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The Gram—-Schmidt Process

The Gram-Schmidt process is one of the first things one

learns in a course on vectors or matrices. Let us recall
it briefly.

Let x = (z1,...,2,) be a vector with n coordinates ;.
each of which is a complex number. The collection of
all such vectors is the vector space €". It helps to think
of = as a column vector and write * for the row vector
with coordinates z;. The inner product (or the scalor
product) between two vectors « and y is the number

(x,y) ="y =) Z;y;
j=1

The norm of x is defined as

1

x|l = (z72)? = lel)z-

If we are given n linearly independent vectors ay, . .., Gn,
the Gram-Schmidt process constructs an orthonormal
basis out of them as follows. We put q; = a;/||a1]|. This
vector has norm 1. We now put v = ag — (qq,a2)qs
and q, = vs/||vz|. Then g, is orthogonal to g; and has
norm 1. At the next stage, we put vz = az—(q;, as)q;-
(g4, @3)q5; and g3 = v3/||vs||. Continuing this way we

obtain an orthonormal basis q,...,q,. Note that for
each 1 < k < n, the linear spans of ay,...,a; and
qy,-..,4qy are equal.

How close are the vectors {q;} to the original vectors
{a;}? To make this precise let us define the distance
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between two ordered sets {x,. ... zx} and {y,, .- , Yk}
of vectors in €™ as

x 7
(Z Iz, - y]ll'z) : (1)
j=1

Note that each x; is an n-vector. If we write it as x; =

(zj1,..., T;n), then the quantity in (1) is
k n %
o> aje - el | (2)
j=1r=1

Let us consider a very simple example in the space c2
let @y = (1,0),a9 = (%, %) The vectors a,, ay are lin-
early independent and cach of them has norm 1. How-
ever, they are not orthogonal to each other. The Gram—
Schmidt process applied to them gives the vectors q; =
(1,0),g5 = (0, 1). The distance between the pair {a1, az}
and the pair {q,, @y} is (%)%. Can we find another pair
of orthonormal vectors that is closer to {a1, a2}? If we
try the obvious possibilities that the forms of a4, ag sug-
gest, we soon find that the pairy; = (%, —35’-), Yy = (-::’;, -?;)
is at distance %)’i‘ from {a;,a;}. Thus the Gram-
Schmidt process while constructing an orthonormal ba-
sis can take us far away from the original set of vectors.

Another pair that is even closer to {a1,az} is the pair
up = (723, —-71-5-), uz = (o, 725) One can see that the
distance of this pair from {ai,aq} is (4 — -\785)%. Thus
the three pairs {q,, 9.}, {y1,yo} and {u;,uy} are at
distances .8944, .6928 and .6498, respectively from the
given pair {ai, a2}

One can see, using Lagrange multipliers, that among all
pairs of orthonormal vectors, the pair {uj,us} is the
closest to {@,a2}. We will soon see this by another
argument.

The problem of finding the orthonormal basis closest to
a given set of linearly independent vectors is of interest
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The Gram-Schmidt Process

The Gram-Schmidt process is one of the first things one

learns in a course on vectors or matrices. Let us recall
it briefly.

Let © = (zy,...,7,) be a vector with n coordinates z;.
each of which is a complex number. The collection of
all such vectors is the vector space €". It helps to think
of z as a column vector and write z* for the row vector
with coordinates Z;. The inner product (or the scalar
product) between two vectors ¢ and y is the number

(x,y) =z"y =Y Zjy;
j=1

The norm of = is defined as

n

lell = (@*z)F = (3 I=,1")*.

J=l1

If we are given n linearly independent vectors ay, ..., Gn
the Gram-Schmidt process constructs an orthonormal
basis out of them as follows. We put g, = a1 /||a||. This
vector has norm 1. We now put v, = ag — (ql,az>€11%
and g, = v2/||v2||. Then g, is orthogonal to q, and has
norm 1. At the next stage, we put vz = az—(qq,a3)q;~
(g9, as)gq; and g3 = w3/||vs||. Continuing this way we

obtain an orthonormal basis qy,...,q,. Note that for
each 1 < k < n, the linear spans of a4,...,ak and
q1,...,q; are equal.

How close are the vectors {q;} to the original vectors
{a;}? To make this precise let us define the distance

_AJ\/W\,\E

RESONANCE | March 2000



GENERAL | ARTICLE

between two ordered sets {xy..... zi} and {yy,. .-, Y}

of vectors in € as
1

( uzj—y,-n*) . (1

Note that each x; is an n-vector. If we write it as «; =

(zj1,...,xjn), then the quantity in (1) is
L
k n 2
22 e —unl® ] (2)
J=1r=1

Let us consider a very simple example in the space €.
Let a; = (1,0), @2 = (3,2). The vectors a;, @, are lin-
early independent and each of them has norm 1. How-
ever, they are not orthogonal to each other. The Gram—
Schmidt process applied to them gives the vectors q; =
(1,0),go = (0,1). Thedistance between the pair {a;, as}
and the pair {q;, gy} is (%)%. Can we find another pair
of orthonormal vectors that is closer to {aj, a2}? If we
try the obvious possibilitics that the forms of aq, ag sug-
gest, we soon find that the pair y, = (%, —%),yQ = (%, %)
1 at distance (%)’15 from {ai,a;}. Thus the Gram-
Schmidt process while constructing an orthonormal ba-
sis can take us far away from the original set of vectors.

Another pair that is even closer to {a1,as} is the pair
U = (725, —71-5-), ug = (713, 725) One can see that the
distance of this pair from {a;, a2} is (4 — 785-)%. Thus

the three pairs {qy, 9.}, {y1,yo} and {u;,uy} are at
distances .8944, .6928 and .6498, respectively from the

given pair {a1, az}.
One can see, using Lagrange multipliers, that among all

pairs of orthonormal vectors, the pair {ui,us} is the
closest to {a@1,a2}. We will soon see this by another

argument.

The problem of finding the orthonormal basis closest to
a given set of linearly independent vectors is of interest
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in quantum chemistry. In many models of atomic phe-
nomena some of the quantities of interest are represented
by orthonormal vectors. Experimental observations to
measure these quantities are inaccurate and thus give
us vectors that are not orthonormal. We might want to
stay as close to the experimental data as possible when
converting these vectors to orthonormal ones demanded
by the model. The process of finding the closest or-
thonormal basis is called the Lowdin orthogonalisation
after the Swedish chemist P O Lowdin who introduced
it. This is related to one of the basic theorems in linear
algebra as we will see.

Matrix Approximation Problems

Let A be an n X n matrix with entries a;;. Let A* be the
conjugate transpose of A—the matrix whose ¢,j entry
is @j;. Let tr A stand for the trace of A. The Hilbert-

Schmidt norm (or the Frobenius norm) of A is defined
as

Al = (o) = (r 4742 (3)

This norm is unitarily invariant: if U,V are unitary ma-
trices, then

Al = IlUAV |2 (4)

This is so because

tr (VAV)*(UAV) = tr V*A"AV = tr A"A.  (5)

the that if {a@y,...,a,} are elements of €™ and if we
write the n x n matrix A whose columns are a,...,a,
as A = [al, . ,a,n], then
AN =" lla;)*.
J

The .matrix A is invertible if and only if its columns
are hnearl.y independent as vectors, and it is unitary if
and only if they are orthonormal. Thus the problem of
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finding the orthonormal basis closest to a given set of n
linearly independent vectors is the same as the problem
of finding the unitary matrix closest to a given invertible
matrix. Here the closest matrix is one whose distance
in the Hilbert-Schmidt norm from the given matrix is
minimal.

This is a typical example of a matrix approximation
problem.

The QR and the Polar Decompositions

The Gram-Schmidt process can be represented as an
interesting matrix factoring theorem:

Every invertible matrix A can be factored as A = @R,
where @ is unitary and R is upper triangular. We can
choose R so that all its diagonal entries are positive.
With this restriction @ and R are unique.

It is not difficult to see how this theorem follows from
the Gram—Schmidt process. The columns of () are or-
thonormal vectors constructed from the columns of A.
The fact that {ai,...,ax} span the same linear space
as {q1,...,qx} is reflected in the upper triangular form
of R. The vectors @ are unique upto a multiplication
by a complex number of modulus one. So, the restric-
tion that the diagonal entries of R be positive imposes
uniqueness.

The decomposition A = @R is called the QR decompo-
sition. If A is singular, it still has a ) R decomposition.
Now some of the rows of R are zero.

There is another factoring of an invertible matrix into
two factors one of which is unitary. This is the polar
decomposition:

Every invertible matrix A can be factored uniquely as
A =UP, where U is unitary and P is positive definite.

The factor P is the unique positive definite square root
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of the positive definite matrix A*A. If one puts U =
AP7! then U*U = UU* = 1. If A is singular, it still
has a polar decomposition A = UP. Now the factor U
is not unique, but P is.

The polar decomposition has an interesting extremal
characterisation:

Theorem. Among all unitary matrices the one closest

to A is the matrix U in the polar decomposition 4 =
UP.

Proof. Let W be any unitary matrix. Then
A=Wl = lUP =Wz =P -UWil,

by the unitary invariance property (4). Thus to find
the unitary matrix closest to A it suffices to find the
one closest to P. If we show that the unitary matrix
closest to P is the identity matrix I it will follow that
the unitary matrix closest to UP is U.

For every unitary matrix V
|P=V|}=tr (P-V*)(P-V) = tr (P*+I-PV-V"P).
This quantity is minimum when

tr (PV +V*P)=tr P(V +V7) (6)

is maximum. The trace is not affected if we apply a
unitary similarity (i.e., tr X = tr W XW?*, for all X and
unitary W). The spectral theorem tells us that we can
apply such a similarity to bring V to the diagonal form.
Thus we may assume that V is diagonal with entries
e%,1 < j < n down its diagonal. So, the quantity in
(6) is
tr P(V +V*) =2 pj;cosb;.
j

Since p;; > 0, clearly this is maximised when cosf; = 1.
This translates to the condition V = I.
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Thus the polar decomposition provides the basis for the
Lowdin orthogonalisation. The orthonormal basis clos-
est to a set of linearly independent vectors {ai,..., a,}
is obtained by writing the matrix A = [a1, ..., @,], then
finding its polar decomposition A = UP, and reading
the columns of U = [u,... .. u,] to get the desired or-
thonormal basis {ui,....un}.

This explains the example discussed in Section 1. We
have the polar decomposition

HIBESIIEH]

% Bz A

Since P = WSW?*, where W is unitary and S diag-
onal with positive entrics, we can write A = UP =
UWSW* = VSW?* where V is unitary. This is called
the singular value decomposition of A. To find the fac-
tors here, we have to diagonalise P. This involves a
more elaborate calculation than the one for the Gram-
Schmidt process.

e

The Closest Hermitian Matrix

The problem of finding the closest Hermitian matrix to a
given matrix is motivated by the same considerations as
that of finding the closest unitary matrix. It is simpler
to solve this.

If A= B +iC, where B and C are Hermitian, then
|Al|3 =tr A*A = tr (B —iC)(B +iC) =

tr (B*+C?%) = BJ3 + CII3.
Every matrix has a decomposition of this kind:
If we put B = 5(A + A*) and C = L(A4 - 4*), then
B,C are Hermitian and A = B +4C. This is analogous

to the decomposition z = = + iy of a complex number
into its real and imaginary parts. For this reason B
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and C are called the real and vnaginary parts of A and

the decomposition A = B + /(' is called the Cartesian
decomposition.

Now, if H is any Hermitian matrix, then
1A = HIZ= 14 - BI3+ICIZ

Clearly, the choice H = B minimises this quantity. Th;s
the Hermitian matrix closest to A is the real part of A.

The polar decomposition A = UP can be thought igf
as the analogue of the polar representation z = € r
of a complex number. Thus the statements about the
closest unitary and Hermitian matrices proved ab_ove. are
analogues of the facts about the point on the unit circle

and the point on the real line closest to a given complex
number.

A matrix is said to be normal if AA* = A*A. This 18
equivalent to the condition that the factors U .and P
in the polar decomposition of A commute. Evidently
Hermitian matrices and unitary matrices are normal.

The set of all Hermitian matrices is a real vector space,
the set of all unitary matrices is a differentiable mani-
fold. The set of all normal matrices does not have any
nice geometric structure. This is one reason why‘the
problem of finding the closest normal matrix to a given
matrix turns out to be much harder than the problems
we have considered. This problem is not yet solved com-
pletely. See [2] for a discussion and also for example§ of
other problems where the solution for normal matrices

is much harder than that for Hermitian or unitary ma-
trices.

Approximation in Other Norms

The Hilbert~Schmidt norm is the simplest norm on ma-
trices from the point of view of approximation problems.
This is because it is like the Fuclidean norm on vectors.
There are other norms that are of interest. For exam-
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