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Based on Likelihood

Nonlinear experiments involve response and regressors that are connected through a nonlinear regression-type structure. Examples
of nonlinear models include standard nonlinear regression, logistic regression, probit regression. Poisson regression, gamma regression,
inverse Gaussian regression, and so on. The Fisher information associated with a nonlinear experiment is typically a complex
nonlinear function of the unknown parameter of interest. As a result, we face an awkward situation. Designing an efficient experiment
will require knowledge of the parameter, but the purpose of the experiment is to generate data to yield parameter estimates! OQur
principal objective here is to investigate proper designing of nonlinear experiments that will let us construct efficient estimates of
parameters. We focus our attention on a very general nonlinear setup that includes many models commonly encountered in practice.
The experiments considered have two fundamental stages: a static design in the initial stage, followed by a fully adaptive sequential
stage in which the design points are chosen sequentiaily, exploiting a D-optimality criterion and using parameter estimates based on
available data. We explore the behavior of the maximum likelihood estimate when observations are generated from such an experiment.
Two major technical hurdles are (1) the dependent nature of the data obtained from an adaptive sequential experiment and (2) the
randomness in the total Fisher information associated with the experiment. Qur analysis exploits a martingale structure rooted in
the likelihood. We derive sufficient conditions that will ensure convergence of the chosen design to a D-optimal one as the number
of trials grows. Besides ensuring the large sample optimality of the design, the convergence of the average Fisher information provides
an ergodicity condition related to the growth of the martingale processes intrinsically associated with the likelihood. This key observation
eventually yields the first-order efficiency of the maximum likelihood estimate via martingale central limit theorem and confirms the
asymptotic validity of statistical inference based on the likelihood.

KEY WORDS: Adaptive sequential design; D-optimality; Fisher information; Generalized linear models; Martingales; Maximum

likelihood estimation; Nonlinear regression.

1. NONLINEAR EXPERIMENTS AND OPTIMAL
DESIGNS

Consider a controlled experiment with a response variable
Y and a deterministic regressor X that has values chosen by
the experimenter from an experiment space Q. In the case
of a factorial experiment with each factor having a finite
number of levels, Q is a finite set. On the other hand, for
experiments involving continuous regressors, € will be an
interval or a subset (e.g., a rectangle ) of an Euclidean space.
A combination of these two cases can be encountered in
analysis of covariance-type problems, where some of the re-
gressors are discrete and some are continuous. The outcome
Y of the experiment is subject to random variation, and we
will denote the response space (i.e., the set of all possible
values of Y) by 2. R will be finite (e.g., experiments with
binary or polytomous response) or countably infinite (e.g.,
Poisson experiment) for an experiment that generates dis-
crete response, and it will be an interval on the real line when
the response is a continuous random variable. We will as-
sume that the conditional distribution of ¥ given X = x has
a probability mass function (if Y is discrete ) or a probability
density function (if Y is continuous), which we will denote
by f(y18, ¢, x). The form of f( |8, ¢, x) will be completely
known except for the values of @ and ¢. Here # € © is an
Euclidean parameter, which will be our parameter of prin-
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cipal interest, and ¢, another Euclidean parameter, will be
considered a nuisance parameter. Some examples of com-
monly used nonlinear models follow.

Example 1.1. The well-known Michaelis-Menten model
used in enzyme kinetics connects the observed velocity Y of
a reaction with the substrate concentration X through the
equation Y = a.X(8 + X)~! + e, where eis a random variable
with zero mean and # = («, 8) is the unknown parameter
of interest. This model and its various extensions have been
widely used in studying the dynamics of various chemical
and biochemical reactions (see Bates and Watts 1988; Seber
and Wild 1989).

Example 1.2. In irreversible chemical reactions, the
concentration Y of an intermediate substance at time X is
sometimes assumed to satisfy the nonlinear regression struc-
ture Y = a(a — 8) ' {exp(—BX) — exp(—aX)} + e. Asin
the preceding example, here also ¢ is assumed to be a random
variable with zero mean, and 6 = («, 8) is our parameter of
interest. This model was considered by Box and Lucas
(1959), Hill and Hunter (1974), and others (see Seber and
Wild 1989).

Both of the preceding examples and many other nonlinear
models arising in various scientific disciplines will fit into 2
general nonlinear regression setup in which the influence of
X on Y is modeled as Y = g(8, X) + e. Here g is a real-
valued nonlinear function with a known form, and the ran-
dom error e may be assumed to follow normal distribution
with zero mean and unknown variance o2, In this setup, the
nonlinear least squares estimation of # coincides with the
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maximum likelihood estimation, and the unknown standard
deviation o can be treated as a nuisance parameter. We are
implicitly assuming that the distribution of e does not depend
on X, so that X influences Y only through its mean.

Example 1.3. In binary response experiments, Y takes
only two values—O0 and 1—and one chooses an appropnate
model for the conditional probability function p(x) = P(Y
= 11X = x). In the standard linear logistic regression, logit
{p(x)} = log{p(x)(1 — p(x)) '} is assumed to be linear
function of x, whereas in the linear probit model, probit
{p(x)} = @7'{p(x)}, is assumed to be a linear function
of x, with ™! the inverse of the standard normal cumula-
tive distribution function. Numerous papers on bioassay
have considered binary response experiments involving lo-
gistic and probit models; some very illustrative examples
were mentioned and studied in Cox and Snell (1989) and
McCullagh and Nelder (1989).

Exa;nple 1.4. McCullagh and Nelder (1989, chap. 8)
considered some interesting biological experiments in which
the response Y follows gamma distribution with density of
the form {T(»)}'(a"'»)’y" 'exp(—~a 'vy) such that y, a
v> 0. The value of the parameter « depends on the value
of X chosen by the experimenter, and the nature of this de-
pendence is modeled using suitable functions.

Examples 1.3 and 1.4 are special cases of a very broad
cass of models popularly known as generalized linear models
(GLM’s) (see McCullagh and Nelder 1989; Nelder and
Wedderburn 1972), where the conditional distribution of Y
given X = x is assumed to be in an exponential family with
f(y18, ¢, x) = exp[{a(¢)} ' {y7 — b(7)} + c(y, $)]. Here
g, b, and c are all scalar functions and r is another real-
valued function of x and 6 with some appropriate linear
stracture. For instance, when we have the canonical link
function, = can be expressed as 7 = 7(0, x) = {6, B(x)),
where { , ) denotes the usual Euclidean inner product, and
if the parameter space © = R?, then B will be a known R*-
valued function on Q. Designing optimal binary response
experiments has been investigated by Abdelbasit and Plackett
(1983), Khan and Yazdi (1988), Minkin ( 1987), and others.
Sometimes the response in the experiment occurs in the form
of counts that have no upper bound. The Poisson regression
model, which is frequently used in such cases (see, for ex-
ample, Behnken and Watts 1972), is also a member of the
GLM class. Another regression-type model, which has drawn
%me attention from people working on nonlinear experi-
ments and belongs to this class, is the inverse Gaussian
gression model (see, for example, Fries and Bhattacharya
1986).

In this article we will assume that the parameterization in
te model f(y!6, ¢, x) is smooth and regular in the sense
tat log { (16, ¢, x)} is differentiable in both § and ¢ and
the associated Fisher information matrix exists finitely. It
Wil be appropriate to note at this point that often in practice
(in particular, in all of the preceding examples and families
of models ), the nuisance parameter ¢ has no influence on
the computation of the maximum likelihood estimate for 4,
and the Fisher information matrix computed from the com-
Dete model has a block diagonal form with two blocks cor-
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responding to the efficient scores associated with 6 and ¢.
The efficient scores are obtained by differentiating log{ f( y19,
#, x) } with respect to 8 and ¢, and this block diagonal struc-
ture of the Fisher information matrix is a consequence of
the orthogonality of the two scores associated with the pa-
rameter of principal interest and the nuisance parameter. As
a matter of fact, for standard nonlinear regression problems
and in the case of GLM’s, the only contribution of the nui-
sance parameter to the score associated with 6 is in the form
of a nonrandom scalar multiple. From now on, in view of
these simple and well-known yet quite crucial facts, we will
ignore the presence of the parameter ¢ and write our model
as f( y|8, x). This is primarily to keep our notations simple
as we concentrate on the efficient designing of experiments
and estimation of 8 using the maximum likelihood technique.
We will assume that the parameter space @ is an open convex
subset of R? and write I(6, x) to denote the Fisher
information matrix, which is formally defined as
1(6, x) = [#[V log{f(¥18, x) }1[V log{ f(¥16, x)} 17 f(¥18,
x)pu(dy). Here V is the usual gradient operator corresponding
to differentiation with respect to 6 and p is the standard
counting measure or the standard Lebesgue measure de-
pending on whether the response space 7 is a countable set
(finite or infinite) or an interval on the real line. All vectors
in this article are column vectors unless specified otherwise,
and the superscript T is used to indicate the transpose of
vectors and matrices.

Following Kiefer (1959; 1961a,b), Kiefer and Wolfowitz
(1959), and others, we define the design space D(Q) as the
collection of all probability measures on Q. According to the
criterion of D-optimality, which has been used by several
authors starting from Wald ( 1943) in a variety of situations,
£* € D(9)is a “locally optimal design” (see Chernoff 1953)
at 0 if det{ fo 1(8, x)£*(dx)} = supen@ det { [, 1(6,
x)&(dx)}, where “det” stands for the determinant of a ma-
trix. Clearly, such a £* will always exist in an application, as
Q will typically be a finite set or some nice subset of an
Euclidean space and I(6, x) will be continuous in x for stan-
dard models. But for a nonlinear experiment with I(8, x) a
nonlinear function of 8, £* will depend on the unknown
parameter 0. Cochran (1973, pp. 771-772) described this
dependency: “You tell me the value of 8, and I promise to
design the best experiment for estimating 6” (see also Myers,
Khuri, and Carter 1989, pp. 143-144). An interesting tech-
nical study of the Fisher information in nonlinear regression
can be found in Pazman (1989).

Box and Lucas (1959) considered some standard nonlin-
ear regression models and tried to choose the design points
X1, X2, . .., X, by maximizing the determinant of the total
Fisher information 2,7, I(6, X;) at some initial estimate
= . Abdelbasit and Plackett (1983) and Minkin (1987)
took a similar strategy in designing experiments with binary
response following linear logistic regression models. An ob-
vious practical drawback of this approach, noted by several
authors, is that the prior estimate 6, may be far from true 6
and the behavior of the locally optimal design may be quite
sensitive to even smail perturbations in the parameter value.
One way to remedy or at least alleviate this problem is to
adopt a multistage sequential design (see, for example, Ab-
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that will ensure desirable behavior of the maximum likeli-
hood estimate and convergence of the design to an optimal
one. These conditions are easy to verify, and they will be
satisfied for standard models used in practice.

3. ASYMPTOTIC OPTIMALITY OF THE DESIGN AND
THE BEHAVIOR OF THE MAXIMUM
LIKELLHOOD ESTIMATE

We first focus our attention on the asymptotic optimality
of the chosen design. Obviously, the performance of the de-
sign will depend on our choice of »,, the initial design points
X1, Xz, . . ., Xy, and the estimates ¥ s. Sufficient conditions
that ensure the convergence of the chosen design to a D-
optimal one as 7 grows to infinity follow.

Condition 3.1 (choice of the initial design). n, tends to
infinity as » tends to infinity. Further, the initial design points
X1, X5, ..., Xy, are chosen in such a way that the smallest
eigenvalue of the matrix n7! 2%, I(6, X;) remains bounded
away from 0 as n tends to infinity for any 4 € 0.

Condition 3.2 (the relative size of the initial experi-
ment). The fraction n,/n tends to 0 as n tends to infinity.

Condition 3.3 (a consistency condition). For any e > 0,
MaX q,<i<n Po({0 ¥ — 0| > ¢) tends to 0 as # tends to infinity.

Condition 3.4 (a stability condition). For n, < k < n,
let U, denote the product of the determinants Hﬁ-‘,,,lﬂ
det{ X, 1(8%, X,)}det{ =i, 1(87, X,)} " Then, for any
e > 0, max,,<k<n Po(Ux > 1 + ¢) tends to O as n tends to
infinity.

Theorem 3.5. Assume Conditions 2.1, 2.2, and 3.1
through 3.4. If design points are chosen following our scheme
at the sequential stage of the experiment, then n~! %, I(86,
X,) will converge to [, 1(8, x)£*(dx) in probability as n tends
to infinity. Here £* is a locally D-optimal design at 8, as
described in Section 1.

We next turn our attention to the behavior of the maxi-
mum likelihood estimate 6,.. At this point we need to intro-
duce some conditions on the model f( y|6, x). Recall from
Section 1 that the parameter space © is assumed to be an
open convex subset of R?. From now on we will write | - |
to denote the usual Euclidean norm of vectors and matrices.

Condition 3.6. The support of f(y|8, x) does not depend
on # or x. Further, for every fixed x € Q@ and y € R,
log{ f(y16, x)} is thrice continuously differentiable in 6.

Condition 3.7. Let V log{f(y|6, x)} = G(y, 0, x) be
the gradient vector obtained by computing the first-order
partial derivatives of log { f( ¥|8, x) } with respect to 6. Then
G(y, 0, x) satisfies [, G(y, 6, x)f(y|8, x)u(dy) = 0
and supxeq [ 1G(¥, 0, x)|** f(»16, x)u(dy) < oo for some
t>0.

Condition 3.8. Let H(y, 0, x) denote the d X d Hess-
ian matrix of log{f( |6, x)} obtained by computing the
second-order partial derivatives with respect to 6. Then
H(y, 6, x) satisfies [, H(y, 6, x)f(y|8, x)u(dy)
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[ {G(y, 6, )Gy, 6, x)}Tf(y!8, X)u(dy)
= —I(6, x), and supreq [ |H(p, 6, x)|?f(y10, X)u(dy)
< 0.

Condition 3.9. For every 8 € 0, there is an open neigh-
borhood N(8) of § and a nonnegative random variable
K(y, 6, x) such that sup,eq [ K(¥, 8, x)f(¥]8, X)u(dy)
< oo, and each of the third-order partial derivatives of
log{ f(y|8’, x)} with respect to §' is dominated by K{(y,
6, x) for all 8’ € N(8).

Theorem 3.10. Assume that in addition to conditions
assumed in Theorem 3.5, Conditions 3.6 through 3.9 hold.
Then there is a consistent choice of the maximum likelihood
estimate 6, of # such that, as n tends to infinity, the distri-
bution of n"/%(8, — 8) converges weakly to a d-dimensional
normal distribution with zero mean and {f, I(4,
x)&*(dx)} ! as the variance-covariance matrix.

Corollary 3.11. Suppose that all the conditions assumed
in Theorems 3.5 and 3.10 hold and let 8, be a consistent
choice of the maximum likelihood estimate. Then, as n
grows to infinity, the estimated average Fisher information
n~' 27 1(8,, X;) converges in probability to the D-optimal
Fisher information [, 1(6, x)£*(dx). Further, the asymptotic
distribution of { 27, X(8,, X;)}'/%(8, — 8) is d-variate nor-
mal with zero mean and the d X d identity matrix as the
variance—covariance matrix.

Theorem 3.5 provides an answer to question 2 raised in
the preceding section by asserting the convergence of our
chosen design to a D-optimal one as the number of trials
grows to infinity. Questions 1 and 3 are answered in the
affirmative by Theorem 3.10 and Corollary 3.11. Theorem
3.10 ensures the existence of at least one choice of the max-
imum likelihood estimate 8, that is »'/%-consistent, asymp-
totically normal, and first-order efficient. In some situations
the consistent choice of the maximum likelihood estimate
may very well be a local, rather than a global, maximizer of
the likelihood. However, if we consider a model in the GLM
family with the canonical link, the strict concavity of the
log-likelihood function implies the uniqueness of the root of
the likelihood equation and Theorem 3.10 guarantees the
asymptotic optimality of the unique root. In many other
problems involving models with special structures, one can
work out appropriate conditions for the asymptotic unique-
ness of the maximum likelihood estimate. For example, in
the case of a nonlinear regression model Y = g(8, X) + ¢,
appropriate regularity conditions on the regression function
g will ensure optimal asymptotic properties of a global non-
linear least squares estimate of 6. In view of Corollary 3.11,
we can construct confidence ellipsoids for 6 using 6, and

=1 (8, X;). Any such confidence ellipsoid will asymp-
totically have the right coverage probability, and the con-
vergence of our design to a D-optimal one implies that the
asymptotic volume of the ellipsoid will be first-order optimal-
When there is an unknown nuisance parameter (e.g., ¢ it
the case of usual nonlinear regression and ¢ in the case of
GLM), we will have to estimate it from the data to construct
confidence sets for §. Maximum likelihood technigues ca?
be used for this purpose as well.
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The choice of initial design points satisfying Condi-
tion 3.1 is quite simple for models typically encountered in
practice. For a typical member in the GLM class with
the canonical link, Condition 3.1 is equivalent to the con-
dition that the smallest ecigenvalue of the matrix
ni' 28y {B(X;)} {B(X,)} " remains bounded away from
0 as », tends to infinity irrespective of the value of the pa-
rameter § as long as the conditional variance function
ar(Y|X = x) = b"((8, B(x)))a(¢) is positive (see
McCullagh and Nelder 1989, p. 29). A similar assertion holds
for the regression setup considered by Woodroofe (1989)
and Wu (1985). In fact an evenly distributed choice of the
Xi's over Q will frequently be sufficient to ensure Condition
3.1 Note that the two conditions—namely, n, tends to in-
finity and the fraction n,/n tends to 0—imply that the size
of the initial experiment should be allowed to grow with the
increase in the size of the entire experiment, but the sequen-
tial stage of the experiment must play the dominant role. In
a large-scale experiment, most of the trials are to be con-
ducted in an adaptive sequential fashion, whereas the initial
static experiment should consist of only a small fraction of
the total number of trials. The size of the initial experiment
and the smallest eigenvalue of the matrix n;' 27, 1(6, X;)
will influence the statistical stability and the precision of the
initial estimate 6%,. This suggests that Condition 3.1 has a
subtle connection with Conditions 3.2 and 3.4.

We will now prove the existence of estimates 8" ’s satisfying
Conditions 3.3 and 3.4 by means of explicit construction.
Let 1 < n; < ny < n be such that », tends to infinity and #, /
m remains bounded away from 0 as n tends to infinity. Then,
in view of Condition 3.1, the smallest eigenvalue of
nz' 272, I(6, X,) must remain bounded away from 0 as n
tends to infinity. For n; < i < n, let us define 0F = 6, where
0; is the maximum likelihood estimate of 8 based on (Y},
X), (Y, X2),...,(Y;, X;), as mentioned in Section 2. When
m<i< n, we set 8 = 8, = 6%. Using argu-
ments virtually identical to the proof of the consistency of
0, (see the proof of Theorem 3.10 in the Appendix), it is
straightforward to verify that the consistency Condition 3.3
will hold for some judicious choice of the maximum likeli-
hood estimate whenever Condition 3.1 and Conditions 3.6
through 3.9 hold. On the other hand, in view of Condition
221(8, x) will be uniformly continuous in its two arguments
iff varies in a compact set contained in 8 and x runs over
the compact space €. In particular this implies that whenever
Condition 3.1 holds and n, < i < n, Ti, I(87, X,) will be
positive definite, and for n; < i < n, the smallest eigenvalue
ofi~' 31_, 1(87, X,) will remain bounded away from O pro-
vided that 8} falls within a suitable neighborhood of true 4.
Note at this point that Condition 3.4 will be automatically
satisfied if the model is locally linear (i.e€., in a neighborhood
of the true parameter, the Fisher information is constant
with respect to the value of § and depends only on x) and
the estimates 0} ’s are contained in a small neighborhood of
true 6, so that Uy’s become identically equal to 1 for n, < k
<n,.Consider now a collection of estimates 67 ’s that satisfy
Condition 3.3 and 6} = 6%, for n, < i < n. These estimates
may or may not be maximum likelihood estimates. We de-
fine E, as the set of all indices i such that the consecutive
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estimates 87, and 8] are distinct. Formally, we can write
E,={ilny<i<mnyand 8}, # 07 }. If mis a fixed positive
integer that does not depend on 7, then it is trivial to check
that the stability Condition 3.4 will be satisfied whenever
| Ex) = m for all large n (e.g., we can force n, to be smaller
than or equal to n; + m). In view of this construction, Con-
ditions 3.3 and 3.4 now appear to be practical advantages
instead of technical barriers. It is quite clear that these con-
ditions will be satisfied if we do not update the estimate 8}
too frequently at the sequential stage of the design in cases
where n (and hence »,) is large. This will save lots of com-
putations in the actual implementation of the scheme for
large n. Besides, the flexible nature of the scheme allows us
to work with 87 s that may be less efficient than the maxi-
mum likelihood estimate but easier to compute and hence
easier to update. Any consistent and suitably stable choice
of 87 ’s will ensure the convergence of the design to an op-
timal one. But the impact of the choice of #, and 8F’s on
the rate of this convergence and how close we can get to the
optimal design for finite » are issues yet to be investigated.
Conditions 3.6 through 3.9 are standard Cramer-type
conditions on the model that have been used by several au-
thors in deriving the asymptotic properties of maximum
likelihood estimates. For a typical model in the GLM class,
these conditions are satisfied. For a nonlinear regression
problem involving normal error, these conditions translate
into some regularity conditions on the regression function
g ensuring the consistency and the asymptotic normality of
the nonlinear least squares estimate (see, for example, Gallant
1987, Jenrich 1969, Seber and Wild 1989, and Wu 1981).

4. CONCLUDING REMARKS

As noted previously, Wu (1985) and later Woodroofe
(1989) used some asymptotic results on sums of martingale
difference sequences developed in Lai and Wei (1982) (see
also Wei 1985) in the context of a sequential design for a
regression probiem. In the proofs of our theorems, we use
Burkholder’s inequality (Burkholder 1973) and some results
from martingale limit theory given in Hall and Heyde
(1980). The key observation, as discussed in Section 2, is
that despite the dependent nature of the data arising from a
sequentially designed experiment, the likelihood remains in
the product form. As a result, various derivatives of the log-
arithm of the likelihood with some suitable adjustments will
give rise to sums of martingale difference sequences, which
form the rows of certain triangular arrays. The asymptotic
behavior of maximum likelihood estimates in dependent
processes has been extensively studied in the literature (see,
for example, Basawa and Prakasa Rao 1980; Prakasa Rao
1987; and Sweeting 1980, 1983).

Ford et al. (1989, p. 51) remarked that the relevance of
asymptotics is less clear in the case of a sequential experiment
than it is for a static experiment and explicitly mentioned
that the only asymptotic that one might contemplate for a
sequential experiment is the evolution of the design as the

‘numbser of trials grows. Further, they emphasized that even

if £* is known, it is not clear that the matrix {n [, 1,
x)§*(dx)} ! is useful as an approximate variance—covari-
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ance matrix of the maximum likelihood estimate 8, for finite
n. Theorems 3.5 and 3.10 and Corollary 3.11 are products
of a thorough investigation into the issues raised by them.
In technical terms, the convergence of the random average
Fisher information n™! 2%, I(6, X;) into the deterministic
positive definite matrix fn 1(6, x)&*(dx) is an ergodicity
condition that plays a fundamental role in establishing the
asymptotic normality and the first-order optimality of 8, via
martingale central limit theorem. From a practical stand-
point, these asymptotic results validate statistical inference
based on 8, ensure the optimality of the design, and guar-
antee a high degree of precision in parameter estimates and
confidence sets.

One of several nice features of the criterion of D-optimality
based on the Fisher information matrix is that it leads to
designs that are invariant under smooth and regular repa-
rameterization of models. But the effect of the curvature of
a nonlinear model on parameter estimates is an important
issue in finite sample situations. Bates and Watts (1980,
1981), Hamilton and Watts (1985), Hamilton, Watts, and
Bates (1982), Seber and Wild (1989), and others have ex-
plored this problem in the context of standard nonlinear
regression. It will be interesting to investigate sequential de-
signs that allow for curvature effects, and one may hope to
achieve a second-order asymptotic optimality there.

APPENDIX: PROOFS

We begin by making some elementary but critical observations
and proving some preliminary results.

Lemma A.1. The function A(A) = —log{det(A)}, where A is
a symmetric d X d positive definite matrix, is a strictly convex
function. In other words, for 0 < a < 1 and two positive definite
matrices A and B such that A # B, we have A{aA + (1 — a)B}
< ah(A) + (1 — a)h(B).

Proof. The assertion is trivially true when both A and B are
diagonal matrices. Also, it is a well-known fact in matrix algebra
that for every pair of positive definite real symmetric matrices A
and B, there is a nonsingular matrix C such that A = C7DC and
B = CTC, where D is a diagonal matrix (see, for example, Rao
1973, p. 41). The lemma is immediate after using this fact.

This lemma ensures that as long as there is a £ € D(Q) such that
Ja I(6, x)&(dx) is nonsingular, the D-optimal Fisher information
matrix fn I(6, x)£*(dx) is uniquely defined, even though the D-
optimal design £* on Q may not be unique. In particular, this makes
the assertions made in Theorems 3.5 and 3.10 meaningful. Further,
we have the following lemma.

Lemma A.2. Let {6,} be a sequence of points in © such that,
as n tends to infinity, 6, converges to 6 € 0. Let £¥ be a locally D-
optimal design associated with 8, and let £* be that associated with
6. Then, under Conditions 2.1 and 2.2, the matrix f o 105,
x)&x (dx) converges to f o 100, x)£*(dx) as n grows to infinity, pro-
vided that [, 1(8, x)£*(dx) is nonsingular.

Proof. ltis straightforward and easy to see using the weak com-
pactness of probability measures defined on a compact metric space
and the continuity of I(9, x) that det { [, K(8,, x)&* (dx)} will con-
verge to det { [, 1(6, x)£*(dx)} as n tends to infinity. Further,
under Conditions 2.1 and 2.2, any subsequence of the sequence
{ f o 1(8,, X)EX(dx)} will have a further subsequence that will be
convergent with the limit fn I(8, x)&(dx) for some £ € D(Q). The
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proof of the lemma is now complete using Lemma A.1, which en-
sures that such a £ must be a locally D-optimal design corresponding
to 0.

We now state a fact, which is a consequence of the well-known
inequality log(1 + Xx) < x that holds for all x > 0.

Fact 5.3. Let 1| < n; < nbe integers (1, may be a function of
n) such that n,/n tends to 0 as » tends to infinity. Then, as z grows
to infinity, the sum X7, i~' diverges to infinity.

Proof of Theorem 3.5. Forn; < i < n,let £f denote a locally
D-optimal design corresponding to 8 . We will write 1,(8") for the
matrix i~ T, I(#', X,), where 8’ € ©, and I} will denote the
matrix fﬂ I(8%, x)£T (dx). Fix an 5 such that 0 < n < § and define
S, to be the collection of all positive integers i such that n; <i<n
and det{I,—+,(0}")} > (1 - n)det(l}"). Then it follows from in-
equality 2.3.12 in Theorem 2.3.4 in Kiefer (1961b, p. 389), via
arguments in the proof of Theorem 1 in Wynn (1970, pp. 1658-
1660), that det{L,(87)} det{I(87)}~' = 1 + i~'p for any i
& S, and n, < i < n provided that » and n, are suitably large and
det{T,(87)} > 0 (see inequalities 3.5, 3.7, and so on in Wynn 1970,
pp. 1658-1659). Here p is a positive constant that depends on .
Now, Condition 3.2 and Fact 5.3 imply that the product ] (1
+ i~'p) must diverge to infinity as n tends to infinity for any p > 0.
Hence in view of Conditions 2.1, 2.2, and 3.1 through 3.4, we can
conclude that lim,_. , P; (S, is empty) = 0. At this point, Lemma
5.2, Conditions 3.3 and 3.4, and some minor modification of ar-
guments starting from inequality 3.8 in the proof of Theorem 1 in
Wynn (1970, pp. 1659-1660) using some straightforward algebra
imply that lim,,., P det{L,(0%.,) }> (1 — 4n)det(I*)] = 0, where
I* is the D-optimal Fisher information matrix fﬂ 1(8, x)&*(dx).
In other words, det{L,(8%-,)} converges to det(I*) in probability
as n tends to infinity. The consistency Condition 3.3, the com-
pactness of €, and the continuity of I(, x) now vield the weak
convergence of det {I,(6)} into det(I*). Finally, the proof of the
theorem is complete, exploiting the observation made in Lemma
A.1 and the arguments used in the proof of Lemma A.2.

Proof of Theorem 3.10. We begin by proving that there exists
a maximizer 8, (possibly a local one) of the likelihood that is con-
sistent for 4. In view of Condition 3.7 and the product form of the
likelihood, the gradient 2 7., G(Y}, 6, X;) of the log-likelihood is a
sum of square integrable martingale difference sequence if we in-
troduce the increasing sequence of o-fields ¥,’s, where 1 <i<n
and ¥, is generated by Y, Y>, . .., Y;. Here, as nand i vary, G(Y;,
0, X;)’s generate a triangular array. Using Burkholder’s inequality
(Burkholder 1973, Hall and Heyde 1980), we conclude that

%1 G(Y;, 6, X;) is O(n'/?) in probability as # tends to infinity.
Next, note that if we compute the Hessian matrix of the log-like-
lihood and consider 27~ {H(Y}, 8, X;) + I(4, X;) }, then Condition
3.8 implies that it is another sum of square integrable martingale
difference sequence, which is also O(#'/?) in probability. Theorem
3.5 now ensures the weak convergence of n™! 27, H(Y;, 6, X)
into — [, 1(8, x)£*(dx) as n grows to infinity. Because [, 1(6, X)
X £*(dx) must be a positive definite matrix in view of Condition
3.1, a third-order Taylor expansion of the log-likelihood and Con-
dition 3.9 ensure that the log-likelihood will be a locally concave
function of the parameter in an appropriately small neighborhood
of true ¢ with probability tending to 1 as » tends to infinity. In fact
we can choose a § > 0 such that as » tends to infinity, the log-
likelihood will be concave in a neighborhood of radius 8, around
true #, and for any  satisfying 0 < 6 < Jo the likelihood equation
will have a root (i.e., a local maximizer of the log-likelihood) i
the neighborhood of true § having radius & with probability tending
to 1.
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We next establish the asymptotic normality of n'/2(8, — 8), where
6, is a consistent choice of the maximum likelihood estimate. From
Corollary 3.1 in Hall and Heyde (1980, p. 58) and the Cramer—
Wold device (see, for example, Billingsley 1968, pp. 48-49), it
follows that n='/2 7., G(Y,, 8, X,) converges weakly to a d-di-
mensional normal random vector with zero mean and fn 1(6,
X)£*(dx) as the variance-covariance matrix. This is because of our
Theorem 3.5 (verifying the condition on the conditional variance-
covariance process in Hall and Heyde 1980, p. 59) and Condition
3.7 (verifying the conditional Lindeberg condition in Hall and
Heyde 1980, p. 58). A second-order Tavlor expansion of the gra-
dient of the log-likelihood using Conditions 3.8 and 3.9 and the

-1 n

weak convergence of n 7= H(Y,, 0, X,) into the negative definite
matrix —fn 1(8, x)£¥( dx) now yields the assertion in the theorem.
The argument here is quite similar to the proof of consistency in
the previous paragraph. First the n'/*-consistency of 8, is established:
the limit law then follows.

[Received October 1990. Revised September 1992.)
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