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Abstract. This paper presents a translation of a theorem of Cartan into an equivariant
setting. This work is largely based on the study of the homotopical algebra in the sense of
Quillen of the categzory of simplicial objects over the category of rational 0 -vector spaces. The
application 1s a solution to the equivariant commutative cochain problem. This solution is
slightly better than the solution obtained earlier by Triantafillou in that the transformation
group G need not be finite.
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1. Introduction

In [2] Cartanintroduced the notion of a ‘cohomology theory” and used it to generalize
Sullivan’s theory of rational de Rham complex to simplicial cochain algebra. Recall
that a simplicial differential graded algebra 4 over a ring R with 1 is a simplicial object
in the category DGA /R of differential graded algebras over R so that foreach p = 0 we
have a differential graded algebra

B ] J 2
(AF,0):A) —> A} —> A7 — .

together with face and degeneracy maps d;:A%— A%_, and s;:A%* > A%, | which are
homomorphisms of differential graded algebras satisfying the usual simplicial identi-
ties. Then a cohomology theory in the sense of Cartan is a simplicial differential graded
algebra 4 over R such that (1) each cochain complex (A}, 0) is exact, and Z°% A4 =ker
(0: A2 — AL)is a simplicially trivial R-algebra (simplicially trivial means all the d; and
s; areisomorphisms), (2) the homotopy groups m,( A% ) of the simplicial set A}, = {4} }
are trivial whenever i,n = 0.

A cohomology theory A determines a contravariant functor from the category . of
simplicial sets to DGA/R by sending Ke.¥ to the differential graded algebra
A(K) = {Hom(K,A';)}n;U, where Hom(K, 4%) is the R-module of simplicial maps
K — A7, and differential and multiplication are induced from those of 4. Then the
theorem of Cartan is as follows:

p=0

Theorem 1.1. If A is a cohomology theory, then there is a natural isomorphism
H*(A(K)) = H*(K; R(A)),

on simplicial sets K, where R(A) is the R-module (Z° A),,.

The present paper is concerned with a generalization of this theorem in an
equivariant set-up. Theorem 1.1 has its origin in the commutative cochain problem
which was posed by Thom in 1957. A solution to this problem entails the construc-
tion of a contravariant functor 4:TOP-»CDGA/R (the category of commutative
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differential graded algebras over R) so as to yield a de Rham type theorem which asserts
that there is an isomorphism

H*(A(X))= H*(X;R)

for every topological space X, where the cohomology on the right is the singular
cohomology (note that without the commutativity requirement a cochain problem
does not exist since the usual construction of cochains renders an automatic solution to
it). For example, the classical de Rham theorem provides a solution for the subcategory
of smooth manifolds where 4(X) is the commutative differential graded algebra over
R of smooth differential forms on a manifold X. On the other hand. the commutative
cochain problem has no solution over the integers, the cohomology operations (such as
Steenrod squares, etc.) being the obstructions. This difficulty does not arise over the
rationals @, or any field containing @. In [9], Quillen solved the rational commutative
cochain problem in an abstract setting. Then Sullivan [ 10] gave another proof using his
theory of minimal models and the de Rham complex 4(K) of rational polynomial forms
onasimplicial set K. Anindependent proof, which is based on an earlier proof by Thom
in the real case, was given by Swan [11] when the coefficient ring R is a field of
characteristic zero. Finally, Cartan [2] formulated the main ideas of Swan in the form
of axioms for a chomology theory, and proved Theorem 1.1 from which one can recover
Sullivan’s PL de Rham theorem for a suitable choice of cohomology theory (see [2],
Example 3). The main features of both [11] and [2] is that they avoid integration of
forms which is standard to proofs of de Rham type theorems.

As an application of our main theorem (see Theorem 1.4 below), we propose
a solution to the commutative cochain problem for the equivariant cohomology of
a G-space in the spirit of Cartan’s method. This problem has already been solved by
Triantafillou [12], Theorem 4.9, using Sullivan’s method when G is a finite group.
Triantafillou needed the finiteness condition for the use of Bredon cohomology and,
more importantly, for the construction of certain projective rational coefficient system
(see [12], p. 515). In our formulation we do not require G to be finite. Throughout we let
G be a discrete group, and we continue to suppose that R is a commutative ring with 1.
Let O be the category of canonical orbits whose objects are left coset spaces G/H and
morphisms are equivariant maps ¢:G/H —G/H', corresponding to subconjugacy
relations g~ ' Hg < H'. Let RO4;-mod denote the category of O,-R-modules, which are
contravariant functors from Qg to the category R-mod of R-modules.

In § 2 we construct for a G-simplicial set K and a coefficient system A€ RO,-mod an
equivariant cohomology H¥(K; A), which is a simplicial version of the Bredon-Illman
cohomology (see [1,6]) in the sense that if X is a G-space, then the Bredon-Illman

cohomology groups Hg(x; 4) are isomorphic to H(SX; 4), where SX is the singular
G-simplicial set associated to X.

DEFINITION 1.2

Let ¥ be the category of cohomology theories over R in the sense of Cartan. Then
a G-cohomology theory over R is a contravariant functor A:Og; —>%.

Thus for each G/HeO,, A(G/H) is a cohomology theory over R, and we have
therefore a sequence of contravariant functors A0, — sR-mod (the category of
simplicial R-modules), n > 0, defined by A"(G/H) = A(G/H);,. We may therefore think
of the functors A" as simplicial objects in the abelian category RO -mod. Given
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a G-simplicial set K, define a contravariant functor ®K: O - sR-mod by ®K(G/H) =
RK*, whose set of p-simplexes (RK"), is the free R-module RK” with basis the set of
p-simplexes K of K¥. Again, we may think of ®K as a simplicial object in RO ¢-mod.

DEFINITION 1.3

Let A4 be a G-cohomology theory over R and G& the category of G-simplicial sets.
We define a contravariant function 4;:6G.¥ - DGA/R by
A;(K)={Hom(®K, 4"}}

Sz 0o

where Hom(®K, A") denotes the R-module of simplicial maps ®K -» A" in the category
sRO;-mod of simplicial objects in RO;-mod.

Also, we define /€ ROg-mod by /. ,(G/H) = (Z° A(G/H)),. Then our main theorem
is the following

Theorem 1.4. Let A be a G-cohomology theory over R. Then there is a natural
isomorphism

HE(K, /:'A) = H*(AG(K))H

on G-simplicial sets K.
Given a G-cohomology theory A4, we may define ﬁG:G-spaceSQDGA/R by
Ao (X) = A4(5X). Then we shall also prove the following

Theorem 1.5. Let e ROg-mod. Then there exists a G-cohomology theory Awith 2, = /.
such that

AE(X; ) = H* (A (X)),

for every G-space X.
Here are some examples which will illustrate the ideas involved in the development of
the proposed G-cohomology theory.

Example 1.6. Take R = R, the field of real numbers, and Q as the simplicial differential
graded algebra where Q% = Q*(A”) is the differential graded algebra of smooth
differential forms on the standard p-simplex A? in R?"!, Then Q is a cohomology
theory over R in the sense of Cartan with R(Q)= R, and the constant functor
A:0; > 6, defined by A(G/H) = Qs a G-cohomology theory. Theorem 1.4 says that
H*(A;(K))is isomorphic to the Bredon-Illman cohomology H¥(K; 4), where A is the
constant coefficient system 2(G/H) = R, for every G-simplicial set K.

This result may be called the equivariant de Rham theorem, because it computes the
G-cohomology of K from the de Rham complexes of various fixed point sets K*.

Example 1.7. For an R-module M, consider the simplicial differential graded algebra
C(M) where CE(M) = @, ., ,C"(A[p]; M) is the differential graded algebra of cochains
of the contractible simplicial set A[p] with values in M, and a coefficient system
4:0; — R-mod. Define a contravariant functor A:O; — % by A(G/H)= C(~#(G/H)).
Then each A(G/H) is a cohomology theory in the sense of Cartan, and 4 is a G-
cohomology theory over R. Note that here 1, = 4, and therefore, by Theorem 1.4,
H*(A4(K)) = HA(K; ).
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Example 1.8. Let C be a cohomology theory over @ in the sence of Cartan, and
£:0,; — Q-mod be the rational coeflicient system defined as follows:

/(G/H)=Hom(Q(G/H),Q),

where (1(G/H) is the vector space over O generated by the set G/H, and
#(g) = Hom(Q(g). id),

where § is a morphism in Og4. Then A:0, > %, defined by
A(G/H)=H{G/H)® C

is a G-cohomology theory, where A(G/H) is considered as a simplicial differential
graded algebra concentrated in dimension zero. Then, as before, H*(4,(K)) =~ H}
(K;4,). Observe that here we have 2, = 2®(Z°C),.

The proofs of Theorem 1.4 and 1.5 appearin § 5. The method is based on a study of
the homotopical algebra of the category sRO;-mod, and on a classification theorem for
equivariant cohomology. These prerequisites are presented in § 2 through 4. Finally, in
§ 6 we show that for a suitable choice of G-cohomology, where G is finite, Theorem 4.9
of Triantafillou [12] can be recovered from Theorem 1.5.

2. G-simplicial sets and equivariant cohomology

A G-simplicial set K is a simplicial set together with an action of G on K by simplicial
maps, regarding G as a constant simplicial group G with G, = G forall n > 0, and all the
face and degeneracy maps the identity map of G. This makes each K, a G-sct, and the
face and degeneracy maps commute with the action of G.

A simplicial version of the equivariant Bredon-Ilman cohomology{1,6]for K may
be described as follows. Let 2 RO-mod, and C"(K; /) be the R-module of functions
¢ defined on n-simplexes xe€ K, such that ¢(x)e 2(G/G ), where G_is the isotropy
subgroup at x. The inclusion G, = G, , gives rise to a morphism G/G, - G/G, . in O,
and hence a homomorphism of R-modules 2(G/G, ) - /(G/G, ) which we shall denote
by 4(d;x — x). Define homomorphism d: C"(K; ) - C"* ' (K: /) by

n+1i

dOX)= Y (~ 1) 2(d;x = x)e(d,)

i=0

This makes C*(K; /) a cochain complex. Next define an action of G on C"(K; /) by

(90)(x) = A(@)(c(g™ ' X)),
where ce C"(K; 4}, xeK,, and AG):AG/G - ) - MG/G ) is the isomorphism induced
by the conjugacy relation ¢ 7' G g = G, Let CE(K; A) denote the submodule of
G-invariant cochains (C*(K;4))%. Tt is easily verified that d(C%(K; )< Ct 1K 4).
Define the equivariant cohomology of K with coefficient system / by

HE(K;2) = H (CE(K; 2)).

To complete the definition of the cohomology theory, let us note that a G-simplicial
map f:K - L between G-simplicial sets induces a cochain map SHCEHL 2 - CE(K; A)
defined by [*(c)(x)= 4(fx - x)c( f x), where A(fx - x):4(G/G ) = A(G/G,) is the homo-
morphism induced by the inclusion G, = G 1+ Therefore we have a homomorphism

JHHEL A~ HY(K: 7).
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The following theorem relates the Bredon—-Illman cohomology H%(X;2) of a
G-space X [6] with the cohomology HE(SX; 2), of the associated singular G-simplicial
set SX.

Theorem 2.1. Let X be u G-space with G discrete, and 7€ RO -mod. Then there is an
isomorphism

A(X: ) = HE(S X 4),
which is functorial with respect to X.

Proof. Note that H%(X;4) is the homology of a cochain complex S%(X; 4), where
§'(';(X; 2) is the R-module of functions ¢ on equivariant singular n-simplexes
T:A" x G/H — X satisfying ¢(T) e A(G/H). and certain compatibility condition (see [6],
Ch. 1, Def. 4.3). We shall exhibit an isomorphism of cochain complexes

CHSX:/) = S%(X; ).

Let T:A" x G-H— X be an equivariant singular n-simplex in X. Then ¢,:A" > X
with 5.(x) = T({x.eH) is a singular n-simplex in X; that is, a simplex of the singular
G-simplicial set SX. Moreover H= G, , for if he H then (ho)(x) = ho,(x) = hT(x,eH)
= T{x,eH)=c,{x). Thus we have a homomorphlsm (G, o H): #{G/G, ) A(G/H).
Now define #: ("(?X /)—»S”(X 2) by setting «(c)(T) = 2( G > Hjclar). Next define
a homomorphism o' S" X;A)— CE(SX;7) as follows. Let oA —X be a singular
n-simplex in X. Then 'E, A" % G/G, - X given by T, (x.gG,) = go(x)is an equivariant
singular n-simplex in X. We set o'(c)(s) =c(T,). One sees easily that 2 and o are
well-defined cochain maps inverse to one another. L

The following theorem, which we shall use in § 5, provides an alternative description
of the cohomology groups H(K; 2) (cf. Bredon [ 1], ch. 1, § 9). Given a G-simplicial set
K, define C(K)e RO -mod, for each integer n > 0, in the following way

CK)NG/H)= C,(K";R),
where C (K":R) denotes the free R-module generated by the n-simplexes of K¥, and,
for a G-map §:G/H —» G/H’ induced by a subconjugacy relation g ' Hg< H’,

C (K} g) =

—n

where g* is the chain map induced by the left translation ¢: K — K* . Clearly this gives
a chain complex ¢ C,(K) (where the boundary é:C (K:R)— C,_,(K;R)is coming from
(G/H):C, (K" R)—‘ .1 (K®; R))in the abelian category RO.-mod, and if 2€ RO-

ni

mod, then Hom(C  (K), A), which is the R-module of natural transformations
C . (K)-» 4, becomes a cochain complex of R-modules.

Theorem 2.2. There is an isomorphism
CHK:4)= Hom(C (K), )

of cochain complexes.

Proof. Associate with each ce C%(K;2) a natural transformation
p(c):C,(K)— 4
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as follows. If xe K#, then H< G, and this induces a homomorphism (G _— H):
MHG/G )— A(G/H). Then @(cNG/H): C,(K"; R)— A(G/H) is the homomorphism

P(ONGIH)(X) = £(G, — H)e(x).

This gives ¢:C¢(K;2)—»Hom(C ,(K), 4). Next, define its inverse ¢":Hom(C (K), A)
- Cg(K; 2) as follows. If T:C (K) — 4 1s a natural transformation and xe K, then

=n

@' (T) (x) = T{G/G ) (x).

Itcan be checked without difficulty that ¢ and ¢’ are well-defined cochain maps inverse
to each other. m

3. Closed model structure of sSRO-mod

First note that the category sRO.-mod may be identified with the category of
contravariant functors O; —sR-med. Then, by a result of Dwyer and Kan [3,4],
sRO;-med is a closed model category in the sense of Quillen [8] with the following
structures: A morphism f:T— S is a fibration (resp. weak equivalence) if for every
G/He O, the simplicial map f(G/H):T(G/H)—S(G/H) is a fibration (resp. weak
equivalence), and [ is a cofibration if it satisfies LLP (left lifting property) with respect
to trivial fibrations. Also it follows easily that

Lemma 3.1. Every object in sSROg-mod is fibrant as well as cofibrant. |

Note that an object TesRO-meod is fibrant (resp. cofibrant) if the morphism T — 0
{resp. Q0 — T) is a fibration (resp. cofibration), where 0 is the initial object in sSRO-mod.

We shall now briefly discuss the homotopy theory in sRO -mod. There are two
notions of homotopy in sSRO-mod: (i) the left homotopy coming from its closed model
structure, and (ii) the abstract homotopy coming from combinatorial considerations
as described in [7], § 5. We shall show that the two notions are essentially the same.

First let us look at the abstract notion of homotopy in sSRO-mod. Let RI:O; — sR-
mod be the contravariant functor defined by RI(G/H) = RI and Rl(g) = id, where RI is
the free simplicial R-module generated by I = A[l] Note thatif {¢,.,e,,....¢,, }is the
basis of the R-module (RI),, where e, =(0,0,.. 1) (with n — k + | zeros and
k onesye A[1],, then

(RI},=Re;®:--®Re, .,

If T:0;— sR-mod is another contravariant functor, define a contravariant functor

T@®RI:0;—-sR-modby T® RI(G/H) = T(G/H)® RI. Also, define natural transform-
ations i,,i,:T—T®RI by

io(G/H)(x)=x®{ey,0,...,0) and i, (G/H)(x)=x®(0,...
We then obtain the following

Ny

Lemma 3.2. Two simplicialmaps f,g:T — S insRO-mod are homotopic (in the abstract
sense) if and only if there exists a simplicial map

F:T®RI-S
with Feiy=fand F<i; =g. -
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Lemma 3.3. Every homotopy equivalence in SRO-mod is a weak equivalence. [ |

Now we turn to the notion of left homotopy in a closed model category 4. Let
AV A be the push out of the diagram 4 « J— 4 in % and

V, AVASA

be the corresponding folding map. Recall from {87, ch. [, § | than in %, a cylinder of an
object 4 isan object I 4 together with morphisms iy, i,: A — 14 and p:IA— 4 such that
io +1i,:AV A—IAisacofibration, pisa weak equivalence,and pe(i, +1,) = V .. Two
morphisms f;. f,:A - Bin € are called left homotopic( f, ~_f,)if thereis a morphism
H:IA— Bsuchthat f,= H<i,andf, = Hei,. Quillen proved that if 4 is cofibrant then
i, and i, are trivial cofibrations, and the left homotopy relation ~ is an equivalence
relation.

In the closed model category sRO.-mod every object is cofibrant (Lemma 3.1), the
initial object ¢ is just 0, and, for an object T, TV T is simply T® T with the folding
map V. T®T—T given by V(G/H)x,x)=x+x". We define IT=T®RI, the
natural transformations i,,i,:T—IT as in Lemma 3.2, and p:IT—T by p(G/H)
(x ® u) = x. Then the natural transformation i, +i,: T@ T— 1T is given by

(iy + 1 )(GIH)(x, X') = ig(GH)(X) + i, (G/H)(X'),

and we have p (i, +i,) = V. Also, p is a homotopy equivalence in the abstract sense
with homotopy inverse i,. Therefore, by Lemma 3.3, p is a weak equivalence in
SRO;-mod.

Again i, + 1, is a cofibration. To see this, consider a LLP of i; + i, with respect to
a trivial fibration ¢:U — V' in sRO;-mod.

T®T —— U

Iy + 14 J l q
B
TORI —— V
We may identify T® RI with T@T®S, where S = coker (i, +i,), by means of
a splitting of the exact sequence
0-THAHT—>TRRI->S-0,

(note that i, + i, is injective). Also, the LLP of the confibration 0 — § with respect to the
trivial fibration ¢:U — V has a solution y:S — U such that goy = f. Then a solution to
the LLP of i, + i, isgiven by o + 7: T® T@® S — U. Thus we have proved the following
lemma.

Lemma 34. In the category sROz-mod, T® RI is a cylinder object for T. [ |
Theorem 3.5. Two morphisms f, g: T— S in sSROg-mod are left homotopic if and only if

they are homotopic in the abstract sense. Consequently, the homotopy between morphisms
in the abstract sense is an equivalence relation. u
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4. A classification theorem in SRO;-mod

In this section we shall show that if 4 € RO,-mod, then for any G-simplicial set K there is
a bijection between the cohomology group H§(K;4) and the set [®K.K(4,n)] of
homotopy classes of morphisms in SRO-mod, where ®K is as in Definition 1.3, and
K (s, n) is what we call an O,-Eilenberg—MacLane complex of the type (2 n). This
a contravariant functor T:0; — sR-mod such that

(1) T(G/H) is an Eilenberg-Maclane complex K {#(G/H), n),
(2) T(§): T(G/H)— T(G/H')is the unique simplicial homomorphism induced by the
linear map A(g):#(G/H)— +(G/H"), g *H'g < H.
The first condition means that
n,oT=2, and z;T=0 1if j#n,

where z,(K) is defined by n,(KWG/H)=nr,(K"). It may be noted that each
K{(A(G/H), n) is minimal by definition, and that the Eilenberg—MacLane G-simplicial
set may be obtained from K(1,n) by applying a functorial bar construction (see [5]),
and as in ([ 5], Cor., p. 280) we have the following

Theorem 4.1. Any two O;-Eilenberg—MacLane complexes of type (i n) are naturally
isomorphic.

Proof. Suppose that T,S:0; - sR-mod are two O;-FEilenberg—MacLane complexes of
type (4, n). Define a natural transformation #: T —§ by setting n(G/H): T(G/H)— S(G/H)
to be the unique simplicial homomorphism induced by id: A(G/H) - 4(G/H). Since there
is a bijection

[ T(G/H),S(G/H)]~Hom(A(G/H), (G/H)),

¢(G/H) is a homotopy equivalence, and hence an isomorphism, because a homotopy
equivalence between two minimal Kan complexes is an isomorphism. Now the
following diagram commutes.

TG/H) ", s(G/H)
9) l l S(9)
@(G'H')

T(G/H) . S(G/H)

This is so because S(§)o¢(G/H) and @(G/H')>T(§) are the unique simplicial maps
induced by A(g)°id; g, and id, g > A(9) respectively. This proves the theorem. [ |

From now on we shall consider only normalized chain and cochain complexes
(see May [71). Fix n >0, and define contravariant functors

L(/,n+ 1},K(/,n):0;— sR-mod
by setting
L(z,n + 1M(G/H)([q]) = C"(A[q]); M(G/H)),

K(~.m(G/H\[q]) = Z"(Alq]; A(G/H)),
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where [g] denotes the ordered set {0 <1...<gq}. Then K(4,n) is an O,-Eilenberg—
MacLane complex of the type (4, n). Define a map

A:Hom(®K, L{4, n + 1)) » Hom(C,(K), 1)

as follows. Let f:®K — L(1, n + 1) be a natural transformation. Then f(G/H): RK" —
L(A,n + 1)(G/H)is a simplicial map. If xe KZ, then f(G/H)(x)e L{(4,n+ 1)(G/H)[n] =
C"(A[n]; A(G/H)) is a cochain. Since C"(A[n]; A(G/H)) is the R-module of all linear
transformations from the R-module RA, with basis A, to A(G/H), we may identify it
with A(G/H). Then define Af:C (K)— A by

(ANMG/H)(x) = (f (G/H)(x))(A,).

It is straightforward to check that Af is natural with respect to morphisms in O.
Next define

A:Hom(C (K), ) » Hom(®K, L(4,n + 1))

asfollows. Let T:C,(K)— 4 be a natural transformation. Then it is sufficient to define
simplicial map

N(TWG/H):RKH¥ — L(4,n+ 1)(G/H).
Let x e RKY. This induces a simplicial map x:RA[¢q] — RK" with X(A,) = x. Then
X*:C"(RKH; (G/H)) — C"(RA[4]: A(G/H))

is a cochain map. Observe that C*(RA[q]; A(G/H)) = L(4,n + 1)(G/H)([q]). We then
set

(A'TNG/H)(x) = x*(T(G/H)).
It can be verified that A'T is a natural transformation, and that A and A’ are inverse to

each other. We have thus proved the following

Lemma 4.2. The map A is an isomorphism between the functors Hom(®K,L(Z,n + 1))
and Hom(C (K}, 2} with inverse A’. .

Let ¢’ :Hom(C,(K),i)— C%(K; #) denote the isomorphism of Theorem 2.2; with
inverse ¢. Denote the composition
¢~ A:Hom(®K, L(A, n+ 1)) > CL(K; 4)
by I'. Then we obtain

Lemma 4.3. The map T is an isomorphism between the cocycles Z%(K;2) and
Hom(®K, K(A,n)) with inverse I = A ¢.

Proof. Let feZlL(K:J). We need to show that (¢f)(G/H)(x)e K(A(G/H),n), for all
xe K} and H < G, that is, (. )(G/H)(x)€ Z"(A[¢]; A(G/H)). But this is true, because
(' T(G/H)(x)) = (A (@ THG/H)(x))
= 5(0,,(id x &)*3*(gT))
= 5(0,(id x &*3*T)=0.
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Conversely, suppose that (¢f)(G/H)(v)e Z"(A[q]: /(G/H)) for all yeK;'. Then, if
xe K, , , is non-degencrate, we find after a simple computation that 5(I"f)(x) =0. This
proves the lemma. [ ]

Theorem4.4. Let f,, fe Hom(®K, K(2,n)). Then fy ~f, if and onlyif I f,and [ f, are
cohomologous.

Proof. Let F:®K ® RI - K(4.n) be a homotopy between f, and f, (see § 3). Therefore
for each H < G, the simplicial maps f,(G/H) and f,(G/H) are homotopic by the
homotopy F(G/H). Define an element u,, in the n-cochain group C*(L{/.n + I)}{G/H);
A{(G/H)) by setting ug(c) =c(A,). This gives a homomorphism
S(G/G)*:CHL(Jn+ )(G/G); A(G/G ) - C"(RK®; A(G/G )
such that
S(G/G ¥ ug )(x) = ug (f(G/G,)(x))
= fIG/G)(x)(4,)
=Tf(x).

Now since the simplicial maps f,(G/G,) and f,(G/G,) are homotopic, f,(G/G,)* =
fi{G/G)*. Consequently ['f, =T f,.

Conversely, suppose that f,, f,:®K - K(4,n) are such that I'f, and I'f, are
cohomologous, that is, I'fy=Tf; +dh, where he Ci~'(RK; ). It suffices to find
ay€ZG(RK ®RI; 7)such that i§(y) =T f; and i¥(y) =T f, wherei,.i;:RK—>RK® RI
are the inclusions as in Lemma 3.2. Then the natural transformation

I'(;): @K ®RL - K(z, n)

will be a homotopy from f; to f,. To get suchay, write 7, = p*(I'f,) € Z".(RK ® RI; 1),
where p is projection RK ® RI - RK. Then

i3Go)=11(o)=Tfo.
Further, regarding he Cf; '(RK; %) as a cochain defined on i, (RK), we may choose

a cochain feCy™'(RKQ@RI; /) which extends h and vanishes on i, (RK). Thus
ig(B) =0 and i¥ f = h. Now take y = 7, — dB. This completes the proof. ]

We have in effect proved the following theorem.

Theorem 4.5. (Classification) For any G-simplicial set K, there is a bijection

[DK.K(7.n)]o HY(K; 2).

5. Proofs of Theorems 1.4 and 1.5

We begin by proving a lemma. Recall from § 1 that given a G-cohomology theory
A4:0, — 6 . each A(G/H) is a cohomology theory in the sense of Cartan, and we have
a/z,€RO,-mod defined by 2 (G/H) = (ZO(A(G/H)))O, where Z%(A(G/H))is the kernel
of the homomorphism d,,:4%(G/H)— A'(G/H). We also have contravariant functors

A", Z"A:0; - sR-mod,
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where A"(G/H) and Z" A(G/H) are simplicial R-modules with the set of p-simplexes as
A(G/H); and Ker{6:A(G/H)}, — A(G/H), "} respectively.

4

Lemma5.1. If A:0;—% g isa G-cohomology theory over R, then each A": O, —sR-mod
is contractible us an object of SRO~mod.

Proof. For every H< G, and n =0, the exact sequence A°(G/H)—> AYG/H)— ...
gives rise to a short exact sequence
0-Z"A(G/H)— A"G/H)— Z"" ' A(G/H) — 0.

This amounts to saying that A"(G/H)—Z"*' A(G/H) is a principal fibration with fibre
Z"A(G/H) in the category of simplicial sets, and hence a principal twisted cartesian
product (PTCP) of type (W) with group complex Z" A(G/H) in the sense of May [7],
where A"(G/H) is contractible. This PTCP of type (W) is naturally isomorphic to the
universal PTCP of type (W), W(Z" A(G/H)) - W(Z" A(G/H)), constructed by means of
W and W-constructions on Z" A(G/H). It can be checked easily that W(Z" A(G/H)) is
contractible and the contraction can be chosen so as to be natural with respect to the
morphisms in Og. Consequently, the contraction of A"(G/H) is also natural. The
resulting contractions are all the necessary equipments one needs for the construction
of a contraction of 4":0; — sR-mod. ]

Proof of Theorem 1.4. It is required to prove that there is an isomorphism
HEK; 4 ) = H*(A5(K)).
where A;(K) is the differential graded algebra Hom(®K, 4") of Definition 1.3. Note

that Z" A:0, —sR-mod is an O;-Eilenberg-MacLane complex of the type (4 ,, 1), and
that for n > 0 we have a short exact sequence

0-Z"A—A">2Z" 1 A0,
in the category sRO,-mod. We may therefore identify Z"A.(K)= Ker{A{{K)—

ALY 1(K)) with Hom(®K, Z" A), which is the R-module of morphisms from ®K to Z" A4.
There 1s an obvious map

Hom(OK, Z" A) - [DK, Z" A] = H'.(K; )., ).

where the isomorphism is as given in Theorem 4.5. We shall show that if
feHom(®K, Z" A) is homotopic to constant, then it factors through p: 4"~ > Z" A,
Consider a commutative diagram:

OK —— A" 1

Iy l l 14
F
OK®RI —— Z"4
where the horizontal map on the top is the constant map, F is a homotopy between
f and the constant map, the vertical map i, on the left is a trivial cofibration. Since p is

surjective, it is a fibration. Consequently, since sSR-mod is a closed model category, the
above LLP of i, with respect to p has a solution

F:®KQRI —> A" !
such that po F|i, (DK) = f. This proves the theorem when n > 0.
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For n = 0, it is easy to see that, since Z° A4 (K)=Hom(®K, Z° A), two morphisms f,
ge Hom(® K. Z° A) are homotopic if and only if they are equal. This completes the
proof of the theorem. ]

Proof of Theorem 1.5. Given 2€RO -mod, consider the contravariant functor
A4:0,— % , defined by

A(G/H)y= C*(A[ 1,2(G/H)),

where CP(A[q]); 2(G/H)) denotes the ordinary singular cochain group. Then A(G/H) is
a cohomology theory in the sense of Cartan and 4 is a G-cohomology theory with
r=4,. Set flG(X) = A;(5X). The proof now follows from Theorems 2.2and 1.4. =

6. Equivariant commutative cochain problem

We conclude the paper with the observation that for a suitable choice of G-cohomology
theory Theorem 1.4 leads to Theorem 4.9 of Triantafillou[127. Let G be a finite group,
4:0;— Q-mod a (contravariant) rational coefficient system, and H§(X; 2) the Bredon
cohomology of a G-complex X. Let &,:0,—~CDGA/Q be the covariant functor,
where & , (G/H) = & ,» which is the de Rham algebra over Q of rational polynomial
forms on X, and, for a morphism §:G/H — G/H in Qg, ¢~ 'Hg = H', & 4(9) = ¢*:€ yn —
& y» which is induced by the left translation g: X" — X". Let A* and & % denote respectively
the functors dual to / and & ;. Then according to Triantafillou[12], Theorem 4.9,

H*(Hom(i*, & )) = HE(X; A).
On the other hand, Theorem 1.5 gives
H*(Hom(®X, i ®¢ £%)) = HE(X: 4).

Itis not difficult to see that the cochain complexes Hom(i*, & ) and Hom(® X, 21 ®4 £3)
are isomorphic. Note that we have R(A®q £%)= 4.
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