map ep 7: W(D, T, J, p) — MP defined by
ep,r(o,w,z,8) = (or(1h(€1), - .. , o1 (py(Ep)),

where (0, w, z) € M(D, J)and £ = (&i, ... ,£,) € (CPHP.

We shall now choose J suitably so that X'(A, J, p) has a fundamental homology class. -

A manifold (M, w) is weakly monotone if every spherical homology class B € -
Hy(M,Z) with w(B) > 0 and ¢((B) < 0 must satisfy the condition ¢|(B) < 2 — n. A
Here c) is the first Chern class of the complex bundle (T M, J). This means that there are
no J-holomorphic spheres in homology classes with negative first Chern number. The
manifold (M, ) is monotone if there is a A > 0 such that w(B) = Xc|(B) for every
spherical B € H>(M, Z). It can be shown that a monotone manifold is weakly monotone,
and conversely.

Let R be a positive number. Then an w-compatible almost complex structure J is called
R-semi-positive if forevery J-holomorphic sphere o: CP! — M with energy E(c) < R °
has Chern number fc pro¥cr = 0. Let 7. (M, w, R) be the set of all w-compatible R-
semi-positive J. This set may be empty. However, if (M, ) is a weakly monotone com-
pact symplectic manifold, then J(M, w, R) is a path connected open dense set for"':‘
every R.

Theorem 5.1. Let (M, w) be a weakly monotone compact symplectic manifold, and A Ev :
H»(M, Z).
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“(a) Forevery J € J(M,w) thereisa ﬁnite number, of evaluation maps

en.r: W(D. T, J. p) =5 MP

such that

N &V AT =B € ) 0.0 VD, T, . p),
D.T

where the intersection is over all compact subsets K in W(A, J, p), and the union is
over all effective framings D and all functions T: {1, ... ,p} — {1,...,N}
(b) There is a residual subset Jy in J(M, w) such that for every J € J;, the spaces
W(D, T, J, p) are smooth oriented o -compact manifolds with

e

dim W(D, T, J, p) =2n4+2ci(Dy+2p —~2N —4.

(c_)ﬁSuppose that A is not a multiplercias«'v AB where-). > land c|(B) =0.IfJ €
© J+(M,w, R)N T, then

vt

dim W(D, T, J, p) < dim W(A;J, p) —

Recall that a manifold is ¢ -compact if it is the umon of a countable family of compact
sets

~ The proof may be found in [MS2]. To understdhd the essence of the theorem, we need
lo look at some facts about pseudo-cycles. . -~ . -

If a subset X of a manifold M is within the image of a smooth map g: V — M defined
on a smooth manifold V of dimension k, then X is said to be of dimension at most k. The
boundary of the set g(V), denoted by g(V°°), is deﬁned to be the set

2
X -

g(v®) =) s(V=1XK),

where the intersection is over all compact subsets K of-V. This is the set of all limit points
of sequences {g(x,)} where {x,} has no convergent subsequence in V.
. A k-pseudo-cycle in M is a smooth map f: W.—> M defined on a smooth manifold
W of dimension k such that dim f(W®) <k = 1., Two k-pseudo-cycles fo: Wo — M
and fi: Wi —> M are bordant if there is a (k + 1)- pseudo cycle F: W — M with
8W = Wl Wy such that
- {v’""“,\‘;,
”V():fo, FIW, = fl, and - d|m F(Woo)</\—1

Every singular homology class @ € Hk(M ) can, be represented by a k-pseudo-cycle
f+W —> M. This can be seen in the following way. First represent o by amap f: X —>
M defined on a finite oriented k-simplicial complex X without boundary sothate = f.[X],
where [X] is the fundamental class. Then approximate f by a map which is smooth on
each simplex of X. Finally, consider the union of the k- and (k — 1)-faces of X as a smooth
manifold W of dimension k and approximate f by a map that is smooth across the (k — 1)-
simplexes. oA

It also follows that bordant k- pseudo-cycles are in the same homology class. However,
two pseudo-cycles representing the same homology class may not be bordant.
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Theorem 5.1 says that the evaluation map e,: W(A, J, p) —> M?" is a pseudo- cycle,
and that the boundary of its image can be covered by the sets

ep,TOW(D, T, J, p)).

Therefore the image of e, carries a fundamental homology class. It can be suuvwi usar
this class is independent of the choice of the point z € (CP!)? and the almost complex
structure J. -

6. Gromov-Witten invariants and quantum cohomology

For the definition of the quantum cohomology, the symplectic manifold (M, @) is requtred
to satisfy the following (mutuaily exclusive) conditions: 7

(a) M is monotone, that is, (@, A) = A{cy, A) for every A € m2(M), where A, > 0 and
¢y =ci(TM, J). :

(b) {c1, A) = Oforevery A € ma(M), or {w, A} = O forevery A € ma(M). 1

(c) The minimal Chern number N, defined by {c|, m2(M)) = NZ where N > 0, is oreater
than or equal to n — 2. P

%

2

It can be shown that a manifold (M, w) is weakly monotone if and only if one of the
above conditions is satisfied.

Let (M, w) be a weakly monotone compact symplectic manifold with a fixed A e
Hy(M, Z). Then the p-fold evaluation map

ep: W(A, J, p) — M?P

represents a well-defined homology class in M”, which is independent of J.
If A is a spherical homology class, and p > 1, then define 2 homomorphism

$y,pt HiMP,Z) — Z,

where d = 2np — dim W(A, J, p), in the following way. Let « € Hy(M?,Z).so that
@ =oqay X Xap where a; € Hy;(M,Z) withd) +---+d, = d. One can find a
cycle representing the homology class «, which is denoted by the same notation «; such’
that it intersects the image X'(A, J, p) of the map e, transversely in a finite number of
points. Then the Gromov—~Witten invariant Da(w), ... ,ap) is the intersection number.
ep - &, which is the number of intersection points counted with signs according to their
orientations. This is the number of J-holomorphic spheres o in the homology class A
which intersect each of the cycles ay, ... ,oz,) If the dimension condition for d is- not
satisfied, then one sets P4 (ay, ..., o)) = )

The quantum cohomology is obtamed by deﬁnmg a quantum deformation of the cup
product on the cohomology of a symplectic manifold (M, w). Before going into thls let
us review the ordinary cup product in singular cohomology. wx?

We denote by H*(M) the free part of H*(M, Z). We may consider H*(M) as de Rham
cohomology consisting of classes which take integral values on all cycles:

H*(M) = Hjr(M, Z).
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Next, we let H,(M) denote Hi(M,Zj/Torsion. Then we can identify H¥(M) with
Hom(H (M), Z) by the pairing ofa e H*(M)and B € Hy(M) givenby - ‘

&

a(ﬁ):/ ) -

In the same way, the intersection pairing - ,B ofaf € Hs;—1 (M) and ,B e Hk(M) gives
rlse to the homomorphism

i

PD: Hay i (M) — H* (M)

where PD(a) =alif 7
a(B) = / a=c-B for.Be Hk(M):
8

The Poincaré duality theorem says that PD is an isomorphism. “Then the cup product
aub e H**'(M)ofa € H*(M)and b € H* (M) is defined by the  triple intersection

[ avb=a-p.y. mnyeHHAM»
Y

where @ = PD™ (@) € Hap—r(M) and B = PD™ l(b) € Hg,, e(M) ThlS is well- deﬁned :
because if the cycles representing o and B are in general posmon then they mtersect a
pseudo-cycle of codimension k -+ €7+ ,

- Next note that by our assumptlon (M w) is monotone wuh mmlmal Chern number'
N > 2 = F*V e .
The quantum multiplication a * b of classes ae H"(M) and b e He(M) is defined
as follows. Let & = PD(a) and B ="PD(b) denote the Poincaré’ duals of a and b so that

deg(a) = 2n — k and deg(8) = 2n —¢. Then a x b is the formal sum ;7

. axb= Z (a*b)A qfl(A)/N

. o~
3

where ¢ is an auxiliary variable supposed to be of degree 2N and the cohomo[ogy class
(a * b)A € HkHt=2a(ppy is deﬁned in terms of the Gromov—Wltten invariant Diby

‘[m*mA=¢nmﬂwx:

for y € Hit¢-.0)(M).Here e, B, y satisfy the followmg dnmenswn condmon requnred
for the definition of the invariant @4,

2c1(A) + deg(a) + deg(B) + deg(;;j"= 4n

The condition shows that 0 < ¢1(4) < 2n,*and'the'r\efore.0nly finitély many powers of g
occur in the above sum defining a . Since M is monotone, the classes A which contribute
to the coefficient of g¢ satisfy w(A) = ¢1(A)/N = d, and therefore only finitely many
can be represented by J-holomorphic spheres. Therefore the sum.is- finite. Since only
nonnegative powers of ¢ occur in the sum, it follows that a * b is an element of the group

QH" (M) = H*(M) ® Ziq), '
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where Z([q] is the polynomial ring in the variable ¢ of degree 2N. Then we get a multipli-
cation by linear extension

QH'(M)® QH"(M) — QH™(M).
The quantum cup product is skew-commutative in the sense that

axb=(=1)%s0dshy g

fora,b € QH*(M). Moreover, the product is distributive over the sum, and associative.
The skew-symmetry and the distributive properties follow easily. But the associative prop-

erty is a bit complicated and depends on a certain gluing argument for J-holomorphic
spheres.

The quantum cohomology é7-l b (M) vanish for k < 0, and are periodic with period 2N
for k > 2n. To get the full periodicity, we consider the group

QH*(M) = H*(M)® Zlq.q" '},

where Z[q, g~!] is the ring of Laurent polynomials, which consists of polynomials in the
variables g, g~! with the obvious relation g - ¢~! = 1. With this definition QH*(M) is
non-zero for positive and negative values of k, and there is a natural isomorphism

QH* (MY — QHF2N (M)

given by multiplication with g, for every k € Z.

If A = 0, then all J-holomorphic spheres in the class A are constant. It follows then that
® (e, B, y) is just the usual triple intersection ¢ - 8 - y. Since w(A) > 0 for all other A
which have the J-holomorphic representatives, the constant term in a * b is just the usual
cup product.

The product in Q H*(M) is also distributive over the sum, and skew-commutative. It
commutes with the action of Z[gq, q”l]. Ifa € HO(M)or H' (M), thenaxb = aUb forall
b € H*(M). Also the canonical generator 1 € H°(M) is the unit in quantum cohomology.

As an example, let M be the complex projective n-space C P with the standard Kihler
form. Let L be the standard generator of H2(CP') represented by the line CP!. Then the
first Chern class of CP” is given by ¢1 (L) = n+ 1. Therefore, by the dimension condition,
the invariant ®,,; («, B, y) is non-zero only when m = 0 and 1. Clearly, the case m = 0
corresponds to constant curves, and gives the ordinary cup product. Since the minimal
Chern numberis N = n+ 1, the quantum cohomology groups are given by Q H kMy~zZ
when k is even, and Q H*(M) = 0 when £ is odd.

Next, leta € HY(M) and b € H*(M).If £ + k < 2n, then the quantum cup product is
the same as the ordinary cup product a * b = a U b. So consider the case when a is the
standard generator p of H2(M) defined by p(L) = 1, and b = p* € H>"(M). Then the
quantum cup product p % p” is the generator g of Q H>"*2(M), because

(p* p")L = OLUACP 'Y, pr, pr) =1,

pt

where [CP" 1] = PD(p) and pi = PD(p"), and all other classes (p * p")4 vanish.
Therefore the quantum cohomology of CP" is given by
Zlp. 4]

OH* (CP"y = —2 22
QH (P (Pt =9
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