BOUND STATES FOR MOMENTUM AND ASYMPTOTIC
COMPLETENESS IN L3R"):

JOTRACE CLASS COMMUTATORS FOR 0 — 1
PLOMUTHE RAMALINGAM

In LHR), avymptatic completeness is proved for b1y @ W(Q) where h(P)is a cox.npléte
operator and Wis a loog range potentsal, In L3 B=) tor nox 2, asymptotic c.omplctcness is pro-
ved if I is a polvnomial sueh thon E 1Y 00E) grows very fast with |3 ang Wis a smooth short
3

range potential deenying faster Whan &+ ™ 1 4t oo,

§1 ~l\'l'"(llll CTHN AND STVTEMENT OF TIE RESULT

. Let o . LrI") e the Hilbert space of complex valued square
integrable functions on I w.rt the Lebesgue measure. Let @ =
(@y-. ., Q0,), P - (P, .... I’} be the position and momentum operators
oI gicen s, ) e f, (PG) = —iDyf )y Dy =
= dfoxy. e cee, RPN
, Let bz Br o R e any smooth funetion such that b and all its deri-
vatives have at most polyvnomial growth. Further let {in R*; VI(§)=0}
have zero  Lebesgue measure. Lot W(r) = Wz) + W,(2) where
Wy “L_ R — R oare bounded short range and long range. potentials
respectively. Put /f - h(P) -4 W(Q) == U, + W(Q). In [3]; as early as
1976, the following theorem wis proved. B

L

THEOREM 1.1 () There exists @ smooth function X ‘R R~ it
such that the ware sperators 0, - Oy (1o 1) given by

i VY - w-lim 'vxp[‘it HYexp[=itX@, P)1f

f~ -t 0o
exist for each f in Ly, , . D . e
(i1} Range O, < H oI, the absolulely continuous space for the self
adjotnt operator 11, | ¢
s eNote 1.2, 1{ W, == 0 then we ¢antake X(¢, £) = th(E)
Definition 1.3, Asymptotic completeness [abbreviated : ACT is said
to hold for the paiv. (i1, IT) if equality holds in Theorem; 1,1 (ii) i.e. Range

Qi’ :‘;ﬁ“"(}l‘)\"” A ’ oy - IRTE N N SRR
- AC for (M, 1) is known only for a limited cases of b viz (i) b is an

elliptic polynomial [5] (ii) & is vaguely elliptic i.e. lim | h(E)|= oo [T}, 15]
B A S ‘ - [E]-ro0
(i11) % is simply characteristie i.e. o P
(a) ‘Elim A8 + | VIHE) = oo and
Sy Riseo L - ey e o
OO IDE)] < KU R(E)] 4 [TRE)D, wHers |a] 3 2, K(z) are
suitable. constants, [4,11] and (iv) H =H, 4 W, .where .
(&)_ I is a monomial with lim Y, | D*l(E)]| = oo or 4
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{(b) h is a non- Iié"ati\'c finite linear combination of non-negative
monomials, with lim Y} ]I)"h ) == 0 [8].
1Eiwod i Tx
It was conjectured in [S] that A" holds for ((P), 11(1’) + 1+
4+ {@)~1—%), where € >0, when h 15 any polynomial with lim

| El—o0

Z |D*h(E)| = oo. In this article we apture some class of (A(D), h(P) +
+ W(Q)) for whlch AC holds.

'Definition 1 4 (14, p. 235] Lo\, h:I* = R be any polynomial; kb is
said to bé a complete polvnomml if ' : ‘ :

£0} = {nin B*: R(E & 1) = k(%) forall %in B* tin R}.

While %:{ RZ = R given by h(Ey, &) == or h(&y, &) = &y — &,
or h(&y, &) = (&; 4 100 % po 4 "000( g -- 100 £,)* is not a complete
polynomial, the p013 nomlal h(Eyy &) == &y — &L o L(E,, :,‘,)L— F,laz 1s
complete S : RN
. THEOREM 1 5: Lel h R" — I be an y polynomial. Then the followmg
fo-m conditions are equivalent :
i (i) heis - a complete polﬂzomial

N ~l (i) llm Z ‘D”h(gﬂ

Ly mllnn oo L g+»m> IR
a1 ’ BERT
(iv) x| < n) [h(P)+ 1]‘1 18 @ compuct opt'mtor Jor cach 7> 0.
Here x Stands for the indicator functwn ,

Proof : We refer to the appendix. Q.E.D

The condition (iv) of the previous Theorem 1.5 justifies the following
Definition 1.6.

. Definition 1.6. Let h: R* — R be any continuous function. Then
118 said to be a complete funetion if Q! < ) [MP) —i,- 1] ~1is compact
for each r > 0.
Sufﬁclent comhtmns for B to be a complete functlon are given in
Theomml’? G e ity e o o SR
'i‘HDORLM *1 ' a) Let h R" - R be am/ (’on{muou,s Jnction  sich.
ihat 11m {h(E)\ - 0, Then 7( IQ{ < 7‘)[11(1’) + 1] 1 w compact fm each’

{g|~00

P> 0L ST
b) Let b : - R be a C“l functwn fm some L 0 such tlzat
(i) lim Z ID“h(E)I = 00 and A (R

15|00 la| < it S it

(i) [ DPR(E)| <K g {D’h(i)l for all 8 \\1th 18l =k '+1 Here

K i a smtablé constwnt Then“y(]Ql 9) [71(1’) + 1] lws compact
for each r > 0. :

Proof. Part (a) is clear For (b) we' refer to Theorem 9 and Theorem
Al of [2]. Q.E.D
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Weare ready to state cur assvmptions A1, A2,.. . A7 and our re$ults-

o

Theorems ] 8, and 1.9, o
Al: s B* — It is a (' function such that & and all its denva,tlves
have at most poly nmuml growth, SR . S ;
A" {€ in R*: < h(E) == 0} has zero Lebewue measure. W
: (On (x'm(.xl values) If Ce = {h(E): AR(E) = 0} is" the Qet of
cntlcal \aluos of I, then Gy, the clorure of €, is a countable set.: .5 °
A4 (Local compactness == complete 1) For each 7 > 0, the opexator
7(!()[ r) Lh(P) - i] !is compact. !
: (Long range potential) W, : R* - R in a ¢ function a,nd.vther,e‘_ “
exists some g, in (0.1] such that S ‘ ‘ : T

PDTW ()] € H(e) (1 + ‘m])-}a.-s,‘

for all multi indices, Here K(a) is a hmtflbl(, constant
: (Short range potential) Wy: B* - Ris 2 bounded' cbntmuous
functmn and for rome g, in (0, 1] we have o

| Wl@)} < K + Jz))~t=,
Here K is o constant. :
A7 : (Smoothness of the rhort range potential) W of A6 is of class
C? and for rome m > n == (dim K*) : :

W ()| < KQL + fo)"

for all multi lll(ll(('\ o with1l < |a] < 2. Here K is a constant.

Unless otherwise specified the ]etter XK with or without suffix will
stand for a genetic constant.

Note t]nt we shall assume 7 = 1 in A5.

: Tm:onmr 1.8. Let n =1, Let h, Ws, W satqsfy Al A7 Put.

=MP), H = H,+ W(@Q)4 W), U= exp [—ltHo} and V=
= exp [-—1t H]. fhmz Hzpre camsts a C* functwn X B X B* - R such

that .
() Qp = S—l 1112 V¥ exp[—iX (¢, P)] ewists >

(il) O% Q. == wdentily ie Q4 18 an isometry

(i) (Intertwining relalicns) V,Q, = Q, U, fO'r all.real ¥
(iv) Range Q, < #,.(H) and

(v) Range Q. ==,.(H). S S

THEOREM 1.9. Let n > 2. Let b samsfy Al A2 A3 and the condi-
tions b(i), (ii) of Theorem 1.7. for some k > 0 'so that A4 is als¢' satesfwd
Let .

RE) =14 T { 1B0E)] [a)< s KL 13
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Since {(H + i)=2f: fe# ,.(I[)} is dense in #,.(I) we deduce

CHm sup (| PYP2 4 1)1 Vo fj = 0 for ecach fin o o(I)

r-sc0 ¢

Now the res‘ult is clear, beeause, for all g in L3(R") we have
I 'P gl < 2 PP A ) gl QUED.

Now we state the ingredient from [7].

THEOREM 2.3. Let h, W, Wy salisfy the assumptions Al A.,, .., A8,
Put Hy, = h(P), 'H = H, —{— Ws(Q) = W, (Q), U, - exp [—lf H,], and
V= exp [—ltII] ,’l‘hen there éxists a C°° jumimn X:R X R* - R such
that

(i) Q. = s hm VEexp[—iX(t. P)] erists

(i1) Oi 18 an 1smm’i11/ ‘

(i) V,.Q, = Q. U, for all real t

(iv) Range Q. g.//',,,(ll) and . o

(v Pub G ={ in R*: Vh(§) # 0}. Then #.(II) O Range Q, =

fma’fac(H) lun Nr(PYV fl == O for each r in CP(G)}. ’
Note that 1f. W =0, then we can, and do, take X(I, &) = th(E).

Proof Liet ¢ be in C°°(]1’”) Then (1 4+ QF 4 + Q2)
P+ Q%+ ... 4+ Q%) is a bounded operator l)y the cmmnutation
relation between P and Q. So by the interpolation - techniques™ [12],
@ 4+19N1= o(P)A 4+ @D is bounded for each ¢ in {0,1]. So W (Q)

p(P)1 +°1@1)**= is a bounded operator for cach ¢ in (7°°(1i¢”)
Let W(x) = Ws(z) + Wy(2). Since W is bounded and lim

[xls00
W(z) = 0, by the assumption A4, the operator W(Q) (H, + 1)-! is com-
pact Smce

(H+\1) L (H 1)"1;:Y"(H'+ W@, + i) 1,*’

the operator (H'-4 i)™ (H0 +4 1)1 is. ¢ompact. Again by A4, the ope-
rator y(|1Q| < 7r) (H + 1)“1 is compact for each » > 0. Now the result
follows by Theorem 2.3 and the proof of Theorem 2.2 (ii) of [7]. Q.E.D

THEGMEM 2.4 Let hy WS, W,, W =W + W, “satisfy the assump-
twns A1 A6 and let |
lim ll(Ho + i) = (PP + r2)Y, W(Q)] (I, +i)"Y, =0

r—=0c0o

Then, Range Q. =H s(H).:
Proof. This theorem is" a consequence of Theorerm 2.2 and 23

Step 1 : Let d be the Banach algebra given by

= {q,,R C, ¢ is contmuous, hm o(t) = 0}

with the sup norm. Let # be given by -
B = {9 in o : o(H) — o(H,) is compact}
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2 i3 easily seen to be o closed * sub algebra of . The proof of Theorem 2.3
shows that, if a(x) - (r -+ 1), then a is in 8. By Stone-Weierstrass
theorem we have o 4. Thus for cach continuous ¢: R — @G with
lim ¢(t) = 0 the operator o(/)— o(1,) is compact.

\fl—+00 . L

Step 2. Let o be in CP(R\Co). Choose ¢ in CP(R") such that
(&) =1 for |3’ <1 and 0 for {5| > 2. Let f be in 5#,,(H) © Range Q, .
Since the function o(i(3) ¥(2/r) is in CP(G) for each » > 0, by
Theorem 2.3 (v)

3) lin 7o) YPINVf] = 0
By Theorem 2.2, ‘
(4) lim sup {{{1 — $(P[N]IV.fil =0

7 00 0

By (3) and (4) we have
(6 lim | o(Le) Vo fif = 0

{00

Since o(I) — 9(H,) is compact and weak lim V, f = 0 one gets

(6) | {7 — U} Viffl = 0

By (5) and (6) we have »(I[)f = 0 for cach ¢ in CP(R\0,). Since €, is a

countable set and f is in#,.(I) wo conclude that f = 0. Thus-#,(H) ©

Range Q, = 0i.e. #,.(II) == Range Q,. Similarly #,,(H) = Ra,ng‘s QB
e QU

§ 3. PROOF OF THEOREM 1.8.. ,
LeEMMA 3.1. Let h:R — R be a continuous function such thal
(1@l < 7) [A(P) + 117! i3 a compact operator for each v > 0. Then

ni1

lim S (R(E)E + 1) dE = 0
n|—»o00

Proof. It is obvious that (1 + Q2)-! [A(P) 4- i]-! i3 compact. By
interchanging P and @ we easily conclude that [A(Q) + i]-! (1 + P?)-1
is compact. Let f in O(R) be such that f(x) =1 for 2| < 1 and 0 for
{z] > 2. Define fi(z) = flx — j) for any integer.j. It is clear that weak
lim (1 +P3f; =0. So lilmwll(h(Q) 4+ )7l =0 proving the Lemma.

QBD "’
Now we prove Theorem 1.8. By Theorem 2.4 we only need
0 = lim {|(Hy + D=[PAP? + 1373, W(Q))H, + i)*|,. For this, note
that ' o t
PYP2 4731 =1 4 ir2-1{(P —ir)-L — (P 4 ir)~-1}
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a‘n.d." T

[(P:tl?‘) -1 Ti(() = (P 4+ ir) WP + 1r)‘ :

il

Smce ]W’(w)l K(l | 2])- “28 with 3 > 1/2 we easily h‘ue l
lH_g%—D*[P%P2+-ﬂr%wxonuhr+iruh<"
< Kr|(1+ 1@ D3P L in){MP)+i Y5 < K Sdilﬁ + 111-lez(z)+ |=2.

The proof is complete by the following Lemma 3.2,

LeMMA 3.2. lim rlS (Je] + 31 + j()D2de = 0.

Proof. We show that lim S 2] + r)-2(1 -+ (h(z)])"2dz = 0.

700
0

0

(Sumlarly we can prove that lim S (lx] + m 21 + |k(x))2dz = 0. )
o
. . n+]. ) .
"“,L‘et ay = S @ —{— {h(x )-2da. Then by Lemma 3.1, lim a, = 0.
i
Now, clearly we "ean agsume r > 1 We have
r | astie) 4+ -2 4 e -

0 .

< rf‘an sup {(|z] + 12 n< 20 +1}'.<
0

A

r ¥ adn+ <
0 .
N S . oo . . P |
C&r Y ) rsup{a,n > N+ 1}'4-8 (z +1)7?do<
L4 N <’r 2 an(n+‘r)—2+45up{an:n> -AT+1} L
) ¢ : .

Now the result is cbvious smce 1im Uy = 0 Q. I] D.

n->c0"

’ Remark 3. 3 A careful look at the plOOf of Theorem 1.8 shows that

it suffices to assume in A7 that WS 1s in Cl(R) and le(x)] <K@Q +
+ |z})-™ for some m.>1. - -



9 ____Asymptotic completehess 75 5

Remarl: 3.4. 11 I is a non constant polynomial on E, then it IS va-
guely elliptic and hence satisfies the assumption A4,

Example 3.5. Lot h: & — I be given by h(§) = E sin¥. Then h 1s
simply character intic.

)

§ 1. PROOF OF THEOREM 1.9
Lmya Let for xin R, (&) = (1 4 a2®)V2. Then for any two
real numbers a, b the uperators (P)“ Q> (P)“' Q> and (@) (P)*

>~ (Y (”l’ bhounded.
Proof. Refer to p 284 of [5]. Q.E.D.

THEOREM 4.2, Let h, H s satisfy the assumptions "Al;...,/A4 A6 and
AT, Put I, == h(I’) I o= Iy + W@y, If further

lnnrg ez + )-a +1hw>|)2=0

-0

then Range Q. -=0¢ . (I). o,
:Proof. We apply Theorem 2.4. Put W(x) = Wy(z). Now,"

1o + )7 [PYP2 + 1), WQNH , + 1)Y=
) = P A ) WU, )=
= P(H, + i) (P2 4 )t Y [P WQ)IP + )y, + DA
b

Note that
(8) [(P5,W(Q)] = —{ P D, W )(Q)+(D:W)(Q)P:}

BADI@) = (2T (T BDIWNQEY @ @ <P>*
'g)(,)w)vxcz>1?,=<P>2‘<@>:‘2‘"l (KO (BYT (DT NQIPK YT (@FHQ T (PYT
CLATM. 4,—(Q)F (P PD,WYQKPY? (@) and

m ot =1 m
By = (@:(PY? (D,W)(Q)P«(P)* {@>% are bounded operators.

‘We assume the CLAIM and roceed In the end, we prove the
CLAIM. By (7), (8), (9), (10) and the CLAIM we get P

(Ho + 1)~ [PHP? + 52, W(Q)] '(Ho + DL <
< Er2 (|(H, + )"t (P)V2 (P2 L 7.2 14@y-™2)2.
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. Now Theorem 4.2 follows from Theorem 9.4 since m >n and
NPz = 111l llg]le- . .

; - Now we prove the CLAIM. We show that 4, is bounded ; similarly
one can prove that B; is bounded. In what follows the letter B will stand
for a generic bounded operator. Now

m -1 -1 m
Ay = (QF(PY T PADIVYNOKPY Z(Q): =

. m ozl . o=m 1 -1 m m =l
L= DY (R JCPY S QY LD WYQNQY TP -
1 —-m 1 m
- LPYIQY TPy QYY)

- Now use, Lemma 4.1 to get
-1 = R m -L
Aj = B(PY2 Q> , P YD, WY QWO B +
‘ =1 m " -1 :
+BCPY T LQ (D W)QNQYCPY 2 B

Note that by the assumption A7 the first summand for 4;is bounded
in the second summmand write Py o= P(PY-1{P)Y to get

1) . 4 =B+B (1’>'f<(2>m(1);”")(Q)(l’f’f B

The operator P (@™(D;W)(Q)(P; -+ i)~ is, using ‘AT, seen to be bounded
by commuting the P; across. So we get .

(12) (PYD™DWYNQKPY = B
Clearly by A7
(13) ST APYDMDWNQK DY == B

By (12),.(13) and interpolation technlques [1‘)] we get the boundedness
(‘g (PYV@Y™MD;WHQWP)y~Y2, So by (11) the operator A, is bounded.

The next Lemma 4.3, though simple, is crucial to conneet:% and h
through integrals in Lemma 4.4.

Lemyma 4.3, Let f:[0,b] - B be in C7 [0, b] fm some ] Let
[fP(t)] = B > 0 for all t in (0, b]. Then for v > 0.

b
S[l 3 lf(i []*’ (1t 2(111 4 b) —r/d47r)
. 0 N . - ' P I

where I{; depends onlJ on j ,Kj is mdependent of b r,B.
Proof Let I, [0 b] Fm 3 > 0. Define

_1 = {t in Ij ]j("” t)»]- < 38}
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Since f never vanishes in I, the function f¢-¥ is monotone on I, So
I, is aninterval and the complement {tin I : lf"‘” )|> 88} is a union of
at most two intervals, Now we caleulate | I;.,i, the length of I, ;. Let
I, = [t, t,]. An easy caleulation using mean value theorem gives

236 » fUI) - [N = (f — 1)B
Thus [1y.,] < 23. We easily conclude
Su by Pl € 28 S [+ 1)1 at

1; 95 83)

Now the set {t: |0 D)’ > 33} is a union of at most two mtenals and we
keep on repeating the pruu(lun to get. -

114 O at <
[u,b;
R N N TN
(!/”“”Tn»ana)

€28 b 228 4 .. b D123 4 S [ 0 dt<

(!> 8%8)
< W48 -+ b1+ 881
where Hjy =2 -} 22 - ..., 42/, So
1] o . o
8[1 S]] at < (K + BY(S + 3-9B)
0 |

Taking 3 = £-7/0*"M we get the result. Q.E.D.

LEMMA 4.4, Let h: R* — R satisfy the conditions of Theorem 1.7b
(i), (ui Then there exists a partition of R" into con gruent pamllel cubes Cj
such that :

—2/(1 2k)
8[1 + hirdy < Klg [1 + )j ID“ h(y)l] dy

&, 2 lalgk
for each j. Here K, depends on k, K of Theor em 1 T (b) (i) and a bound on
the length of diagonal of ;.

Preof. We apply the results of ["] and Lemma 4.3.Definel' : R*x
X B" — R and ¢g: R* - R by

Pla, y) = { 5 o
P<k .

l2j=p
=) [D=h)(5)]2

laje=
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Then the proof of Lemma A3 of [2] shows that we can partition R*
into congruent parallel cubes C; with length of diagonal of €; <1 and
‘there éxist unit veetors y; of R suech, that

(4) S sup{g(a): win O < Kt {g(e): 2 in G5}

(15) I(x,y;) > I, g(x) for all zin G K3 >0

(16) (DPh) ()3 12 < H,yF(x, y)) for all zin (), all 3with |8] =L + 1.
Now let us fibrate C; along y;. For z in C;, let

Iéw) = {t. iﬁ R:x + l._z/,t is in Gy} -

Then clearly I(z) is an interval of length < 1 since length of diagonal of
C; < 1. Clearly one has

a7 Su + b))t dy < sup 8[1 + 1 + 1y at
x C
& © "1
Now fix « in C; and define f: I(x) — I by f(t) = h(x + ly;). The
proof of LemmaA4 of {2] shows that I(z) can be divided into a finite

number of intervals I,,...;Iywith ¥ depending only on % and indepen-
dent of z such that on each of these intervals

18) W) > K, S

for some 0 < ¢ < k. Here K, depends only on K,, ,, Ky and an upper
bound on the length of I(x).. Now by (17), (18) and Lemma 4.3 we have

(19) N 1h e ay < T
C; oy 1

Now by'(14) snd (19) wehave
v L Lo N et A A . —2/e2m) '

S[l + g2 dy < KS [ paa) [ aw <

CI R o C .hv‘:o . ;
(20) ”

S x ‘ ~2/(1+42k)
| "<K1‘S[1 + Y ID"‘h(w)]] T e
. 121=0

Q.E.D.
LEMMA 4.5. Let'h be as in Lemma 4.4. Pui

@) =1+ 3 | D*h(a)]
o i

Clalgk
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a) If lim r'-‘S [0 5 e(iel 4 r)-${Rh(a) )23+ da = 0, then

LA -]

r—c0

lim r'-’S (Y =+ e =) - ()]} 2 de = 0.

b) Coanmnllu if () > K 1 -+ jz])Y for some K, > 0 and N >
> (n — 1)k - (1/2)), then :

fim "ZS“ G eEl 4+ )L A [ R@) [t de =0

Proof. ) Let the cubes (4 be as in Lomma 4.4, Clearly We' can
assume r > 1. Now :

S(l Al Y + | M) ]2 dw;

(21) - Sm 3 e @] 4 NI 4+ |h(@) ] de <
’ o o
E sup {(1 - Wi+ r)*: zin O} K S [E(w}]-2/<l+3k)d¢,
C! (43

In the last step we have used Lemma 4.4. Clearly for some K, indepen-
dent of J and r we have

(22) sup {(L+ |z)(je141)"¢: o in C,}<homf{(i+tm1 (014 7)7 s i O
Substltutmg (22) in (21) we get

|+ 12D el + - 4 (e -+ de <

< KK, S (U] 2)(] @] + 1)4[h{z)]-2+29 dg,

Now the result is obvious. .. coy
b) Changing to polar coordmate we have,

=00

tim o 1+ 121 o] 41 J 181015 do-

— K lim S (1 4 9)y + 1) (L 4 y) 2Waemyet gy <
- 0 ' N : . N '

700
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‘< K lim 72

r—+00

(A 4 )y + )WL Vel dy g

w8

(>0

@) - <K limsy“"-1"2-“'/“+'-’“.rr-'r=(y+ = dy
1

Now #%r¥{y 4 r)~* <1 and lim #*r*(y + r)~* = 0. S> by Labesgue do-
700

minated convergence theorem right hand side of (24) is 0 ifn —2 —
—2N[(1 +2k) < —1 Le. if ¥ > (n — D)[(L/2) + E]. Q.E.D.

Proof. of Theorem 1.9. It is clear that Theorem 1.9 is a consequence
of Theorem 4.2 and Lemma 4.5 (b). Q.E.D, ,

Example 4.6. Let h: R?* — R be given by  k(E,, %,) = £;&, and
W(x) = (x>~™ where m> 1. then for the pair (P, P,, P, P, + (1 4 @3)™?2)
AC holds. We prove this by Lemma 4.5 (a) and Theorem 4.2, In this
example £k = 1. So

[71’('1"7 .7/)]—2/3 = (1 -+ [.’UD-Z/"’ (l + iyi)—i}/ﬂ'

It is easily seen that )
0 = lim r* S (@ H 2l Hy D@l + g+ )3 |y )3 dv ay.

- Remark 4.7. Example 4.6 has b2an treated even with long range
potential in [117] since h is simply characteristic. We treated the above:
example with the only aim of showing that the new method “Bound sta-

tes for momentum’ is useful to treat partial differential operators on
L*R") for n > 2.

PRI

" APPENDIX

We prove Theorem 1.5. We show (i) < (ii) « (iii) <« (iv).

(i) = (i) We refer to Proposition 10.2.9 of [4].

(i) = (i) Obvious :

(ii) <> (ili) We refer to Lemma 7.8 Chapter 5 of [14].

(iil) = (iv) We refer to Lomma 8 and Theorem 9 of [2]

(iv) = (iii) The proof is similar to the proof of Lemma 3.1. Q.E.D.
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