BOUND STATES FOR MOMENTUM AND ASYMPTOTIC COMPLETENESS IN $L^2(R^*)$:

I. TRACE CLASS COMMUTATORS FOR n=1

PL. MUTHERAMALINGAM

In $L^2(R)$, asymptotic completeness is proved for h(P)=W(Q) where h(P) is a complete operator and W is a long range potential. In $L^2(B^n)$ for $n\geq 2$, asymptotic completeness is proved if h is a polynomial such that $\sum_{j=1}^{n} L^{-1}L(\xi)$ grows very fast with $|\xi|$ and W is a smooth short range potential decaying faster than $|x|^{-(n+1)}$ at ∞ .

I INTRODUCTION AND STATEMENT OF THE RESULT

Let $\mathcal{H} = L^2(\mathbb{R}^n)$ be the Hilbert space of complex valued square integrable functions on \mathbb{R}^n w.r.t the Lebesgue measure. Let $Q = (Q_1, \ldots, Q_n)$, $P = (P_1, \ldots, P_n)$ be the position and momentum operators on $L^2(\mathbb{R}^n)$ given by $(Q_j f)(x) + x_j f(x)$, $(P_j f)(x) = -\mathrm{i}(D_j f)(x)$, $D_j = -\partial/\partial x_j$.

Let $h: R^n \to R$ be any smooth function such that h and all its derivatives have at most polynomial growth. Further let $\{\xi \text{ in } R^n: \nabla h(\xi)=0\}$ have zero Lebesgue measure. Let $W(x)=W_s(x)+W_L(x)$ where $W_s, W_L: R^n \to R$ are bounded short range and long range potentials respectively. Put $H = h(P) + W(Q) = H_0 + W(Q)$. In [3], as early as 1976, the following theorem was proved.

THEOREM 1.1 (i) There exists a smooth function $X: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that the wave operators $\Omega_{\pm} = \Omega_{\pm}(H_0,H)$ given by

$$\Omega_{\pm}^{+}f = \sup_{t \to +\infty} \exp[\mathrm{it}\,H] \exp[-\mathrm{i}tX(t,P)]f$$

exist for each f in L2(R*).

(ii) Range $\Omega_{\pm} \subseteq \mathcal{H}_{ac}(H)$, the absolutely continuous space for the self adjoint operator H.

Note 1.2. If $W_L = 0$ then we can take $X(t, \xi) = th(\xi)$

Definition 1.3. Asymptotic completeness [abbreviated : AC] is said to hold for the pair (H_0, H) if equality holds in Theorem 1.1 (ii) i.e. Range $\Omega_+ = \mathscr{H}_{ac}(H)$.

AC for (H_0, H) is known only for a limited cases of h viz (i) h is an elliptic polynomial [5] (ii) h is vaguely elliptic i.e. $\lim_{|\xi|\to\infty} |h(\xi)| = \infty$ [7, 15] (iii) h is simply characteristic i.e.

(a) $\lim_{t\to\infty} 1 + |h(\xi)| + |\nabla h(\xi)| = \infty$ and

suitable constants, [4, 11] and (iv) $H = H_0 + W_s$, where

(a) h is a monomial with $\lim \sum |D^{\alpha}h(\xi)| = \infty$ or 0

(b) h is a non negative finite linear combination of non-negative monomials, with $\lim_{x \to \infty} |D^{\alpha}h(\xi)| = \infty$ [8].

151-00 It was conjectured in [8] that A' holds for (h(P), h(P) + (1 + $+ |Q|^{-1-\varepsilon}$), where $\varepsilon > 0$, when h is any polynomial with $\lim_{\epsilon \to 0}$ $\sum_{\alpha} |D^{\alpha}h(\xi)| = \infty$. In this article we apture some class of (h(P), h(P) ++ W(Q)) for which AC holds.

Definition 1.4. [14, p. 255] Let $h: \mathbb{R}^n \to \mathbb{R}$ be any polynomial; h is said to be a complete polynomial if

$$\{0\} = \{\eta \text{ in } R^n : h(\xi + t\eta) = h(\xi) \text{ for all } \xi \text{ in } R^n, t \text{ in } R\}.$$

While $h: \mathbb{R}^2 \to \mathbb{R}$ given by $h(\xi_1, \xi_2) = \xi_1$ or $h(\xi_1, \xi_2) = \xi_1 - \xi_2$ or $h(\xi_1, \xi_2) = (\xi_1 + 100 \xi_2)^{10} + 2000(\xi_1 + 100 \xi_2)^2$ is not a complete polynomial, the polynomial $h(\xi_1, \xi_2) = \xi_1 - \xi_2^2$ or $h(\xi_1, \xi_2) = \xi_1 \xi_2$ is complete.

THEOREM 1.5: Let $h: \mathbb{R}^n \to \mathbb{R}$ be any polynomial. Then the following four conditions are equivalent:

(i) h is a complete polynomial

$$\lim_{\Omega \to 0} || (ii)| \lim_{|\xi| \to \infty} \sum_{n} || D^{n}h(\xi)|| = \infty$$

51 (iv) $\chi(|Q| \le r) [h(P) + i]^{-1}$ is a compact operator for each r > 0. Here x stands for the indicator function.

Proof: We refer to the appendix. Q.E.D.

The condition (iv) of the previous Theorem 1.5 justifies the following Definition 1.6.

Definition 1.6. Let $h: \mathbb{R}^n \to \mathbb{R}$ be any continuous function. Then h is said to be a complete function if $\chi(|Q| \le r)$ $[h(P) + i]^{-1}$ is compact for each r > 0.

Sufficient conditions for h to be a complete function are given in Theorem 1.7. improvalety, some observation of the property of the annual of

THEOREM 1.7: a) Let $h: R^n \to R$ be any continuous function such that $\lim_{|z|\to\infty} |h(\xi)| = \infty$. Then $\chi(|Q| \le r)[h(P) + i]^{-1}$ is compact for each! that $\lim_{|\xi|\to\infty} |n(\xi)| = \infty$ and $\lim_{|\xi|\to\infty} |a| \le k + 1$. Here r > 0.

(ii) $|D^{\beta}h(\xi)| \leq K \sum_{|\alpha| < k} |D^{\alpha}h(\xi)|$ for all β with $|\beta| = k + 1$. Here K is a suitable constant. Then $\chi(|Q| \le r)$ $[h(P) + i]^{-1}$ is compact for each r > 0.

Proof. Part (a) is clear. For (b) we refer to Theorem 9 and Theorem

A1 of [2]. Q.E.D.

We are ready to state our assumptions $A1, A2, \dots A7$ and our results. Theorems 1.8, and 1.9.

A1: $h: R^* \to R$ is a C^{∞} function such that h and all its derivatives have at most polynomial growth.

A2: $\{\xi \text{ in } R^n : \nabla h(\xi) = 0\}$ has zero Lebesgue measure.

A3: (On critical values) If $C_r = \{h(\xi) : \Delta h(\xi) = 0\}$ is the set of critical values of h, then \bar{C}_r , the closure of C_r is a countable set.

A4: (Local compactness = complete h) For each r > 0, the operator $\chi(|Q| \le r)$ $[h(P) - i]^{-1}$ is compact.

A5: (Long range potential) $W_L: R^n \to R$ in a C^{∞} function and there exists some ε_0 in (0,1] such that

$$|D^xW_L(x)| \leq K(\alpha) (1+|x|)^{-|\alpha|-\varepsilon_0}$$

for all multi indices. Here $K(\alpha)$ is a suitable constant.

A6: (Short range potential) $W_s: \mathbb{R}^n \to \mathbb{R}$ is a bounded continuous function and for some ϵ_1 in (0,1] we have

$$|W_s(x)| \leq K(1+|x|)^{-1-\varepsilon_1}$$

Here K is a constant.

A7: (Smoothness of the short range potential) W_S of A6 is of class C^2 and for some $m > n = (\dim R^n)$

$$|D^{\alpha}W_{S}(x)| \leq K(1+|x|)^{-m}$$

for all multi indices α with $1 \leq |\alpha| \leq 2$. Here K is a constant.

Unless otherwise specified the letter K with or without suffix will stand for a generic constant.

Note that we shall assume n=1 in A5.

THEOREM 1.8. Let n=1. Let h, W_s , W_L satisfy A1, ..., A7. Put $H_0=h(P)$, $H=H_0+W_s(Q)+W_L(Q)$, $U_t=\exp\left[-it\,H_0\right]$ and $V_t=\exp\left[-it\,H\right]$. Then there exists a C^∞ function $X:R\times R^n\to R$ such that

- (i) $\Omega_{\pm} = s \lim_{t \to \pm \infty} V_t^* \exp[-iX(t, P)]$ exists
- (ii) $\Omega_{\pm}^* \Omega_{\pm} = identity$ ie Ω_{\pm} is an isometry
- (iii) (Intertwining relations) $V_t\Omega_{\pm} = \Omega_{\pm}U_t$ for all real t
- (iv) Range $\Omega_{\pm} \subseteq \mathscr{H}_{ac}(H)$ and
- (v) Range $\Omega_{\pm} = \mathcal{H}_{ac}(H)$.

THEOREM 1.9. Let $n \ge 2$. Let h satisfy A1, A2, A3 and the conditions b(i), (ii) of Theorem 1.7. for some $k \ge 0$ so that A4 is also satisfied. Let

$$\tilde{h}(\xi) = 1 + \sum \left\{ |L^{\alpha}h(\xi)| : |\alpha| \leq k \right\} \geqslant K(1 + |\xi|)^N$$

Since $\{(H+i)^{-2}f: f \in \mathcal{H}_{ac}(H)\}$ is dense in $\mathcal{H}_{ac}(H)$ we deduce

$$\lim_{t\to\infty}\sup_t\|P^2(P^2+r^2)^{-1}|V_tf\|=0\quad\text{for each }f\text{ in }\mathscr{H}_{ac}(H)$$

Now the result is clear, because, for all g in $L^2(\mathbb{R}^n)$ we have

$$\|\chi(|P| \geqslant r)g\| \leqslant 2 \|P^2(P^2 + r^2)^{-1}g\|$$
. Q.E.D.

Now we state the ingredient from [7].

Theorem 2.3. Let h, W_s, W_L satisfy the assumptions A1, A2,..., A6. Put $H_0 = h(P)$, $H = H_0 + W_s(Q) + W_L(Q)$, $U_t = \exp[-it H_0]$, and $V_t = \exp[-itH]$. Then there exists a C^{∞} function $X: R \times R^n \to R$ such that

- (i) $\Omega_+ = s$ -lim $V_i^* \exp[-iX(t, P)]$ exists $t \rightarrow \pm \infty$
- (ii) Ω_+ is an isometry
- (iii) $V_t\Omega_+ = \Omega_+ U_t$ for all real t
- (iv) Range $\Omega_{\pm} \subseteq \mathcal{H}_{ac}(H)$ and (v) Put $G = \{\xi \text{ in } R^n : \nabla h(\xi) \neq 0\}$. Then $\mathcal{H}_{ac}(H) \ominus \text{Range } \Omega_{\pm} = 0$ $= \{f \text{ in } \mathscr{H}_{ac}(H): \text{ lim } ||r(P)V_{t}f|| = 0 \text{ for each } r \text{ in } C_{0}^{\infty}(G)\}.$

Note that if $W_L = 0$, then we can, and do, take $X(t, \xi) = th(\xi)$.

Let φ be in $C_0^{\infty}(R^n)$. Then $(1+Q_1^2+\ldots+Q_n^2)^{-1}$ $\varphi(P)(1+Q_1^2+\ldots+Q_n^2)$ is a bounded operator by the commutation relation between P and Q. So by the interpolation techniques [12], $(1+|Q|)^{-1-\varepsilon} \varphi(P)(1+|Q|)^{1+\varepsilon}$ is bounded for each ε in [0,1]. So $W_{\varepsilon}(Q)$ $\varphi(P)(1+|Q|)^{1+\epsilon_1}$ is a bounded operator for each φ in $C_0^{\infty}(R^n)$.

Let $W(x) = W_{\delta}(x) + W_{L}(x)$. Since W is bounded and |x| → ∞

W(x) = 0, by the assumption A4, the operator W(Q) $(H_0 + i)^{-1}$ is compact. Since

$$(H_0 + i)^{-1} = -(H + i)^{-1}W(Q)(H_0 + i)^{-1}$$

the operator $(H+i)^{-1}-(H_0+i)^{-1}$ is compact. Again by A4, the operator $\chi(|Q| \le r)$ $(H+i)^{-1}$ is compact for each r>0. Now the result follows by Theorem 2.3 and the proof of Theorem 2.2 (ii) of [7]. Q.E.D.

THEOMEM 2.4. Let h, W_s , W_L , $W = W_s + W_L$ satisfy the assumptions A1,...A6 and let

$$\lim_{r\to\infty}\|(H_0+\mathrm{i})^{-1}[P^2(P^2+r^2)^{-1},W(Q)](H_0+\mathrm{i})^{-1}\|_1=0$$

Then, Range $\Omega_{\pm} = \mathcal{H}_{ac}(H)$.

Proof. This theorem is a consequence of Theorems 2.2 and 2.3. Step 1: Let & be the Banach algebra given by

$$\mathscr{A} = \{ \varphi : R \to \mathbb{C}, \ \varphi \text{ is continuous, } \lim_{|t| \to \infty} \varphi(t) = 0 \}$$

with the sup norm. Let 3 be given by

$$\mathcal{B} = \{ \varphi \text{ in } \mathscr{A} : \varphi(H) - \varphi(H_0) \text{ is compact} \}$$

 \mathcal{B} is easily seen to be a closed * sub algebra of \mathcal{A} . The proof of Theorem 2.3 shows that, if $\alpha(x) = (x+i)^{-1}$, then α is in \mathcal{B} . By Stone-Weierstrass theorem we have $\mathcal{A} = \mathcal{B}$. Thus for each continuous $\varphi: R \to \mathbb{C}$ with $\lim_{t\to\infty} \varphi(t) = 0$ the operator $\varphi(H) - \varphi(H_0)$ is compact.

Step 2. Let φ be in $C_0^{\infty}(R \setminus \overline{C_r})$. Choose ψ in $C_0^{\infty}(R^n)$ such that $\psi(\xi) = 1$ for $|\xi| \leq 1$ and 0 for $|\xi| \geq 2$. Let f be in $\mathscr{H}_{ac}(H) \ominus \text{Range } \Omega_+$. Since the function $\varphi(h(\xi)) \ \psi(\xi/r)$ is in $C_0^{\infty}(G)$ for each r > 0, by Theorem 2.3 (v)

(3)
$$\lim_{t \to \infty} \| \gamma(H_0) \ \psi(P/r) V_t f \| = 0$$

By Theorem 2.2,

(4)
$$\lim_{t\to\infty} \sup_{t\geq 0} ||[1-\psi(P/r)]V_if|| = 0$$

By (3) and (4) we have

$$\lim_{t\to\infty}\|\varphi(H_0)V_tf\|=0$$

Since $\varphi(H) - \varphi(H_0)$ is compact and weak $\lim_{t\to\infty} V_t f = 0$ one gets

(6)
$$\lim_{t\to\infty} \|\{\varphi(II) - \varphi(II_0)\} V_t f\| = 0$$

By (5) and (6) we have $\varphi(H)f = 0$ for each φ in $C^{\infty}_{\sigma}(R \setminus \overline{C}_{\sigma})$. Since \overline{C}_{σ} is a countable set and f is in $\mathcal{H}_{a^{*}}(H)$ we conclude that f = 0. Thus $\mathcal{H}_{a^{*}}(H) \ominus \operatorname{Range} \Omega_{+} = 0$ i.e. $\mathcal{H}_{a^{*}}(H) = \operatorname{Range} \Omega_{+}$. Similarly $\mathcal{H}_{a^{*}}(H) = \operatorname{Range} \Omega_{+}$.

§ 3. PROOF OF THEOREM 1.8.

LEMMA 3.1. Let $h: R \to R$ be a continuous function such that $\chi(|Q| \le r) [h(P) + i]^{-1}$ is a compact operator for each r > 0. Then

$$\lim_{|h|\to\infty}\int_{\xi}^{h+1}(|h(\xi)|^2+1)^{-1}\,\mathrm{d}\xi=0$$

Proof. It is obvious that $(1+Q^2)^{-1}$ $[h(P)+i]^{-1}$ is compact. By interchanging P and Q we easily conclude that $[h(Q)+i]^{-1}$ $(1+P^2)^{-1}$ is compact. Let f in $C_0^{\infty}(R)$ be such that f(x)=1 for $|x|\leqslant 1$ and 0 for $|x|\geqslant 2$. Define $f_j(x)=f(x-j)$ for any integer j. It is clear that weak $\lim_{|j|\to\infty}(1+P^2)f_j=0$. So $\lim_{|j|\to\infty}\|(h(Q)+i)^{-1}f_j\|=0$ proving the Lemma. Q.E.D.

Now we prove Theorem 1.8. By Theorem 2.4 we only need $0 = \lim_{r \to \infty} \|(H_0 + i)^{-1}[P^2(P^2 + r^2)^{-1}, W(Q)](H_0 + i)^{-1}\|_1$. For this, note that

$$P^{2}(P^{2}+r^{2})^{-1}=1+ir2^{-1}\{(P-ir)^{-1}-(P+ir)^{-1}\}$$

and

with the
$$\mathbb{E}[(P\pm \mathrm{i}r)^{-1}, W(Q)] = \mathrm{i}(P\pm \mathrm{i}r)^{-1}W'(Q)(P\pm \mathrm{i}r)^{-1}$$

Since $|W'(x)| \le K(1+|x|)^{-2\delta}$ with $\delta > 1/2$ we easily have

$$\|(H_0 + i)^{-1}[P^2(P^2 + r^2)^{-1}, W(Q)](H_0 + i)^{-1}\|_1 \le$$

$$\leq Kr \|(1+|Q|)^{-\delta}(P\pm ir)^{-1}[h(P)+i]^{-1}\|_{2}^{2} \leq Kr \int d\xi |\xi+ir|^{-2}|h(\xi)+i|^{-2}.$$

The proof is complete by the following Lemma 3.2.

Lemma 3.2.
$$\lim_{r\to\infty} r \int (|x|+r)^{-2}(1+|h(x)|)^{-2} dx = 0.$$

Proof. We show that
$$\lim_{r\to\infty} r \int_{0}^{\infty} (|x|+r)^{-2}(1+|h(x)|)^{-2} dx = 0.$$

(Similarly we can prove that
$$\lim_{r\to\infty}\int_{\infty}^{0}(|x|+r)^{-2}(1+|h(x)|)^{-2}dx=0$$
.)

Let $a_n = \int_{n-\infty}^{n+1} (1 + |h(x)|)^{-2} dx$. Then by Lemma 3.1, $\lim_{n \to \infty} a_n = 0$.

Now, clearly we can assume $r \ge 1$. We have

$$r \int_{0}^{\infty} dx (|x| + r)^{-2} (1 + |h(x)|)^{-2} \le$$

$$\le r \sum_{0}^{\infty} a_{n} \sup \{ (|x| + r)^{-2} : n \le x \le n + 1 \} \le$$

$$\le r \sum_{0}^{\infty} a_{n} (n + r)^{-2} \le$$

$$\leq r \sum_{0}^{N} a_{n}(n+r)^{-2} + r \sup \{a_{n} : n \geqslant N+1\} \cdot 4 \cdot \int_{N}^{\infty} (x+r)^{-2} dx \le r \sum_{0}^{N} a_{n}(n+r)^{-2} + 4 \sup \{a_{n} : n \geqslant N+1\}$$

Now the result is obvious since $\lim_{n\to\infty} a_n = 0$. Q.E.D.

Remark 3.3. A careful look at the proof of Theorem 1.8 shows that it suffices to assume in A7 that W_s is in $C^1(R)$ and $|W_s(x)| \leq K(1 + |x|)^{-m}$ for some m > 1.

Remark 3.4. If h is a non constant polynomial on R, then it is vaguely elliptic and hence satisfies the assumption A4.

Example 3.5. Let $h: R \to R$ be given by $h(\xi) = \xi \sin \xi$. Then h is

simply characteristic.

§ 4. PROOF OF THEOREM 1.9

LEMMA 4.1. Let for x in R^n , $\langle x \rangle = (1+x^2)^{1/2}$. Then for any two real numbers a, b the operators $\langle P \rangle^a \langle Q \rangle^b \langle P \rangle^{-a} \langle Q \rangle^{-b}$ and $\langle Q \rangle^a \langle P \rangle^b \langle Q \rangle^{-a} \langle P \rangle^{-b}$ are bounded.

Proof. Refer to p 284 of [5]. Q.E.D.

THEOREM 4.2. Let h, W_s satisfy the assumptions A1,..., A4, A6 and A7. Put $H_0 = h(P)$, $H = H_0 + W_s(Q)$. If further

$$\lim_{r\to\infty}r^2\int (1+|x|)(|x|+r)^{-4}(1+|h(x)|)^{-2}=0,$$

then Range $\Omega_{\pm} := \mathcal{H}_{ac}(II)$.

Proof. We apply Theorem 2.4. Put $W(x) = W_s(x)$. Now,

$$||(H_0 + i)^{-1}[P^2(P^2 + r^2)^{-1}, W(Q)](H_0 + i)^{-1}||_1 =$$

(7)
$$= r^{2} \| (H_{0} + i)^{-1} [(P^{2} + r^{2})^{-1}, W(Q)] (H_{0} + i)^{-1} \|_{1} =$$

$$= r^{2} \| (H_{0} + i)^{-1} (P^{2} + r^{2})^{-1} \sum_{i} [P_{j}^{2}, W(Q)] (P^{2} + r^{2})^{-1} (H_{0} + i)^{-1} \|_{1}$$

Note that

(8)
$$[P_j^2, W(Q)] = -i\{P_j(D_jW)(Q) + (D_jW)(Q)P_j\}$$

$$P_{\mathbf{J}}(D_{\mathbf{J}}W)(Q) = \langle P \rangle^{\frac{1}{2}} \langle Q \rangle^{\frac{-m}{2}} \{ \langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} P_{\mathbf{J}}(D_{\mathbf{J}}W)(Q) \langle P \rangle^{\frac{-1}{2}} \langle Q \rangle^{\frac{m}{2}} \} \langle Q \rangle^{\frac{-m}{2}} \langle P \rangle^{\frac{1}{2}} (Q)^{\frac{m}{2}} \langle Q \rangle^{\frac{m}{2}} \langle Q \rangle^$$

$$(D_{j}W)(Q)P_{j} = \langle P \rangle^{\frac{1}{2}} \langle Q \rangle^{\frac{m}{2}} \{\langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} \langle D_{j}W \rangle \langle Q \rangle P_{j} \langle P \rangle^{\frac{-1}{2}} \langle Q \rangle^{\frac{m}{2}} \} \langle Q \rangle^{\frac{-m}{2}} \langle P \rangle^{\frac{1}{2}} \langle Q \rangle^{\frac{m}{2}} \langle Q \rangle^{\frac{m}{$$

CLAIM.
$$A_j = \langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{-\frac{1}{2}} P_j(D_j W)(Q) \langle P \rangle^{\frac{-1}{2}} \langle Q \rangle^{\frac{m}{2}}$$
 and

$$B_{j} = \langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} \langle D_{j} W \rangle \langle Q \rangle P_{j} \langle P \rangle^{\frac{-1}{2}} \langle Q \rangle^{\frac{m}{2}} \text{ are bounded operators.}$$

We assume the CLAIM and proceed. In the end, we prove the CLAIM. By (7), (8), (9), (10) and the CLAIM we get

$$\begin{split} &\|(H_0+\mathrm{i})^{-1} \|[P^2(P^2+r^2)^{-1}, W(Q)] \|(H_0+\mathrm{i})^{-1}\|_1 \leqslant \\ &\leqslant Kr^2 \|(H_0+\mathrm{i})^{-1} \langle P \rangle^{1/2} (P^2+r^2)^{-1} |\langle Q \rangle^{-m/2}\|_2^2. \end{split}$$

Now Theorem 4.2 follows from Theorem 2.4 since m > n and $||f(P)g(Q)||_2 = ||f||_2 ||g||_2$.

Now we prove the CLAIM. We show that A_j is bounded; similarly one can prove that B_j is bounded. In what follows the letter B will stand for a generic bounded operator. Now

$$A_{j} = \langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} P_{j}(D_{j}W)(Q) \langle P \rangle^{\frac{-1}{2}} \langle Q \rangle^{\frac{m}{2}} =$$

$$= \{\langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} \langle Q \rangle^{\frac{-m}{2}} \langle P \rangle^{\frac{1}{2}} \} \langle P \rangle^{\frac{-1}{2}} \langle Q \rangle^{\frac{m}{2}} P_{j}(D_{j}W)(Q) \langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} \cdot$$

$$\{\langle P \rangle^{\frac{1}{2}} \langle Q \rangle^{\frac{-m}{2}} \langle P \rangle^{-\frac{1}{2}} \langle Q \rangle^{\frac{m}{2}} \}$$

Now use Lemma 4.1 to get

$$A_{j} = B\langle P \rangle^{\frac{-1}{2}} [\langle Q \rangle^{\frac{m}{2}}, P_{j}] (D_{j}W)(Q) \langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} B + B\langle P \rangle^{\frac{-1}{2}} P_{j} \langle Q \rangle^{\frac{m}{2}} (D_{j}W)(Q) \langle Q \rangle^{\frac{m}{2}} \langle P \rangle^{\frac{-1}{2}} B$$

Note that by the assumption A7 the first summand for A_j is bounded; in the second summand write $P_j = P_j \langle P \rangle^{-1} \langle P \rangle$ to get

(11)
$$A_{j} = B + B \langle P \rangle^{\frac{1}{2}} \langle Q \rangle^{m} (D_{j} W)(Q) \langle P \rangle^{-\frac{1}{2}} B$$

The operator $P_k\langle Q\rangle^m(D_iW)(Q)(P_k+i)^{-1}$ is, using A7, seen to be bounded by commuting the P_k across. So we get

$$\langle P \rangle \langle Q \rangle^m \langle D_J W \rangle \langle Q \rangle^{-1} = B$$

Clearly by A7

$$\langle P \rangle^{0} \langle Q \rangle^{m} (D_{1}W)(Q) \langle P \rangle^{-0} = B$$

By (12), (13) and interpolation techniques [12] we get the boundedness of $\langle P \rangle^{1/2} \langle Q \rangle^m \langle D_j W \rangle \langle Q \rangle^{-1/2}$. So by (11) the operator A_j is bounded. Q.E.D.

The next Lemma 4.3, though simple, is crucial to connect h and \tilde{h} through integrals in Lemma 4.4.

LEMMA 4.3. Let $f: [0, b] \to R$ be in $C^{j}[0, b]$ for some j. Let $|f^{(j)}(t)| \ge \beta > 0$ for all t in [0, b]. Then for $r \ge 0$.

$$\int_{0}^{b} [1 + |f(t)|]^{-r} dt \leq 2(K_{j} + b)\beta^{-r/(1+jr)}$$

where K_i depends only on j; K_i is independent of b, r, β . Proof. Let $I_i = [0, b]$. Fix $\delta > 0$. Define

$$I_{j-1} = \{t \text{ in } I_j : |f^{(j-1)}(t)| \leq \delta\beta\}$$

Since $f^{(j-1)}$ never vanishes in I_j , the function $f^{(j-1)}$ is monotone on I_j . So I_{j-1} is an interval and the complement $\{t \text{ in } I_j : |f^{(j-1)}(t)| \ge \delta\beta\}$ is a union of at most two intervals. Now we calculate $|I_{j-1}|$, the length of I_{j-1} . Let $I_{j-1} = [t_1, t_2]$. An easy calculation using mean value theorem gives

$$2\delta\beta \, \geqslant \, |f^{(J-1)}(t_1) - f^{(J-1)}(t_2)| \, \geqslant \, (t_2 - t_1)\beta$$

Thus $|I_{f-1}| \leq 2\delta$. We easily conclude

$$\int_{I_{f}} [1 + |f(t)|^{r}]^{-r} dt \leq 2\delta + \int_{\{|f(t-1)(t)| > \delta\beta\}} [1 + |f(t)|]^{-r} dt$$

Now the set $\{t:|f^{(i+1)}(t)| \ge \delta\beta\}$ is a union of at most two intervals and we keep on repeating the procedure to get.

$$\int_{[0,\delta]} [1 + |f(t)|]^{-r} dt \le$$

$$\le 2\delta + 2.2\delta + \int_{\{|f(t)| \ge \delta^2\beta\}} [1 + |f(t)|]^{-r} dt \le$$

$$\le 2\delta + 2.2\delta + \dots + 2^{j-1} \cdot 2\delta + \int_{\{|f(t)| \ge \delta^2\beta\}} [1 + |f(t)|]^{-r} dt \le$$

$$\le K_j \delta + b \left[1 + \delta^j \beta\right]^{-r}$$

where $K_1 = 2 + 2^2 + \dots, +2^j$. So

$$\int_{0}^{b} \left[1 + |f(t)|\right]^{-r} dt \leq (K_{j} + b)(\delta + \delta^{-jr}\beta^{-r})$$

Taking $\delta = \beta^{-r/(1+fr)}$ we get the result. Q.E.D.

LEMMA 4.4. Let $h: \mathbb{R}^n \to \mathbb{R}$ satisfy the conditions of Theorem 1.7b (i), (ii). Then there exists a partition of \mathbb{R}^n into congruent parallel cubes C_s such that

$$\int_{C_{J}} [1 + |h(y)|]^{-2} dy \leq K_{1} \int_{C_{J}} \left[1 + \sum_{|\alpha| \leq k} |D^{\alpha} h(y)| \right]^{-2/(1+2k)} dy$$

for each j. Here K_1 depends on k, K of Theorem 1.7 (b) (i) and a bound on the length of diagonal of C_1 .

Proof. We apply the results of [2] and Lemma 4.3. Define $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ by

$$F(x, y) = \sum_{p \leqslant k} \left\{ \sum_{|\alpha| = p} (D^{\alpha}h)(x)y^{\alpha} \right\}^{2}$$

$$g(x) = \sum_{|\alpha| \leqslant \alpha} [D^{\alpha}h)(x)]^{2}$$

Then the proof of Lemma A3 of [2] shows that we can partition R^n into congruent parallel cubes C_j with length of diagonal of $C_j \leq 1$ and there exist unit vectors y_j of R^n such that

(14)
$$S_{j} = \sup \{g(x) : x \text{ in } C_{j}\} \leqslant K_{1} \inf \{g(x) : x \text{ in } C_{j}\}$$

(15)
$$F(x, y_i) \ge K_2 g(x) \text{ for all } x \text{ in } C_i, K_2 > 0$$

(16)
$$(D^{\beta}h)(x)y_j^{\beta}]^2 \leq K_3F(x,y_j)$$
 for all x in C_j , all β with $|\beta| = k + 1$.

Now let us fibrate C_I along y_i . For x in C_I , let

$$I(x) = \{t \text{ in } R : x + ty, \text{ is in } C_i\}$$

Then clearly I(x) is an interval of length ≤ 1 since length of diagonal of $C_1 \leq 1$. Clearly one has

(17)
$$\int_{C_j} [1 + |h(y)|^2]^{-1} dy \leq \sup_{x \in C_j} \int_{I(x)} [1 + |h(x + ty_j)|^2]^{-1} dt$$

Now fix x in C_j and define $f: I(x) \to R$ by $f(t) = h(x + ty_j)$. The proof of Lemma A4 of [2] shows that I(x) can be divided into a finite number of intervals I_1, \ldots, I_N with N depending only on k and independent of x such that on each of these intervals

$$|f^{(i)}(t)| \ge K_4 S_1^{1/2}$$

for some $0 \le i \le k$. Here K_4 depends only on K_1 , K_2 , K_3 and an upper bound on the length of I(x). Now by (17), (18) and Lemma 4.3 we have

(19)
$$\int_{C_j} [1 + |h(y)|]^{-2} dy \leq K S_j^{-1/(1+2k)}$$

Now by (14) and (19) we have

$$\int_{C_{j}} [1 + |h(y)|]^{-2} dy \leq K \int_{C_{j}} \left[\sum_{|\alpha|=0}^{k} |D^{\alpha}h(x)| \right]^{-2/(1+2k)} dx \leq$$

(20)
$$\leq K_1 \int_{C_1} \left[1 + \sum_{|\alpha|=0}^k |D^{\alpha}h(x)| \right]^{-2/(1+2k)} \mathrm{d}x$$

Q.E.D.

LEMMA 4.5. Let h be as in Lemma 4.4. Put

$$\tilde{h}(x) = 1 + \sum_{|\alpha| \leq k} |D^{\alpha}h(x)|$$

a) If
$$\lim_{r\to\infty} r^2 \int [(1+|x|)(|x|+r)^{-4} [\tilde{h}(x)]^{-2/(1+2k)} dx = 0$$
, then
$$\lim_{r\to\infty} r^2 \int (1+|x|)(|x|+r)^{-4} [|1+h(x)|]^{-2} dx = 0.$$

b) Consequently if
$$\tilde{h}(x) \ge K_0(1+|x|)^N$$
 for some $K_0 > 0$ and $N > (n-1)[k+(1/2)]$, then

$$\lim_{r\to\infty} r^2 \int (1+\{x\})(|x|+r)^{-4} [1+|h(x)|]^{-2} dx = 0 \iff 0 \iff 0 \iff 0$$

Proof. a) Let the cubes C_i be as in Lemma 4.4. Clearly we can assume $r \ge 1$. Now

$$\int (1 + |x|)(|x| + r)^{-4}[1 + |h(x)|]^{-2} dx =$$

$$= \sum_{j} \int_{C_{j}} [(1 + |x|)(|x| + r)^{-4}[1 + |h(x)|]^{-2} dx \le$$

$$\le \sum_{j} \sup \{(1 + |x|)(|x| + r)^{-4} : x \text{ in } C_{j}\} K \int_{C_{j}} [\tilde{h}(x)]^{-2/(1+2k)} dx.$$

In the last step we have used Lemma 4.4. Clearly for some K_0 independent of j and r we have

(22)
$$\sup \{(1+|x|)(|x|+r)^{-4}: x \text{ in } C_t\} \leq K_0\inf\{(1+|x|)(|x|+r)^{-4}: x \text{ in } C_t\}$$

Substituting (22) in (21) we get

(23)
$$\int (1+|x|)(|x|+r)^{-4}[1+|h(x)|]^{-2} dx \leq KK_o \int (1+|x|)(|x|+r)^{-4}[\tilde{h}(x)]^{-2/(1+2k)} dx.$$

Now the result is obvious.

b) Changing to polar coordinates, we have,

$$\lim_{r \to \infty} r^2 \int (1 + |x|)(|x| + r)^{-4} [1 + |x|]^{-2N/(1+2k)} dx =$$

$$= K \lim_{r \to \infty} r^2 \int_0^\infty (1 + y)(y + r)^{-4} (1 + y)^{-2N/(1+2k)} y^{n-1} dy \le$$

$$\leq K \lim_{r \to \infty} r^2 \int_{1}^{\infty} (1+y)(y+r)^{-1}(1+y)^{-2N/(1+2k)} y^{n-1} dy \leq$$

$$(24) \qquad \leqslant K \lim_{r \to \infty} \int_{1}^{\infty} y^{1+n-1-2-2N/(1+2k)} y^2 r^2 (y+r)^{-4} \, \mathrm{d}y$$

Now $y^2r^2(y+r)^{-4} \le 1$ and $\lim_{r\to\infty} y^2r^2(y+r)^{-4} = 0$. So by Labesgue dominated convergence theorem right hand side of (24) is 0 if n-2-2N/(1+2k) < -1 i.e. if N > (n-1)[(1/2)+k]. Q.E.D.

Proof. of Theorem 1.9. It is clear that Theorem 1.9 is a consequence

of Theorem 4.2 and Lemma 4.5 (b). Q.E.D.

Example 4.6. Let $h: R^2 \to R$ be given by $h(\xi_1, \xi_2) = \xi_1 \xi_2$ and $W(x) = \langle x \rangle^{-m}$ where m > 1. then for the pair $(P_1 P_2, P_1 P_2 + (1 + Q^2)^{-m/2})$ AC holds. We prove this by Lemma 4.5 (a) and Theorem 4.2. In this example k = 1. So

$$[\tilde{h}(x,y)]^{-2/3} = (1+|x|)^{-2/3}(1+|y|)^{-2/3}.$$

It is easily seen that

$$0 = \lim_{r \to \infty} r^2 \int (1 + |x| + |y|) (|x| + |y| + r)^{-1} (1 + |x|)^{-2/3} (1 + |y|)^{-2/3} dx dy.$$

Remark 4.7. Example 4.6 has been treated even with long range potential in [11] since h is simply characteristic. We treated the above example with the only aim of showing that the new method "Bound states for momentum" is useful to treat partial differential operators on $L^2(\mathbb{R}^n)$ for $n \geq 2$.

APPENDIX

We prove Theorem 1.5. We show (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv).

- (i) \Rightarrow (ii) We refer to Proposition 10.2.9 of [4].
- (ii) ⇒ (i) Obvious
- (ii) \Leftrightarrow (iii) We refer to Lemma 7.8 Chapter 5 of [14].
- (iii) ⇒ (iv) We refer to Lemma 8 and Theorem 9 of [2]
- (iv) = (iii) The proof is similar to the proof of Lemma 3.1. Q.E.D.

ACKNOWLEDGEMENT. It is a pleasure to thank Prof. Krishna Maddaly of Mat. Science, Madras — 600113, India for suggesting to look at [f(P), W(Q)] when f is a polynomial or inverse of a polynomial rather a general f.

Received January 7, 1991

Indian Statistical Institute Bangalore, 560 059, India

REFERENCES

- W. O. Amrein, J. M. Jauch and K. B. Sinha, Scattering Theory in Quantum Mechanics, Lecture Notes and Suppl. in Phys 16, W. A. Benjamin, Inc., Reading, Mass., 1977.
- E. B. Davies and Pl. Muthuramalingam, Trace properties of some highly anisotropic operators. J. London Math. Soc. (2) 31 (1985), 137-49.
- 3. L. Hörmander, The existence of wave operators in scattering theory. Math. Z. 146 (1976),69--91.
- 4. L. Hörmander, The Analysis of Linear Partial Differential Operators, 2: Differential Operators with Constant Coefficients. Springer Berlin 1983.
- 5. L. Hörmander, The Analysis of Linear Partial Differential Operators, 4: Fourier Integral Operators, Springer-Berlin, 1985.
- 6. A. Jensen, E. Mourre and P. Perry, Multiple commutator estimates and resolvent smoothness in scattering theory. Ann. Inst. H. Poincaré, 41 (1984) 207-225.
- 7. Pl. Muthuramalingam, Spectral properties of vaguely elliptic pseudo differential operators with momentum dependent long range potentials using time dependent scattering theory-II. Math. Scand., 58 (1986) 255-274.
- 8. Pl. Muthuramalingam, Asymptotic completeness for anisotropic operators by Mourre's theory, Quart. J. Math. Oxford (2), 37 (1986) 315-320.
- 9. Pl. Muthuramalingam, Bound states for momentum and asymptotic completeness in $L^2(\mathbb{R}^n)$: II. $n \ge 2$, Mourre's theory of local conjugacy. Preprint, Indian Statistical Institute, Bangalore, 1990.
- M. Pascu, Asymptotic completeness of the wave operators for simply characteristic operators and long range potentials by Enss' method. Preprint series in Mathematics of INCREST, No. 37/1988.
- 11. M. Reed and B. Simon, Methods of Modern Mothematical Physics, 2: Fourier Analysis, Self Adjointness. Academic Press, New York, 1975.
- 12. M. Reed and B. Simon, Methods of Modern Mathematical Physics, 3: Scaterring Theory. Academic Press, New York, 1979.
- 13. M. Schechter, Spectra of Partial Differential Operators. North Holland, Amsterdam, 1971.
- 14. B. Simon, Phase space analysis of simple scattering systems: extensions of some work of Enss. Duke Math. J. 46 (1979) 119-168.