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Abstract

In this paper, we propose two new response-adaptive designs to use in a trial comparing treatments 
with continuous outcomes. Both designs assign more subjects to the better treatment on average. 
The new designs are compared with existing procedures and the equal allocation. The power of the 
treatment comparison is assessed.
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1. Introduction

Consider the situation where two treatments with continuous outcomes, X\  and X 2 , are 
compared in a randomized trial. We assume that treatment outcomes are normally distributed 
with Xi  ~  N (/ij, Cj) and X 2 ~  N(^2> a\)- Without loss of generality, we assume that a 
higher value indicates a more favourable response, and n j ^  fi2- Response-adaptive designs 
are allocation procedures that change the allocation away from equal allocation according to 
a certain goal. One of the goals is to assign more subjects to the better treatment on average. 
Another goal is to optimize a certain criterion, for example, to minimize the sample size 
given fixed precision of estimation or fixed power of the test (Hu and Ivanova, 2004). Most



of the response-adaptive designs have been developed for treatments with binary outcomes. 
Urn models, such as the randomized play-the-winner design (Wei and Durham, 1978; Wei, 
1979), are designs that assign more subjects to the better treatment on average. The doubly 
adaptive coin design (Eisele, 1994) is an example of an allocation procedure that can be 
used to optimize a certain criterion. In this paper, we focus on response-adaptive designs for 
treatments with continuous outcomes. Among existing designs for continuous outcomes are 
the randomized design (Melfi et al., 2001) and the design of Bandyopadhyay and Biswas 
(2001).

A well-known Neyman allocation for treatments with continuous outcomes is the alloca­
tion that assigns n = o\/(o\ + ai)  subjects to the first treatment. This allocation minimizes 
the sample size when the power is fixed. The randomized design of Melfi et al. (2001) tar­
gets the Neyman allocation. If the better treatment has smaller variance then n < 0.5, hence 
the optimal allocation n will result in assigning fewer subjects to the better treatment. The 
design of Bandyopadhyay and Biswas (2001) has been developed with the goal of assigning 
more subjects to the better treatment on average. However, the power of the treatment com ­
parison can be lost. In this paper, in Section 2 we introduce two response-adaptive designs 
for treatments with continuous outcomes. Both designs assign more subjects to the better 
treatment on average. Section 3 considers a response-adaptive procedure, where sequential 
estimation is used to tune the design parameters. Simulation results are presented in Section 
4 and conclusions in Section 5.

2. Two designs for continuous outcomes

In this section, we define two new response-adaptive designs for continuous outcomes 
and discuss their properties.

Design 1: The urn contains balls of three types. Balls of types 1 and 2 represent the 
two treatments. Balls of the third type are called immigration balls. Initially, the urn 
contains one ball of each type. When a subject arrives a ball is drawn from the urn 
at random. If the ball is an immigration ball, no subject is treated, and the ball is re ­
turned to the urn together with 2 additional balls, one of each treatment type. If a ball 
of type i, / =  1, 2, is drawn the next subject is given the corresponding treatment and 
an outcome X; =  / =  1, 2, is observed. If > k for some cut-off value k, the ball 
is replaced and hence the urn composition remains unchanged. If x ,• the ball is not 
replaced.

In Design 1, a more favourable response to treatment i will maintain the existing urn 
composition, whereas a less favourable response will reduce the number of balls of that 
type. Design 1 is the drop-the-loser design (Ivanova, 2003), where the outcome is a success 
if Xi > k and a failure otherwise. The probability of not replacing a ball of type i is =  
P(Xi ^ k )  = <P{(k-Hi)/Oi}, where <t> is the cumulative distribution function for the standard 
normal random variable. The choice of the cut-off value k will be discussed later.

Design 2: The second response-adaptive design requires specification of the design pa­
rameters c and T > 0. Design 2 is similar to Design 1, except that when an outcome Xj — Xj 
is observed the ball is replaced with probability <P{(Xj — c ) / T } and not replaced with 
probability 1 -  4>[(Xi -  c ) / T } .



Design 2 is equivalent to the following procedure. When an outcome X, =x,- is observed, 
random variable V ~  N(c, T 2) is generated independently of Xj. The ball is then replaced 
if xi >  V and not replaced if <  V. Hence, the probability of not replacing the ball of type 
i, i =  1,2, in Design 2 is equal to

P ( X i ^ V )  = 0

/
c - H i

=  P

That is, Design 2 yields the same marginal probability of replacing a ball as does Design 1 

with treatment specific cut-offs +  (c—/^)ffi/yjo■? +  T 2, i = 1,2. Design 2 is the drop-

the-loser rule with q-, =  |( c  — n i ) ! ^ a 2 +  T 2 J. Following Ivanova (2003), the limiting

allocation proportion to the first treatment for the two designs is equal to qzl{q\ +  qi), with 
corresponding q\ and <72 ■

3. The choice of design parameters

3.1. Specifying the design parameters in terms o f  unknown jj.\ , pi2, o \ , 02

Consider the choice of the design parameter k in Design 1. Let w e (0, 1), then define 
k =  +  (1 — w)n2> so thatfc e  (/ij, fi2). For this choice oik,  if fix > (i2, qi =  —(1 -  
w)(fi j — n2) /a \)  < 0.5 m d q 2 = ̂ >{w(jj.y — ̂ 2) / cr2} > 0.5. Hence, in the limit, more subjects 
are allocated to the treatment with larger mean. We recommend using (//) +  /i2)/2  as k in 
Design 1. Similarly, we recommend setting c =  (/ij +  n2)/2  in Design 2. Let q ^  be 
the probability of not returning the ball of type i, i =  1,2, in Design 1 and let <7 ®  be 
corresponding probabilities in Design 2. If k =  c e  (/ij, /i2). <?j  ̂ < <?|2) and q2  ̂> q ^ \  
hence +q22‘>) > 0.5. That is, the limiting allocation proportion
to the first treatment in Design 1 is further away from 0.5 than the limiting allocation 
proportion in Design 2. As we will see in Section 4 allocation proportions that are too 
extreme negatively affect the efficiency of treatment comparison. Fig. 1 shows the limiting 
allocation proportion to the first treatment for the two designs for a wide range of cut-off 
values k and c ,k  — c.

The root of the pooled variance +  <x2)/2  can be used as T  in Design 2. A value of 7 
much larger than the pooled variance will result in probabilities of not returning the ball to the 
urn that are close to 0.5 making the adaptive mechanism very weak. Values of T much smaller 
than the pooled variance will result in assigning too many subjects to the better treatment 
and consequently might result in loss of the power of treatment comparison. If c =  (/ij +

/i2) /2  and T = ^ ( a 2 +  ff2)/2  the marginal probabilities of returning the ball to the urn are 

qi =  j —0.50^ -  n2)lyj1.5a\ + 0.5a\ and q2 = $  jo .5(/^  -  n2)I^Q.5a\  +  1.5cr||.



Fig. 1. Allocation proportion for Design 1 (solid line) and Design 2 (dashed line) for different values o f cut-offs 
k =  c with | i |  =  0.5, =  0, (7) =  <J2  =  1, T =  1.

3.2. Estimating the design parameters from the data

Design parameters k = (ju j + ^ 2)/2  in Design 1, and c = (n\ +  M2)/2 and T = yj(aj + g \ ) / 2  
in Design 2 can be sequentially estimated from the data already collected. Consider in­
dependent identically distributed sequences from the two populations { X \ j ,  j ^ \ )  and 
{^2,j > j  ^  1 }• Let dj be 1 or 0 depending on whether the j th subject was allocated to treat­
ment 1 or 2. Let iV, (m) be the number of subjects assigned to treatment i =  1,2, by the tim e 
m subjects are assigned, N\(m) =  Yl"j=l $j an(l N2(m) =  5^7=1 (1 — ^j)- Define sample 
means as X\(m) — J^J=\S jX i j /N i ( m )  and X 2{m) — Y^!j=l (1 — and
sample variances as

s\(m) =
E7=1(<yxu -xi)2

N\{m) — 1
and 2/ , E 7=iKi - 8j)x2J

Sj(m) - — ----------------------

2 N2(m) -  1

X 2}2

Consider the following modification of Design 2. The first mo=2m'0 subjects are assigned 
to the two treatments, m’0 to each. Assume that m ^ m o  subjects have been assigned and 
their outcomes observed. Then subject m +  1 is assigned according to Design 2 with crn =

{Xi (m) +  X 2{m)}/2 and Tm — ̂ j{s2(m) +  s\{m)\j2. The following theorem gives the limit 
of the allocation proportion to the first treatment, Ni {m)/m  as m tends to infinity.

Theorem. The limiting allocation proportion N\{m)/m for  the design described above 

tends to q2/(q\ + q2) with q\ =  <P I —0.50^ -  n2)/y jl .5a \  +  0.5o2 1 and



Proof. Consider the sequence of designs, where mth design is Design 2 with cm and Tm 
as design parameters, m>mo- Let qi<m and <72,m be the probability of not replacing a 
ball of type 1 and 2 correspondingly in Design 2 with cm and Tm. From Theorem 1 of 
Ivanova (2003) the mth design of the sequence can be embedded into a family of two 
continuous-time linear immigration-death processes having a common immigration process 
with an immigration rate 1 and independent death processes with death rates qi<m and 

Hence for every m, m ^m o, the probability of selecting treatment i, i =  1,2, is 
strictly away from 0, and AT,(m) -»  00 as m -*■ 00. Consequently, Xj(m) and sf(m) 
are consistent estimates of //,• and aj, i = 1,2. Since q,\m is a continuous function of and

Oi, i =  1,2, qi m converges almost surely to q\ =  $  j — 0.50^ — \-.5<J2x +  O.Scr̂  j 
a n d  ?2,m toq2 = $  |o.5(//! -  n2)/yJo.5a\ +  1.5<r| J . □

Modification of Design 1 can also be considered, where the estimate of the average of the 
means, km — {Xi(m) +  X 2(m)}/2, is used in place of the design parameter k. The limiting 
allocation proportion for this design is equal to q2/iq \  + # 2) with <71 =  ${—(/ij — /i2) /(2<7i)} 
and q2 = <P{(nl — n2)/(2 o2)\-The proof of the result is similar to the proof of the theorem.

4. Design comparisons

In this section, we compare the two new designs with the design of Bandyopadhyay 
and Biswas (2001) (henceforth B&B design) and the equal allocation. The B&B design is 
described as follows. The first mo =  2m'0 subjects are assigned to the two treatments, m'0 
to each. Assume that m >  mo subjects have been assigned and their outcomes observed. 
Subject m +  1 is allocated to treatment 1 with probability <£[(Zi (m) — X 2(m)}/M] and 
to treatment 2 with probability 1 — 4>[[Xi{m) — X 2(m)}/M]. The B&B design was used 
with M  =  1. We also simulated the B&B design with the value of M  chosen such that the 
limiting allocation for the B&B design is the same as for Design 2. Designs 1 and 2 were

used with k = c = (/il + n2) / l ,  and T  =  + o\)/2.  We also considered Design 2, 
where both c and T  are estimated from the data sequentially (Design 2E). We used mo =  6 
in the simulations with both Design 2E and the B&B procedure. Parameters c and T  were 
estimated after subjects 10, 20, 40 and then after every 40th subject. Each design is run 
5000 times. _____________________ __

We used a statistic {Xi{n)—X 2{n)}/^s \{n)/N \(n)  +  i,|(n )/A r2(n) to test the hypothesis 
Hi =  ii2. Here n is the total number of subjects in the trial. Satterthwaite’s approximation 
was used to construct the reference distribution (Rosner, 1995, p. 272). The sample size 
was chosen to yield the power of 0.8 for two-sided size 0.05 test when equal allocation is 
used. We simulated the case of the null distribution with different sample sizes and different 
values of o\ and a2, and concluded that the size of the test is well preserved under all the 
designs.

Simulation results in the case of equal variances are presented in Table 1. Without 
loss of generality n2 = 0, and a\ =  a2 =  1. Since the variances are equal, substantial



Table 1
Comparison of the response-adaptive designs and equal allocation in the case o f equal variances with H2 =  0- and
a i =  <r2 =  1

Power EOO (SD) E(X) (SD) 7t (SD) *0

Hi =  0.3, n =  350
Design 1 0.79 172.54 (9.49) 0 .17(0.05) 0.56 (0.03) 0.56
Design 2 0.80 173.01 (9.66) 0.16(0.06) 0.54 (0.03) 0 .54
Design 2E 0.80 173.58 (9.98) 0 .16(0.06) 0.54 (0.03) 0 .54
B&B, M  =  1 0.79 169.88 (9.61) 0.19(0.06) 0.62 (0.06) 0.62
B&B, M =  2.99 0.78 173.35 (9.61) 0.16(0.06) 0.54 (0.04) 0 .54
Equal allocation 0.80 175.00 (9.29) 0.15(0.05) 0.50 (0.00) 0 .50

Hi =  0.5, n =  128
Design 1 0.79 61.87 (5.83) 0.29 (0.09) 0.59 (0.03) 0 .60
Design 2 0.79 62.43 (5.73) 0.28 (0.09) 0.56 (0.04) 0.57
Design 2E 0.79 62.56 (5.49) 0.28 (0.09) 0.56 (0.04) 0 .57
B&B, M  =  1 0.75 59.33 (6.23) 0.34 (0.10) 0.69 (CIO) 0.69
B&B, M =  2.83 0.79 62.22 (5.56) 0.29 (0.09) 0.57 (0.05) 0 .57
Equal allocation 0.80 64.00 (5.55) 0.25 (0.09) 0.50 (0.00) 0 .50

//] =  0.7, n =  66
Design 1 0.79 31.08(4.16) 0.42 (0.13) 0.60 (0,05) 0 .6 4
Design 2 0.80 31.73 (4.04) 0.40(0.13) 0.57 (0.05) 0 .60
Design 2E 0.78 31.69(4.02) 0.40 (0.13) 0.57 (0.05) 0 .60
B&B, M =  1 0.70 28.74 (4.28) 0.51 (0.15) 0 .73(0.12) 0 .73
B&B, M  =  2.76 0.79 31.36 (3.97) 0.41 (0.13) 0.59 (0.07) 0 .6 0
Equal allocation 0.80 33.00(3.91) 0.35 (0.12) 0.50 (0.00) 0 .50

Hi =  1 .1 ,«  =  28
Design 1 0.77 12.66 (2.55) 0.67(0.21) 0.60 (0.06) 0.71
Design 2 0.79 13.12(2.56) 0.63 (0.21) 0.58 (0.06) 0 .65
Design 2E 0.78 13.25 (2.54) 0.63(0.21) 0.57 (0.06) 0.65
B&B, M  =  1 0.54 10.91 (2.66) 0.84 (0.22) 0.77(0.11) 0 .86
B&B, M  =  2.83 0.77 12.66 (2.72) 0.68 (0.22) 0.62 (0.09) 0 .65
Equal allocation 0.81 14.06 (2.38) 0.55 (0.18) 0.50 (0.00) 0 .50

Designs 1 and 2 were used with k =  c =  ( ^  +  ji2)/2 , and T =  +  a \)!2 . Design 2E sequentially estim ates 
parameters c and T from the data. The total number of responses lower than (/q  +  /<2)/2  is denoted by Y. The 
average response over two treatments is denoted by E(X). The observed allocation proportion to treatment one is 
denoted by n, and the limiting allocation proportion is denoted by 7iq.

deviations from equal allocation resulted in loss of power. For example, the power for 
the B&B design with M =  1 in the last scenario is only 0.54. However, small devia­
tions from equal allocation preserved power pretty well and resulted in observing better 
outcomes on average. The design where design parameters were sequentially estimated 
from the data, Design 2E, performed very similarly to the Design 2 with a slight loss of 
power.

Table 2 displays simulation results for the case of unequal variances. As expected, adaptive 
designs resulted in some gain of power in the first three scenarios where the larger variance 
corresponds to the better treatment. All adaptive designs had power less than 0.80 in the



Table 2
Comparison of the response-adaptive designs and equal allocation in the case o f unequal variances with H 2 ~ ^

Power E(Y) (SD) E(X) (SD) 7T(SD) 7t0

Hi = 0 .5 ,  a \  = 2 ,  0 2  =  1, n =  316
Design 1 0.81 162.47(9.12) 0.28 (0.10) 0.57 (0.03) 0.57
Design 2 0.82 163.32 (8.89) 0.28(0.10) 0.55 (0.03) 0.55
Design 2E 0.81 163.80(9.10) 0.28 (0.10) 0.55 (0.03) 0.55
B& B, M  =  1 0.81 158.02(11.04) 0.33 (0.13) 0.67 (0.12) 0.69
B& B, M  =  4.38 0.81 163.26 (8.91) 0.27 (0.10) 0.54 (0.03) 0.55
Equal allocation 0.80 150.26 (8.78) 0.25 (0.09) 0.50 (0.00) 0.50

Hi =  1, <r\ =  2, (X2  =  1, n =  79
Design 1 0.83 40.75 (4.56) 0.61 (0.21) 0.61 (0.04) 0.63
Design 2 0.81 41.23(4.47) 0.58 (0.20) 0.58 (0.05) 0.59
Design 2E 0.81 41.58(4.55) 0.57 (0.20) 0.57 (0.05) 0.59
B& B, M  =  1 0.77 36.70 (5.74) 0.78 (0.28) 0.78(0.15) 0.84
B& B, M  =  4.44 0.79 41.28 (4.60) 0.58 (0.21) 0.58 (0.07) 0.59
Equal allocation 0.80 36.29 (4.26) 0.50 (0.18) 0.50 (0.00) 0.50

Hi =  1, ffi =  3, <72 =  1, n =  158
Design 1 0.82 84.78 (6.56) 0.61 (0.21) 0.61 (0.03) 0.61
Design 2 0.82 85.95 (6.46) 0.57 (0.20) 0.57 (0.04) 0.57
Design 2E 0.81 86.60 (6.55) 0.56(0.21) 0.56 (0.04) 0.57
B& B, M  =  1 0.81 78.80(11.21) 0.75 (0.34) 0.75 (0.21) 0.84
B& B, M  =  6.09 0.81 86.41 (6.81) 0.56(0.21) 0.56 (0.05) 0.56
Equal allocation 0.80 69.10(6.02) 0.50(0.18) 0.50 (0.00) 0.50

Hi =  1, ffi =  1, ff2 =  3, n =  158
Design 1 0.69 64.21 (6.50) 0.62(0.15) 0.63 (0.04) 0.65
Design 2 0.77 66.03 (5.95) 0.57 (0.16) 0.57(0.04) 0.57
Design 2E 0.77 66.42 (5.97) 0.56(0.15) 0.57 (0.04) 0.57
B&B, M  =  1 0.30 55.18 (7.34) 0.84(0.13) 0.84(0.14) 0.84
B& B, M  =  5.76 0.77 66.15(5.90) 0.57 (0.15) 0.57 (0.05) 0.57
Equal allocation 0.80 84.17 (6.22) 0.25 (0.18) 0.50(0.00) 0.50

Designs 1 and 2 were used with k = c  =  (n\ + / / 2 V 2. and T = D e s i g n  2E sequentially estimates 
parameters c and T from the data. The total number o f  responses lower than (H\ +  H2) /2  *s denoted by Y. The 
average response over two treatments is denoted by E(X). The observed allocation proportion to treatment one is 
denoted by it, and the limiting allocation proportion is denoted by 71q.

last scenario where the better treatment has smaller variance. The loss of power is not 
substantial when Design 2 is used because its allocation proportion is not as extreme as for 
other designs. For this reason we recommend Design 2.

Comparison of Design 2 and the B&B design that yields the same limiting allocation 
proportion shows that the allocation proportion for the B&B design is more variable (Tables 
1 and 2). This excessive variability resulted in some loss of power for the B&B design. The 
distribution of the allocation proportion for the B&B design even for large sample sizes is 
skewed (scenario 4 in Table 2). At the same time the distribution of the allocation proportion 
for Designs 1 and 2 is close to normal for large sample sizes (Ivanova, 2003).

The B&B procedure, and Designs 1 and 2 assign more subjects to the better treatment on 
average. However, occasionally less than 50% of the subjects can be assigned to the treatment



with the better true mean even for large sample sizes. Consider scenario 1 from Table 1. 
In 10% of the runs the B&B design with M  =  2.99 resulted in assigning fewer subjects 
to the treatment with the better true mean. In several runs as little as 151 subjects (43%) 
were assigned to the better treatment. In comparison, Design 2 resulted in assigning fewer 
subjects to the treatment with the better true mean in 5% of the runs, with the minimum 
number of subjects assigned to the better treatment equalled to 160 (46%). The reasons 
are the variability of response to treatment and the variability of the design itself. For 
two designs with the same limiting allocation proportion, the larger the variability of the 
allocation proportion the more likely the design will assign fewer subjects to the better 
treatment. Ivanova (2003) pointed that out when comparing the drop-the-loser design with 
more variable the play-the-winner rule.

5. Conclusions

In this paper we introduced two drop-the-loser-type designs for continuous responses. 
According to simulation results these designs yield adaptive allocation for continuous re­
sponses with smaller variability than the design of Bandyopadhyay and Biswas (2001). 
Theoretical comparison is not possible because the variability of allocation proportion of 
the design of Bandyopadhyay and Biswas (2001) is not known. Simulations show that the 
proposed designs can be advantageous compared to the equal allocation since they yield 
better treatment responses on average without substantial loss of power (or with some gain 
in power). Present work assumes the structure where there are no delayed responses and no 
covariate information in the data. Incorporation of all of the above in the design is a topic 
of future research.

References

Bandyopadhyay, U., Biswas, A., 2001. Adaptive designs for normal responses with prognostic factors. Biometrika 
88 ,409-419.

Eisele, J.R., 1994. The doubly adaptive biased coin design for sequential clinical trials. J. Statist. Plann. Inference 
38, 249-261.

Hu, F„ Ivanova, A., 2004. Adaptive design. In: Chow, S.-C. (Ed.), Encyclopedia o f  Biopharmaceutical Statistics, 
second ed. Marcel Dekker, New York.

Ivanova, A., 2003. A play-the-winner-type urn design with reduced variability. Metrika 58, 1-13.
Melfi, V.F., Page, C., Geraldes, M., 2001. An adaptive randomized design with applications to estimation. Canad.

J. Statist. 29, 107-116.
Rosner, B„ 1995. Fundamentals o f Biostatistics. Duxbury, Boston.
Wei, L.J., 1979. The generalized Polya’s urn design for sequential medical trials. Ann. Statist. 7 ,291-296 .
Wei, L.J., Durham, S.D., 1978. The randomized play-the-winner rule in medical trials. J. Amer. Statist. Assoc. 73, 

840-843.


	Response-adaptive designs for continuous outcomes

	Anastasia Ivanovaa’*, Atanu Biswas'3, Anna Luriec

	1.	Introduction




