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Abstract. We give a new equivariant cohomological characterization of the equivariant
Euler characteristic of a G-simplicial set as defined by Brown. This implies in particular that
the ecquivariant Euler characteristic is a G-homotopy invariant.
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1. Introduction

Serre [5] and Brown [2] defined the Euler characteristic of a discrete group G of
finite homological type. Recall that the cohomological dimension c¢d G is inf n so
that the ZG-module Z with trivial G-action admits projective resolutions of
length < i, and that G has finite virtual cohomological dimension ved G if there
exists a finite index subgroup with finite cohomological dimension. A group G is
of finite homological type if
(1) ved G < ¢, and
(2) every torsion-free subgroup of finite index has finitely generated rational
homology.

If the rational homology of G is finitely generated, then the ‘naive’ Euler characteris-

tic of G is the integer

7(G)=Y (— 1) dim. H,(G:Q).

and if G is of finite homological type, then its Euler characteristic is the rational
number

7(GY=7(H)Y/[G:H].

where H is a torsion-free subgroup of finite index {G: H]. Itisa result of Brown [2] that
x(G) is independent of the choice of H.

Next, if K is a G-simplicial set, where G is discrete, such that the simplicial set K/G has
finitely many non-degenerate cells, and eachisotropy subgroup G of a simplex x of K is
of finite homological type, then the equivariant Euler characteristic of K is

1K) =3 (= DI 1(Gy),

where the sum is over the representatives of non-degenerate simplexes of K/G.

Now suppose that O, denotes the category of canonical orbits of G whose objects are
left coset spaces G/H and whose morphisms are G-maps ¢: G/H - G/H' coming from
a subconjugacy relation g~ ' Hg < H'. Let /., denote the contravariant functor from O,
to the category of vector spaces over Q such that £, (G/H) = Hom(Q(G/H), Q) where
Q(G/H) is the vector space over Q with basis G/H. and 4,(g) = Hom(Q(4),id).
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In § 2, we define equivariant cohomology H¥(K;iy) of K which is G-homotopy
invariant. In fact, this cohomology is the simplicial analogue of the Bredon cohomol-
ogy [1]. The purpose of the present paper is to prove the following theorems.

Theorem 1. If the action of adiscrete group G ona G-simplicial set K is such that (i) K/G
has only finitely many non-degenerate cells, and (ii) every isotropy subgroup of every
simplex of K has finite index in G, and if A is as defined above, then the cohomology
groups H%(K;Ag) are finitely generated. .

Theorem 2. If G acts freely on a simplicial set K satisfying the conditions (i) and (ii) of
Theorem 1 then yo(K) = ¥(G)S( — 1)'dimg HL,(K; Ao), where the summationis fromi=0
toi=dim K/G.

Theorem 3. If G is of finite cohomological dimension and finite homological type, and
K is a G-simplicial set satisfying the conditions of the above theorem, then

1K) = 2(G) Y. (— 1) dimg HE(K; Ag),

where the summation is from i = 0 to i = dim K/G.

Thus x(K) is a G-homotopy invariant. In particular, if G is free of rank n, then it is of
finite homological type because its virtual cohomological dimension is n. Moreover its

rational homology is finitely generated because there exists a K (G, 1) with one O-cell
and n 1-cells. Therefore y(G) = 1 — n, and

Xs(K)=(1~n)) (—1) dimH(K; i),
if K is as in Theorem 1.

The plan of the paper is as follows. In § 2, we discuss some basic results with only
sketches of proofs, the details of which may be worked out without difficuity. The
proofs of the theorems appear in § 3.

2. Equivariant cohomology of a G-simplicial set

A G-simplicial set is a simplicial set K together with an action of G by simplicial maps
which commute with the face and degeneracy maps d; and s,.

We define the equivariant cohomology H%(K;Z) of K with a cofficient system
A (which is a contravariant functor from Og to the category R-mod of R-modules,
R being a commutative ring with (1) as follows. Let C"(K;J1) be the R-module
of functions ¢ defined on n-simplexes x of K such that c(x)ei(G/G,), where G,
is the isotropy subgroup of x in G. Then define coboundary &:C*(K;2)—C"* 1 (K;A)
by

n+1

3(Ox)= Y (=1 Ald;x - x)c(d;x),

i=0

where A(d;x — x) is the homomorphism A(G/Gdix) - A(G/G,) induced from the G-map
G/G,— G/Gy . given by the inclusion G, € G, _.

We define an gction of G on C"(K; 4) by (ge)x)= A(§)(c(g™~'x)) where A(4)
is the isomorphism 4(G/G,-.,)— 4(G/G,) induced by the conjugacy relation
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g G g= G, . Let C4(K; 4) be the submodule of G-invariant cochains (C"(K;4))°.
Clearly this makes CE(K;4) a cochain complex, and so we may define

HE (K 4y =H (CE(K;4)).
Note that if the action of G on K is free, then we have
HE(K;A) = H¥(K/G; A(G/ {e}))
for every coefficient system L. :
Clearly a G-simplicial map f: K — L induces a cochain map f*: C¥(L; 1)~ CE(K; A)
defined by f*(c)(x) = A(fx— x)c(fx), where A( fx-»x) A(G/Gfx)ei(G/G ) is the

homomorphism induced by the inclusion G, = G,,. Then f* induces homomorphism
S*HE(L; 2) - HE(K; 2) satisfying the usual functorial properties.

Lemma 4. If f,g: K- L are G-homotopic G-simplicial maps, then

Sr=g* HHHL: A}~ HEK; 4).
Sketch of Proof. The cochain maps f*, g*:C¥(L;, A} = C%(K; A) are cochain homotopic
by h: CL(L; 1) Cy ' (K; 1) given by

n-1

hia)x)= ). (=1 Ah;x - x)e(h;x),
i=0
where h;: K, — L, , are G-functions constituting a G-homotopy from f to g. n

Alternatively, the cochain complex C¢(K; 1) may be defined as follows. Consider for
each n = >0 a coefficient system C,(K):0, — R-mod by setting C,(K)(G/H) = C(K¥; R)
which is the free R-module generated by the n-simplexes of K¥, and, for a G-map
4d:G/H—G/H,g""Hg< H', setting C (K)(g) = g, which is the chain map induced by
the left translation g:K¥ — K¥. This gives a chain complex C,(K) in the abelian
category of coefficient systems, and if 4 is a coefficient system, then Hom(C , (K),4),
which is the R-module of natural transformations C, (K)- 4, becomes a cochain
complex.

Lemma 5. There is an isomorphism of cochain complexes
a:C§(K; ) - Hom(C (K), 1)
Sketch of Proof Define a by a(c)G/H)(x)= A(G,— H){(c(x)), where xeK¥ and

MG, — H):4(G/G,)— A(G/H) is the homomorphism induced by the inclusion H < G,
Next, define the inverse &’ of a by «'(T)(x) = T(G/G )(x). n

Note that C (K} is projective in the abelian category of coefficient systems which has
sufficiently many injectives, and if 4* is an injective resolution of 4, then we have
a double complex Hom(C , (K), 4*). The homological algebra applied to this double
complex yields a spectral sequence

ER4=Ext’(H (K), )= HEL 1 (K; ),
where H (K):0; — R-mod is the cofficient system given by
K)G/H) = H(K";R) and H (K)¢)=H[g).
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Lemma 6. If f: K—L is a G-simplicial map such that each f¥= fIK": K" - L¥

H < G, induces isomorphism in the classical homology with R coefficients, then
S*HYL - HEK; L)

is an isomorphism for every coefficient system A.

Sketch of Proof. Wehaveanisomorphism f,:H (K)— H (L) givenby f,(G/H) = e
This extends to an isomorphism f* between the spectral sequences. |

For a G-simplicial set K, let RK denote the G-simplicial R-module with the set of
n-simplexes (RK), = RK, which is the free R-module with basis K, and the face and
degeneracy maps as the linear extensions of the corresponding maps of K. The G-action
on RK is also defined similarly.

Lemma 7. There is an isomorphism H}(K;4) = HE(RK;A).

Sketch of Proof. We have a cochain isomorphism 6:Hom(C, (K), 2) - Hom(C,(RK), 4)
given by 6(T)(G/H)(Snx,) = T(G/H)(En;x). =

Let NRK denote the G-pre-simplicial module (degeneracy not considered) where the
set of n-simplexes is {xe RK, :d,x =0, 0 <i < n}, and the nth face operator is d,,.

Lemma 8. There is an isomorphism HEK; i)~ H{(NRK; 2).

Sketch of Proof. Consider the inclusion map i: C, (NRK)- C (RK). By May
[4,(22.3)], i(G/H):C (NRK";R) — C(RK; R) induces isomorphism on homology for
each H < G. The proof then follows from Lemmas 6 and 7. ]

It may be noted in passing that if X is a G-space and SX the associated singular
G-simplicial set, then the cohomology HE(SX;4) is isomorphic to the equivariant
singular cohomology of X with coefficient system A (see Illman [3]), for every A.

3. Proofs of theorems

Proof of Theorem 1. In view of Lemma 8, it is sufficient to prove that the vector space
CLINRK; 4g) is finitely generated. Let x, , ..., x, denote the representatives of the orbit
classes of the non-degenerate n-simplexes which lie in NRK. Suppose thatfor 1 <7< k,
the isotropy group le has index m, in G. Fix a coset representation

G/le ={a, G o, G, ) 1<I<k, a€G.
Then define cochains ¢;; by
0 J#l
(%)) =1(a,i le)* j=1 1<i<m,

X2

0 j=Li>m

where (@, G, )* are basis dual to a; G, . There is a unique way to define c;; on the orbit of x,
A . ! . . .

so that ;€ CLE(NRK; 4g)- Itis also clear that the set {c,;} is a linearly independent set, and

that any invariant cochain can be written in terms of the ¢;;’s. This proves the theorem.
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Proof of Theorem 2. The group G is necessarily finite. Therefore y; (K ) is defined, and,
by Theorem 1, the groups H} (K ; 14 ) are finitely generated. Also, as the action is free, we
have

16K = Y= 1F Ny =3 (— 1Y dimg H{(K/G;Q),

H

where N, denotes the number of non-degenerate i-simplexes of K modulo the action.
Consequently, 7.(K) = y(K/G), the Euler characteristic of K/G. On the other hand the
nature of the action implies H¥% (K ;4q) > H*(K/G;Q(G)) and, as

dim; H¥(K/G; Q(G)) = {Gldimg H*(K/G; Q),
the theorem follows.
Proof of Theorem 3. Since G has finite cohomological dimension, it is torsion free.

Also, since G is of finite homological type, the isotropy subgroups G, also have finite
homological type, by a result of Brown [2, IX (6.3)]. Therefore ¥(G,) is defined, and

16(K) = Y (=) (G) = P (- 1" *x(G)[G:G,]

dim(K/G ) ) )
=1(G) Y (—1)dimy C5(K;4g),
i=0
dim{K/G) ) ) .
=xG) Y. (-1 dimgHy(K;dg).
i=0

The last step follows since we are dealing with vector spaces. This completes the proof.

References

{1] Bredon G E, Equivariant cohomology theories, Springer Lecture Notes in Math. 34 (1967)

[2] Brown K S, Euler characteristics of discrete groups and G-spaces, [nvent. Math. 27 (1974)
229--264

[3] Himan S, Equivariant singular homology and cohomology, Mem. Am. Math. Soc. 156
(1975)

[4] May J P, Simplicial objects in algebraic topology (New York: Van Nostr;md) (1967).

[51 Serre J-P, Cohomologie des groupes discrets, Ann. Math. Stud. 70 {(Princeton: Princeton
Univ. Press) (1971)



	Page 1 
	Page 2 
	Page 3 
	Page 4 
	Page 5 

