PRODUCT OF TRANSITION SEMI-GROUPS AND THE HYPOTHESIS (L)

By R. SUBRAMANIAN Indian Statistical Institute

SUMMARY. An improved version of the theorem of Caircli on the permanence of hypothesis (L) is given.

1. INTRODUCTION AND NOTATION

We assume familiarity of Cairol (1967) especially of Theorems 6 and 7 therein.

Let E be a locally compact second countable topological space and \mathcal{B}_E the σ -algebra of its Borel subsets. A sub-Markov transition semi-group (to be referred as semi-group, in the sequel) $(P_t)_{t>0}$ on (E,\mathcal{B}_E) is said to be weakly continuous, if one has $\lim_{t\to 0} P_t f(x) = f(x)$ for every continuous function f with compact support on E. In what follows, we take all somi-groups to be weakly continuous.

Definition: (P_i) is said to satisfy the hypothesis (L) of Meyer if there exists a finite measure θ on $(\mathcal{E}, \mathcal{E}_{\mathcal{E}})$ such that the θ -negligible sets are precisely the potential null sets. Such a measure is said to be a fundamental measure for (P_i) . To simplify notation we will write just (P_i) satisfies (L),

Let $(Q_l)_{l>0}$ be another semi-group on (P, \mathcal{B}_P) where F, again, is a locally compact second countable space and \mathcal{B}_P the σ -algebra of its Borel subsets.

Definition: A semi-group $(R_t)_{t>0}$ on $(E \times F, \mathcal{A}_{E \times F})$ is said to be the product of (P_t) and (Q_t) if

$$R_t((x, y), \Gamma) = P_t^{t_x} \otimes Q_t^{t_y}(\Gamma)$$

for every $x \in E$. $y \in F$ and $\Gamma \in \mathcal{B}_{E \times}$ (where $P_t^{\epsilon_x}(.) = P_t(x, .)$ etc.)

In symbols,

$$(R_t) \simeq (P_t \bigotimes Q_t).$$

Cairoli showed that if both the semi-groups satisfy (L) and at least one of them is a strong Feller semi-group then the product semi-group also satisfies (L) and the product of the fundamental measures of the coordinates is a fundamental measure for the product.

We improve upon this theorem by giving a weaker sufficient condition.

2. MAIN THEOREMS

Let $(P_t)_{t>0}$, $(Q_t)_{t>0}$ be semi-groups on (B, \mathcal{B}_B) and (P, \mathcal{B}_F) respectively. Let

$$(R_t) = (P_t \otimes Q_t).$$

Let (U_p) , (V_p) and (W_p) be the resolvents associated with (P_t) , (Q_t) and (R_t) respectively.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

It is easy to check that (P_i) satisfies (L) and (Q_i) satisfies (L) does not, in general, imply that (R_i) satisfies (L) (counter-example: product of two semi-groups of uniform translation). Regarding the implication in the other direction the following is true.

Theorem 2.1:
$$(R_t)$$
 satisfies (L) implies that (P_t) and (Q_t) satisfy (L) .

Proof: Recall that any family of finite measures on a measurable space, if absolutely continuous with respect to a finite measure, admits a countable equivalent subfamily; and hence admits a finite measure equivalent to that family. (See, for instance. Theorem 2, page 354 of Lehmann (1959)).

So, enough to show that

$$\{U_p(x,.), x \in E \text{ and } p \text{ fixed}\}$$

and

Let

$$\{V_p(y,.), y \in F \text{ and } p \text{ fixed}\}$$

are families absolutely continuous with respect to finite measures on (E, \mathcal{S}_E) and (F, \mathcal{S}_F) respectively.

Let μ be a fundamental measure for (R_t) .

$$\theta(A) = \mu(A \times F) \forall A \in \mathcal{B}_K$$

and $\nu(B) = \mu(E \times B) \forall B \in \mathcal{A}_F$

and $V(B) = J_0(B \times B) \vee B \in \mathcal{B}_F$

We shall show that θ and ν would do the job. Let $\theta(A) = 0$. This implies that

$$\mu(A \times F) = 0$$
 and consequently that

$$W_p I_{J \times F}(x, y) = 0 \ \forall \ x \text{ and } y \text{ for fixed } p.$$

From the equation connecting $U_p \otimes V_p$ and W_{zp} , namely,

$$U_p \otimes V_p = ((U_p \otimes I_F) + (I_R \otimes V_p))W_{2p}$$

(see, for instance page 32 of Cairoli (1967)) we get

$$U_p \otimes V_p I_{A \times F}(x, y) = 0 \ \forall \ x \text{ and } y$$

i.e.

 $U_p(x,A)V_p(y,F)=0 \ \forall \ x \ \text{and} \ y$ Now, weak continuity of (Q_t) ensures that $V_p(y,F)>0 \ \forall \ y$. So, $U_p(x,A)=0 \ \forall \ x$. i.e., $\{U_p(x,A), x \in B \ \text{and} \ p \ \text{fixed}\}$ is dominated by θ .

A similar reasoning would show that

$$\{V_{x}(y, .), y \in F \text{ and } p \text{ fixed}\}$$
 is dominated by v .

Hence the theorem.

In what follows we abbreviate 'lower semi-continuous' by l.s.o.

Lomma 2.2: For every universally measurable subset Δ of $E \times F$ and every y and p fixed, let the mapping $x \rightarrow W_p I_3(x, y)$ be l.s.c. in x. Then for every fixed p and non-negative universally measurable function f on E the mapping $x \rightarrow U_p f(x)$ is l.s.c. in x.

Proof: Let p be fixed. Let g be a p-excessive function for the semi-group (P_t) . Define a function h on $E \times F$ by setting h(x, y) = g(x), $x \in F$, $y \in F$.

PRODUCT OF TRANSITION SEMI-GROUPS AND THE HYPOTHESIS (L)

Thon, one has,

$$e^{-pt} R_t h(x, y) = e^{-pt} \int P_t(x, du) \int h(u, v) Q_t(y, dv) = e^{-pt} P_t g(x) Q_t(y, F) \leqslant g(x)$$

$$= h(x, y).$$

Also,
$$\lim_{t \downarrow_0} e^{-pt} R_t h(x, y) = (\lim_{t \downarrow_0} e^{-pt} P_t g(x)) (\lim_{t \downarrow_0} Q_t(y, F))$$

$$= g(x) = h(x, y)$$

(since
$$(Q_i)$$
 is weakly continuous $\lim_{t \to 0} Q_t I(y) = 1 \ \forall \ y$).

Therefore, h is p-excessive for (R_t) . Hence it is the increasing limit of p-potentials of (R_t) . From the hypothesis of formula one can easily conclude that the mapping $x \to W_p k(x, y)$ is i.s., in x for every fixed y where k is a non-negative universally measurable function. Therefore, the mapping $x \to h(x, y)$, being the limit of an increasing sequence of i.s.c. functions, is itself i.s.c. That is, $x \to g(x)$ is i.s.c. in x.

In particular, $x \to U_{\mathbb{R}}f(x)$ is l.s.c. in x. Hence the lemma.

Theorem 2.3: For every universally measurable subset Δ of $E \times F$ and every p and y fixed, let the mapping $x \to W_p I_\Delta(x, y)$ be l.s.c. in x. Then (P_t) and (Q_t) satisfy (L) implies that (R_t) satisfies (L).

In such a case, denoting the fundamental measures of (P_t) and (Q_t) by θ and ν respectively, we have that $0 \otimes \nu$ is a fundamental measure for (R_t) .

Proof: From Lomma 2.2, for every fixed p and non-negative universally measurable function f, on E, the mapping $x \to U f(x)$ is l.s.c. in x.

So, Theorem 6 of Cairoli (1967) holds.

Note that, though in that theorem, Cairoli assumes, besides the existence of the fundamental measures for (P_t) and (Q_t) , strong Feller nature for (U_p) , only the l.s.c. property of $x \to U_p f(x)$ is used in the proof.

Again, though the assumption of strong Feller nature for (P_i) is made in Theorem 7 of Cairoli (1967) what is used is only the l.s.c. property of $x \rightarrow W_p I_{\lambda}(x, y)$ and Theorem 6 of Cairoli (1967).

Hence, under our hypothesis Theorem 7 of Cairoli (1967) also holds.

Therefore we have the conclusion of Theorem 7 of Cairoli (1967) namely that (R_t) satisfies (L) and $0 \otimes \nu$ is a fundamental measure for (R_t) .

(Remark: We have not used the same symbols, for fundamental measures as in Cairoli (1967). Also, clearly the theorem is true if for every fixed x and p, the mapping $y \to W_{p}I_{p}(x, y)$ is l.s.o.).

3. AN EXAMPLE

Here we show that our sufficient condition is weaker than that of either (P_t) or (Q_t) being strong Feller semi-groups.

Evidently, the strong Feller property of either (P_t) or (Q_t) would imply l.s.c. of $W_pI_{\Delta}(\cdot, \cdot)$ in one of the variables. Hence our condition is apparently weaker.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

That it is strictly so follows from the example given below :

Let E be the real line and $(P_i)_{i>0}$ the semi-group of uniform translation with unit speed. Let F be any countable set which has a non-discrete locally compact Hausdorff second countable topology; for instance we could take F to be the one point compactification of the discrete set of natural numbers. On (F, \mathcal{A}_F) define

$$Q_t(x, .) = \epsilon_t + x \epsilon F$$
 and $t > 0$.

- (P_l) is not a strong Feller semi-group is known. Since F is not a discrete space, there exists a sequence $\{x_n\}$ of points in F converging to a point x^0 in F and satisfying the condition that $x_n \neq x^0$ for any n. Hence, (Q_l) is not a strong Feller semi-group; for instance, the mapping $x \mapsto Q_l I_{\{x^0\}}(x)$ is not continuous.
- (P_t) satisfies (L) is known. Since no non-empty subset of F is of potential zero and F is countable (Q_t) also satisfies (L) and any fundamental measure for (Q_t) assigns positive mass to singletons in F.

Let
$$R_t = P_t \otimes Q_t$$

For any non-negative measurable function f on $(E \times F, \mathcal{B}_{E \times F})$

$$R_t f(x, y) = f(x+t, y).$$

Using the same symbols for resolvents as in 2,

$$W_{p}f(x, y) = \int_{0}^{\infty} e^{-pt} f(x+t, y) dt$$
$$= U_{p}f(x)$$

 $=U_{p}f_{y}(x)$

where $f_{\nu}(.)$ stands for the function on E defined by

$$f_{y}(x) = f(x, y) \forall x \in E.$$

Therefore, the mapping $x \to W_{\mathbb{R}}f(x, y)$ is continuous.

Let λ be a fundamental measure for (P_t) and μ that for (Q_t) . For any $A \in \mathcal{B}_{E \times F}$

$$\lambda \bigotimes \mu(A) = 0$$

implies that

$$\{\lambda(Ay)\mu(dy)=0.$$

That is, $\lambda(A^y) = 0 \ \forall \ y$, since $\mu(\{y\}) > 0$ for all $y \in F$. Hence $U_p I_{A^y}(x) = 0 \ \forall \ x$ and for every y in F.

So, $W_pI_A(x,y) = 0$ for all $(x,y)\in E\times F$. Thus, we get that for any fixed p, the family $\{W_p(x,y),.\}$, $(x,y)\in E\times F\}$ is dominated by the finite measure $\lambda\otimes \mu$. Hence (R_i) satisfies (L).

ACKNOWLEDGEMENT

The author is indebted to Professor R. Cairoli for some improvements over an earlier version of the note.

REVERYNCES

CAIROLI, R. (1967): Semi-groupes do transition et fonctions excessives, pp. 18-33, Seminaire de Probabilites I, Locture Notes in Mathematics, Springer-Verlag.

LERMANN, E. L. (1959): Testing Statistical Hypotheses, John Wiley and Sons, Inc., New York.

Paper received: March 1972.