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Strategies admitting nonnegative unbiased
variance estimators
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Abstract

In this paper we characterise linear unbiased strategies for estimating the population total, admitting
uniformly nonnegative unbiased variance estimators. We then characterise strategies for which the ‘natural’
unbiased variance estimators are uniformly nonnegative. We proceed to derive various necessary and
sufficient conditions for the nonnegativity of unbiased variance estimators vis-a-vis nonnegative definite
matrices. We finally propose a set of sufficient conditions for uniform nonnegativity of unbiased variance
estimators and an algorithm to verify those conditions. In this paper the variance estimators considered are
necessarily quadratic estimators.
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1. Introduction

Consider a finite population of size N. Let y be the study variate taking value y;eR
on unit i, 1 <i<N. One of the basic problems in sampling theory is to estimate the
total Y=Y, y; of the variate y. A ‘reasonable’ strategy is arrived at, based on various
considerations, to estimate the total Y. However, for certain ‘reasonable’ strategies,
uniformly nonnegative unbiased variance estimators (NNUVE) are not always avail-
able. Rao and Vijayan (1977) studied the problem in some generality though more
specifically for the strategy that consists of a Midzuno-Sen sampling scheme and the
ratio estimator.

We typically have a linear unbiased strategy (p, t) for estimating the total Y, where
p is a sampling design and ¢ is a linear unbiased estimator. The variance of such
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a strategy may be written as

N N
Vip,)= 3 Y &yiyjs (LY
i=1j=1
where a;;, 1<i, j<N, are known coefficients. We assume that V{(p,t) vanishes at ‘
a known vector x=(x;, X5, ...,xx) such that xeR" and x;#0 Y i=1,2,...,N. For
many well known strategies (p,t) this condition is satisfied. In fact, often both p and
t depend on x.
Rao and Vijayan (1977) derived an alternative expression for ¥(p,t) and deduced
the necessary form of an NNUVE. They also proposed a set of sufficient conditions

for the uniform nonnegativity of such an estimator. We list their findings for our
future reference.

(i) The alternative expression for the variance,
11X XN (AL
V=V(p,t)=—= =) 1.2

where a;;, 1<i, j<N, are as in (1.1).
(i) The necessary form of an NNUVE,

1 N N y yj 2
=pe— —— Ji_ 2 13
V=g 2; g s)xx(i x,)’ (1.3)
where seS, the collection of all samples of size n, further

a;;(s)=0 if i¢s or j¢s,

Y ays)p(s)=ay, i#j=12,...,N

sai,j

(1.4)

and finally,

(iii) A set of sufficient conditions for the uniform nonnegativity of the estimatolor
in (1.3),

a;;(s)<0 for all i#jes, seS. 1.5

In view of (1.4), however, it may be observed that the conditions (1.5) would cease to
hold as soon as any of the a;/'s, i#j, in (1.2) are positive.

In this paper we first characterise strategies admitting uniformly NNUVEs. We
then characterise strategies for which the ‘natural’ estimators are uniformly non-
negative. We proceed to derive various necessary and sufficient conditions for the
nonnegativity of variance estimators vis-a-vis nonnegative definite (NND) matrices.
We finally propose a set of sufficient conditions for uniform nonnegativity of variance

estimators and an algorithm to verify those conditions. In this paper we consider only
the quadratic variance estimators.



V.R. Padmawar / Strategies admitting nonnegative unbiased variance estimators 83
2, Strategies admitting uniform NNUVEs

Let us rewrite the expression for the variance (1.1) at y'=(yy, 2, ..., yn) as

Vip,t)=y'Ay,

where A is the N x N matrix of elements a;;, 1 <i, j<N, in (1.1). Now the variance is
a nonnegative function and hence,

yAy=0 VyeRV.

This implies that A is NND.
Further by our assumption that V(p,t) is zero at x'=(xy, x5, ..., Xy), we have

x'Ax=0 = Ax=0.

By defining b;;=a;;x;x;, 1 <i, j<N, and y;/x;=z;, 1 <i< N, the variance at yeR¥
may be written as

z'Bz, (2.1)

where B is NND and Be=0), ¢’ being given by e'=(1,1,...,1).

We would often identify the variance (2.1) with the matrix B and call it the
‘associated matrix’.

Analogously letting b;;(s)=a;;(s)x;x;, 1 <i, J<N, s€S, the estimator in (1.3) may
be rewritten as

7' (B(s)—4B(s))z, seS (2.2)

where B(s) is the N x N matrix of b;;(s), 1 <i, j<N, s€S, and given any m x m matrix
C=((c;)), 4C is defined as

4C=diag(r;(C),r,(C), ..., rm(C)), (2.3)

where r;(C)=Y )., c;;, 1<i<m.

We did not specify au(s), i=1,2,...,N; se§, in (1.4) as neither (1.3) nor its
unbiasedness depends on them. (2.2) does not depend on the diagonal elements of
B(s), se S, either; as C — AC does not depend on the diagonal elements of C. We choose
bi(s)= —Y Nibii(s), 1<i<N, seS, so that the estimator (2.2) can be written as

-

Z'B(s)z, seS,
where now

B(s)e=0 VseS
" (24)
Z bij(s)p(s)zbij, 1<1¢]<N

sai,j
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Let us label the samples in S as s4,5s,...,5x; M=()), and associate an M-tuple of
matrices with (2.4) as

B=(B(S1), B(SZ),'”sB(sM))- (25)

We would often identify an estimator in (2.4) with the ‘associated tuple’ (2.5). Clearly,
an estimator in (2.4) is uniformly nonnegative if and only if B(s,) is NND for all
t=1,2,..., M in the associated tuple.

We introduce a few more terms before characterising variance expressions
—3¥ X 2 by (z;—2;)* or equivalently the quadratic forms z'Bz in (2.1) admitting
a uniformly NNUE under a given design p.

Let Wy=(C: Cis Nx N, C'=C and Ce=0) and Z={C=(C(s;),C(s3), ..., C(snm)):
C(s)eWyVit=1,2,...,M and (i, j)th element of C(s,) is zero if i¢s, or jés;, 1 <t<M}

Define H: Z— Wy as H(C)=C, where C is an N x N matrix with

M
cij= Y c(s)p(s), 1<i#j<N
=1

and
N
Cii=—zcij, 1<1<N
J#i
Let
¢={H(C): CeZ and C(s,)is NND V t=1,2,...,M}. (2.6)

We now have the following theorem.

Theorem 2.1. For a given design p, V=—3y Y Y| b;;(zi—2z;)* admits a uniformly
NNUE if and only if the associated matrix B is in € of (2.6).

Proof. Let V' admit a uniformly NNUE, say v. Let B=(B(s;), B(s3),...,B(sy))
be the associated tuple for ». Clearly, B(s,)e=0 and B(s,) is NND V¢=1,2,...,M
as v is uniformly nonnegative. Further, since v is unbiased for V, H(B)=B. Hence
Be¥. ‘

Conversely, if Be% then H(C)=B for some C=(C(s), C(s3),...,C(sy))eZ such
that C(s,) is NND Vt=1,2,..., M. Define

w(s)=2'C(s)z, 1<t<M

N
)3 cij(s)(zi—z;)% 1<t<M.
1j=1

M=

1
2,

]

This w would work as a uniformly NNUE. O
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For a given design p, define

=) p(s), 1<i<N,

mi= 3. p(s), 1<i#j<N.
sai, j
Let p be such that n;;>0Vi#j=1,2,...,N.
For estimating V= —3y | ¥V b;j(z;—2;)? the two most ‘natural’ unbiased es-
timators correspond to

bij ..

bij(s)—sz(S)’ l?éJES, ‘

bu(s)=— 3 by(s), ies, seSs, 2.7
j#ies

b;;(5)=0, if i¢s or jé¢s,

where M,=(Y"2#) and

b..
bi(s)=—", i#jes,
TC,'j
bu(s)=— ) by(s), ies, ses. (2.8)
j#ies
bi;j(s)=0, if i¢s or jés,

We now characterise variance expressions admitting (2.7) and (2.8) as uniformly
NNUEs.
Define T,: Wy—Z as

T1(B)=(B(s1)—4B(s1), B(s;)— 4B(s3), ..., B(sxm) — 4B(s4)),

where B(s,)is an N x N matrix that agrees with B for all elements (i, ) for which both
i and j are in s, and the rest of the elements of B(s,) are all zero, 1<t <M.
Clearly, T, is one to one. Let #,(T,) be the range of T; and

R{(T1)={C=(C(51),C(s2), ..., C(su)): Ce#,4(T}) and
C(s,)isNNDV t=1,2,...,M}
also let ¢, ={T; }(C): Ce®{(T,)}.

Theorem 2.2. For a given design p the estimator (2.7) is a NNUE for estimating the

variance V= —33 N b;j(z;—z;)* if and only if the associated matrix is in €.

Proof. We omit the proof as it is implicit in the preamble to the theorem. [J
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We now obtain an analogous characterisation for the estimator (2.8). Given
a design p with 7;;>0, 1 <i#j< N, let IT be an N x N matrix with (i,j)th entry as 1/z;
1<i#j<N, and (i, i)th entry as 1/n;, 1<i<N.

Define T,: Wy—Z as

Ty(B)=((B° II)(s,)— A(B°IT)(s1), (B> IT)(s2)— 4(B<II)(s2), .-
(B IT)(sy)—4(B° IT)(sy)):

where Be IT denotes the Hadamard product of matrices B and 1, (B IT)(s,) agrees
with Bo IT for all entsies (i,j) for which both i and j are in s, rest of the elements of
(B IT)(s,) are all zero, 1 <t < M. Since I is a fixed N x N matrix T, is also one to one.
Further, let #,(T,) be the range of T, and

R3(T2)={C=(C(51),C(s2), ..., Clsn)): CeA>(T?) and
C(s;)is NND V¢=1,2,...,M}.

Finally, let €,,={T5 (C): Ce#;(T,)}. We now state the following theorem.

Theorem 2.3. For a given design p the estimator (2.8) is uniformly NN UE for estimating
V= =33 XY bij(zi~2;)” if and only if the associated matrix B is in €.

Proof. The proof is similar to that of Theorem 2.2. O

Remark 2.1. For a given design, Theorems 2.1-2.3 characterise variance expressions
that admit (i) uniformly NNUE, (ii) (2.7) as uniformly NNUE and (iii) (2.8) as
uniformly NNUE, respectively. Similar results can be obtained for any unbiased

variance estimator that can be defined without reference to any specific associated
matrix.

Having observed that the nonnegativity of an unbiased variance estimator depends

on whether certain matrices of the type Be=0 are nonnegative definite or not, we try
to characterise such matrices.
Let

#={B: B=B, B is NND and Be=0}. (29)

Although there are various characterisations of NND matrices in the literature, we

would like to give a few equivalent descriptions of # using the additional condition
Be=0.

Theorem 2.4. The following classes of matrices are equal to 9.
(i) #,={B: B=B and Bx=JAx = A>0 and i{(x,e)=0},
where {. , .) denotes the inner product.
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(i) #,={B: B=P'DP, (D,P)e%}, where
G ={(A, P): A=diag(4y,42,...,4), 1;20, 1<i<n,

A; is zero for at least one index say j, 1< j<n. Pis an
orthogonal matrix with (1/./n)é€ as its jth row.}

Proof. (i) Let Be4. e is an eigenvector of B corresponding to the eigenvalue 0. Since
Bis NND Bx=/Ax = A120.

Further, if x is an eigenvector corresponding to A#0 then {(x,e>=0. Thus,
Bx=Aix = 1>0 and i{x,e)>=0. Hence, Be#,. Conversely, if Be %, then for 1>0 if
Bx=Ax then (x,e>=0.

Thus, e is orthogonal to all eigenvectors corresponding to nonzero eigenvalues.
Hence, ¢ must be an eigenvector corresponding to the eigenvalue 0, i.e. Be=0. Thus,
Be%. Therefore, #,=2A.

(ii) Let Be4. For any real symmetric matrix B, there exits an orthogonal matrix
0 with its rows as eigenvectors of B such that

B=0'DQ,

where D is the diagonal matrix of the eigenvalues of B. Since Be 4, ¢ is an eigenvector
of B corresponding to the eigenvalue 0. Thus, (D, Q)e¥ and Be#,. On the other hand,
if Be#, then as B=P’ AP for some (A, P)e% all the eigenvalues of B are nonnegative.
Hence, B is NND.
Further, for (A, P)e¥%, APe=0 = Be=P' APe=0. Hence , Be#. Thus, #,=4%.
We now give a set of necessary and sufficient conditions for the uniform non-
positivity of

Q(B,7)= Z Zbij(zi—zj)27 zeR", (2.10)

i=1j=1
where B=((b;)) is an nxn symmetric matrix. Let s={1,2,...,n} and
J={J,Js, ..., Jm}, 1<m<n, be a partition of s. Further, let ¢,,=Y;.;,Ye;,bi; and

C=((cpg)) 1<p, g<m. Let Q,(C(J), @)=Y 7 Tirmy Cpgl0p—0g)?, o = (1, 0z, ..., O,
aeR™. In this set-up we have the following theorem.

Theorem 2.5. Q(B,z)<0 VzeR" if and only if Q.(C(J),a)<0 VacR™ and V
partition J of s.

Proof. As sufficiency is obvious, we only prove the necessity. Let Q(B, z)<0 VzeR"
For a partition J of s define z/eR" as

zi=a, VieJ, 1<p<m, a'=(ay,0,...,0,), ®ER™.
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Now

n n

(B, ZJ)= z Zbij(zi_zj)z

i=1j=1

=i i Y Y bi(zi—z)

p=1g=1 ieJ, jeJp

=0n(C(J), ).
Therefore, Q,,(C(J), #)<0 VaecR™ and V partition J of s. Hence the theorem. [J

3. Sufficient conditions for a uniformly NNUVE

So far we have given different characterisations of uniformly NNUVEs. The
problem of deciding whether a given estimator is an NNUVE or not still remains. In
this section we propose a set of sufficient conditions for the uniform nonnegativity of
a given estimator and also give an algorithm to verify the conditions. However, we
first observe that given an nxn symmetric matrix B with Be=0 the problem of
checking whether it is nonnegative-definite can easily be reduced to that of an
(n—1)x (n—1) matrix as follows.

Let
B=
| b Bl}
be such that Be=0, where &' =(b,;,b,s,...,by,) and B; =((b;;)), i,j=2,3,...,n and
Ee 1 e’]
le F
be an n x n matrix such that F is an (n— 1) x (n— 1) lower triangular matrix (( f;;)) with
0 ifi<y,
f;-j= —i lf i=j,
1 if i>j.

Clearly, the rows of E are mutually orthogonal.
Let C be an (n—1) x (n— 1) matrix defined as

C=by,ee¢’'+Fbe'+eb'F'+ FB,F'. (31

We now have the following theorem.

Theorem 3.1. In the above set-up the matrix B is NND if and only if the matrix C
is NND.
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Proof. The proof is simple as the rows of E are mutually orthogonal and

, o o
a0 0]

where C is given by (3.1).

Remark 3.1. In view of Theorem 3.1, to check whether B is nonnegative-definite, one
may now use any of the various standard conditions to check this property for the
matrix C, which is of smaller size.
We now give a set of sufficient conditions for the nonpositivity of Q(B, z) defined in (2.10).
Let B be any n x n symmetric matrix. Define Q=((w;;) as

wy=1 if b;>0, i#j=1,2,...,n,
wy;=0 if b;<0, i#j=1,2,...,n,
w;=1, i=12,...,n
Let P be a permutation matrix such that
PQOP=0, ®Q,®---®QR,, 1<m<n, .
where Q, is an n, x n, irreducible matrix, 1<p<m, Y;_ n,=n. Let {J1,J2 ... s Jm} bE
the partition of s={1,2,...,n} induced by Q,,9Q,, ..., Q,. Define C=P'BP, G,={(i,j):
¢;>0, i#jed,}, G=);=1G, and ¢,=Y; ;¢ ci;. Clearly, Q(B,z)<0 VzeR" if and

only if Q(C, 7)<0 VzeR"
We are now equipped to state the following theorem.

Theorem 3.2. If there exist subsets Ky, K, ..., K,, of s such that
(@) J,nK,=0Vp=12,....m,
(ii) If J,nK,#90 then
JNK,=0Vp#g=12,....m, (3.2
and
(i) cp+ Y. x,max(cy,cy) <0V iz#tjed,, 1<psm,
then Q(C,z7)<0 VzeR"

Proof.
n n
0(C.=3 Y cijlzi—z)
i=1 j=1
m
=33 ¥ clm—z)P+ X Cii(zi—zj)z}
r=14(, NeGy i#jeJp, cij<0
m m
+) Y Y Yaiz—z)
p=1g#p=1iclp jeJq
m
< z Cp(zip—sz)z
p=1

m m

+Y Y ¥ Y cjlzi—z)* +nonpositive terms,

p=1g#p=1ielp jelq
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where
(zip—zjp)f* = (ifg%;?ép(zi -z
From (iii)
CplZip—2;p)* < — Y. MAX(Cipis Cipae) (Zip— Zjp)?
keKp
< - 2kZK max(Cipk, €jpk) {(Zip— )+ (zjp— z)?}
€lp

as ¢;,,’s are negative and for any a,b,ceR,
(a—bP<2{(a—c)*+(b—c)*}.
Therefore,

2
cplzip—25)* < —2{ Y cimlzip—z)* + Y ciprlzip—2i) }
. keKp keKp

Thus,
m
Q(C, < -2 Z { Z cipk(zip_zk)2+ Z cjpk(sz_zk)z}
p=1{keK, keK,

n m

+Y Y Y Yalz-z)

p=1 gq#p=1 ieJp jelq
<0 (33

as each c;;(z;—z;)* in the second summation appears at most once in the first
summation and those are the only terms in the first summation of the right-hand side
of (3.3). Thus,

0(C,7)<0 VvzeR" O
Remark 3.2. Condition (ii) of (3.2) is to ensure that the coefficients in the second term

of the right-hand side of (3.3) are used at most once each. Condition (iii) of (3.2) may be
replaced by a condition that is much simpler to verify though marginally restrictive.

(iii)* ¢+ Y., maxc <0, 1<p<m.
ieJ
keKp p

Remark 3.3. Conditions (1.5) due to Rao and Vijayan (1977), in this set-up, would be
cij<0 Vl;é]=l,2,,n
As this would clearly imply (3.2), conditions (3.2) are much less stringent than those

proposed by Rao and Vijayan (1977).

Remark 3.4. One can now use Theorem 3.2 to give a set of sufficient conditions for the
uniform nonnegativity of an unbiased estimator (2.4) by simply demanding the
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analogue of conditions (3.2) to be true for each of the entries in the ‘associated
tuple’ (2.5).

Theorem 3.2 may also be used to check whether a given symmetric matrix is
nonnegative definite.

Corollary 3.1. In the above set-up any symmetric matrix C is NND if
(i) conditions (3.2) of Theorem 3.2 hold and
(ll) Z'}=1Cij>0 Vi= 1,2, R (A

J

Proof. (i) implies that Q(C, z)<0 VzeR" which is equivalent to C— AC being NND.
(ii) implies that AC is NND.
Therefore, C being the sum of two NND matrices, ie. C=(C—A4C)+4C, C is
NND. O

We conclude this paper by proposing an algorithm to construct sets K, K, ..., K,
of Theorem 3.2.

Algorithm 3.1. In the framework of Theorem 3.2, we assume, w.l.o.g., that
C12Cr2 " ZCp.
If ¢;=0then K,=0 Vp=1,2,...,m; otherwise let

=min max max(Cix, Cix)-
Bll a1 (i,j),i#je]lzke"‘l (lk’ jk)

Ifc,+8,,<0 then K,=J_ , where q,, attains B;,; otherwise let

q11°

Bi»= min  max Y max(ca cix)-

g#1,q11 (i,)),i# jehr kedguldg

If ¢+ B,,<0 then K, =J,,,uJ,,, where ¢, attains f;,, and so on.

Note that if ¢, +maxg,j, ixjes, L=  Lies,MaX(Cirs ) >0 then K does not exist.
Having obtained K, one similarly obtains K.

Define I'={r+ 1,r+2,...,m} u {p: p<r and J, " K,=0}, l <r<m. If c,=0 then
K,=0Vp=2,3,...,m; otherwise let

B2i=min max ) max(cy, cj).
qel2 (i,j)i#jed2 kel

If ¢+ 85, <0 then K,=J, , where g,, attains f8,;; otherwise let

q21

2= min  max Y max(cu, cjx)-
q#421,9€l2 (i,j),i#jel2 kedgudg
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If c; +B,,<0 then K,=J,,, U J,,, where g, attains f8,,, and so on. Note that if

q21

c;+ max Y Y max(cy, cj)>0,
(ihi#tjels 25 kelq

then K, cannot be obtained, i.e. if

c,+ max Y Y max(cy, cp)>0 and J,nK =0,
@ J)izjelz gela kelJg
then K, does not exist.
If
C2+ . max Z Z max(cik, Cjk)>0 and szKl ?/:Q),
G j)izjelz gely keld
q

then the sufficient conditions may perhaps be satisfied provided

c;+ max Y ) max(cy, c;)<O0.
Giitjelz o203 ke,

The step to be taken at this stage is to start with a different choice of K, obtained as
before but with an additional constraint, namely K;nJ, =9 and then to repeat the
steps above to get K,.

Having obtained K, K, ...,K,_, r<m, one similarly obtains K,. If ¢,=0 then
K,=0,Vp=r,r+1,...,m; otherwise let

=min max max(ci, Ci).
ﬁrl gelr (i) i jed, k;q ( iks ]k)

If c,+ B,1 <O then K,=J,  where g,, attains §,,; otherwise let

2= min max max(Cy, Cjx) -

b= O S, ke,;,q (€, €)

If ¢,+B,2<0 then K,=J, L J,, where g,, attains B,,, and so on. However, if this
sequence of steps does not produce K, then one has to go beyond the set I'.. Note
that if

m

¢+ max max(cy, c;)>0
T Giited, qz#:r kezlq (ciws €x)>0,

then K, does not exist. Otherwise, obtain K, as follows. Let

Yr1= max Z max (Ci, Cik)s
@, J)i# jedy keH, U,

where H,=|)scr,J, and q; =max,{q: g<r and J, n K, #0}.
Now if ¢, +7,1 <0 then K,=H, U J,,; otherwise let

Yr2= IMax Z max(cy, Cjx)
hidizjelr vefq, T, ul,,

where q, =max,{g: g<q, and J,nK,#0}. If c,+7,2<0 then K,=H, U J,, and
$O on.
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Having obtained K, this way it becomes necessary to obtain new K, ,K,, etc,
using the earlier steps with an additional restriction that they do not intersect with J,.
In turn, it might be necessary to change some of the subsequent K’s.

We continue to follow these steps until either we get all the required K;,K, ..., K,,
or get into a loop only to conclude that the required K’s do not exist.

Let us now illustrate the use of Algorithm 3.1.

Example 3.1. We start for simplicity with a matrix C that, in the framework of the
algorithm, satisfies ¢, =¢, = -+ =¢,,. We do not specify the diagonal entries of the
matrix C, as they are irrelevant.

i 1 2 3 4 5 6 71 8 9 10

i
1 * 2 2 -5 -4 -5 -2 -5 —4 =2
2 2 * 1 -4 -3 -1 -6 -3 -9 —-11
3 2 1 x —2 -3 =5 -7 0-—-11 -7
4 -5 —4 -2 * 1 0 1 -2 -3 -3
5 -4 -3 -3 1 * 1 0 -6 —4 -2
6 -5 -1 -5 0 1 * 0 -3 —4 -5
7 -2 -6 -7 1 0 0 x —2 —6 —4
8 -5 =3 0 -2 -6 -3 -2 * 1 -3
9 -4 -9 -11 -3 —4 —4 -6 1 x —2
10 -2 -1 -7 -3 -2 -5 -4 =3 =2 *

For the above matrix, n=10, s={1,2,...,10}, m=4, J,={1,2,3}, J,={4,5,6,7},
J3={8,9}, J4={10}, C1=10, C2=6, C3=2, C4=0.

We construct an array from the submatrix of C specified by J; x(s—J1) as
follows

q 2 3 4 Ciz Ci3 Cus

(&)

(L,2) —4 -3 -1 =2 -3 4 =2 —-10 -7 2
(1,3) -2 -3 -5 22 0 +4 -2 —-12 4 2
(2,3) -2 -3 -1 -6 0 -9 =7 -12 -9 7
My —-10 4 2

where entries in the array correspond to max(cy,cj), that in .#, to the maximum
entries in the columns C;, and that in C; to

Z max(cik’ cjk)9 q= 2, 3a 4.

kelg

Looking at the entries in .#;, we have, §,; = —10; 8,1 +¢; = — 10+ 10=0; therefore,
01)1 :2 and K,1 =J;y = {4 5.6. 7‘5‘
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We construct an array from the submatrix of C specified by J, x(s—J () J3) as
follows.

3 4 Gy Gy G

=

(i,7)

4,5 -2 -3 -2 -5 -2 -7
46 -2 -3 -3 -5 -2 -7
@7 -2 -3 -3 -5 -3 -8
,6) -3 —4 -2 -7 -2 -9
67 -2 -4 —2 —6 -2 -8
67 -2 -4 —4 —6 —4 —10
My -5 2 -7

where the entries correspond to max (cy, ¢jx), that in .4, to the maximum entries in the
columns and that in C,, to 3, ,qmax(cik, i), 4=3,4 and finally the entries in C,
correspond to 22=32k61q max (€, Cje)-

Looking at the entries in .#,, we have f,,=—5, ¢, =3 and ¢+, =6—5=1,
we have to look at f,=—7, ¢.n=4 As c;+f,,=6—T=—1, we have
Ky=J3uJs={8,9,10}.

As K5 is a subset of s—J, U J; we construct an array from the submatrix of
C specified by J; x(s—J, u J3) as follows.

q 1 4 C3; Cay
k 1 2 3 10
(i,j)
8,9 -4 -3 0o -2 -7 =2
My -7 =2

where entries in the array correspond to max(cy, c;), that in .45 to the maximum
entries in the columns C;, and thatin C,to Y, , max(ca, cu), 4=1,4. Looking at the

entries in ./ 3, we have

Ba=-T; Bir+c3=—T+2=-5<0,
therefore,

q31=1 and K3=J1={1,2,3}.

Finally, since ¢, =0, K, may be taken to be the empty set §. Thus, for the given

matrix C, we have \

K1={495a6’7}’ K2={8,9,10}, K3={1,2,3} and K4=(b .

The problems of (a) comparing variances of different NNUVEs, (b) enhancing the
chances of getting NNUVESs using sampling techniques like stratification, and finally
_ (c) demonstrating reduction in mean squared error for biased variance estimatofs
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obtained from NNUVEs vis-a-vis a ‘superpopulation model’ are presently being
studied.
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