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ABSTRACT

A stochastic reaction-diffusion model of the epigenetic system during 
embryonic development has been constructed following the method of mean field 
description of fluctuations. The analysis of the stochastic system is based on tne 

• tiludy ul localized fluctuation having a well defined range. It is observed that the 
internal fluctuation drives the system into a well ordered spatially dissipative 
stationary structure far from the thermodynamic equilibrium through nonoscillatory 
instability when the cross-diffusion coefficient is negative as in the analogous 
macroscopic system.
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1. INTRODUCTION

Spontaneous appearance of ordered (dissipative) structures in biological 
systems far from the thermodynamic equilibrium has been proposed to be the 
key events leading to the formation of biological patterns and morphogenesis 
(Turing, 1952 : Lefever and Prigogine, 1968; Othmer and Scriven, 1971; Gierer 
and Meinhardt, 1972, 1974; Martinez, 1972; Glass and Kauffman, 1972; Glass  
and Perez 1974; Babloyantz and Hiernaux, 1975; Nicolis and Auchmuty, 1974; 
Auchmuty and Nicolis, 1975, 1976; Granero et al., 1977; Othmer, 1977; Nicolis 
and Prigogine, 1977; Murray, 1977,; Haken and Olbrich, 1978; Erneaux et al., 
1978; Berding and Haken, 1982; Tapaswi and Saha, 1986 and many others). 
Extentive studies have been performed on a hypothetical model biochemical 
reaction called the Brusselator and the idea of structures arising out of local 
instabilities has been developed by a number of authors (Auchmuty and Nicolis, 
1975; Boa and Cohen, 1976; Mahar and Matkawsky, 1977). An e legant 
discussion on self-organization and dissipative structures can be found in Nicolis 
and Prigogine (1977).

Inclusion of diffusion in a reaction scheme describing a homogeneous 
cellular system establishes a cell to cell information transport which enables a 
particular cell to learn its own position in the total ensemble of cells. Turing 
(1952) and Othmer and Scriven (1971) showed that the instabilities of the uniform 
state may arise from the interaction of reaction and transport (diffusion driven 
instabilities) and these instabilities may lead to non-uniform spatio-temporal 
concentration patterns.

Jorne (1977) has shown that the diffusive Lotka-Volterra mechanism can 
give rise to a stationary dissipative structure by the inclusion of a negative cross­
diffusion coefficient. Tapaswi and Saha (1986) have shown that inclusion of a 
negative cross-diffusion coefficient in a reaction diffusion model of mRNA and 
protein synthesis during embryogenesis, using end product feedback inhibition 
(Godwin, 1963), drives the stable homogeneous system to instability and gives 
rise to a stable spatio- temporal heterogeneous structure.

In the present work a stochastic reaction diffusion model of mRNA and 
protein synthesis during embryonic development has been constructed. The 
analogous nonlinear macroscopic system driven far from equilibrium can be 
shown to undergo symmetry-breaking instabilities for some certain values of the 
parameters.

The purpose of the present study is to investigate the role of internal 
fluctuations around far-from-equilibrium states in the spontaneous emergence of 
patterns and dissipative structures which are precursors of differentiation and 
morphogenesis during embryogenesis. Our previous investigation in the  
deterministic level (Tapaswi and Saha, 1986) strongly advocates the presence of 
negative cross-diffusion i.e., active counter transport of a morphogen-type 
chemical compound in the epigenetic mechanism which is indispensable for the 
emergence of a dissipative structure far from the thermodynamic equilibrium. The  
idea of the stochastic analysis presented in the following sections is to further 
supplement our previous deterministic observations. In a non-equilibrium system, 
a local description of fluctuations is the correct means for differentiating between  
fluctuations of variable ranges and coherence lengths (Nicolis and Prigogine, 
1977). To investigate the role of fluctuations on the critical behaviour of the 
macro-variables of the epigenetic system in the neighbourhood of the instabilities 
we have used the local fluctuation theory developed by Nicolis and Prigogine 
(1977) and Haken (1977).



The process of synthesis of mRNA and protein (enzym e), that is, 
transcriptions and translation during embryonic development investigated here is 
based on the following recognized reactions scheme :

RNA polymerase
DNA + Nucleotide ------------------------ >  RNA + DNA [transcription]

DNA + mRNA + Nucleotide -» 2mRNA + DNA [transcription enhancement or 
positive feedback by mRNA, Scholer et al., 1984]

mRNA + Enzyme -» Nucleotide + Enzyme [degradation]

Enzyme (Protein) + Proteolytic enzymes -» Aminoacids.

We know that the number of DNA molecules is fixed (constant) in each cell and 
remains unchanged throughout the entire transcription and translation process. 
Furthermore, if we assume that all the transcriptional and translational 
components (such as tRNA, aminoacids, nucleotides, different activating and 
inhibiting enzymes namely, RNA polymerase, proteolytic enzymes etc.) other than 
mRNA and protein (enzyme) are maintained at a constant concentration in the 
cellular pool, the mRNA protein (enzyme) model investigated here can be 
represented by the following two equations :

where x and y denote the concentration of mRNA and protein (enzyme) 
respectively in each cell and p, a i . a j  are the rate constants of the reactions.

In section 2 we shall investigate this model in the deterministic level after 
coupling it with diffusion terms accouting for the intercellular communications and 
in section 3 we shall study this coupled reaction-diffusion system in the 
stochastic level using local fluctuation theories.

Let us first consider a deterministic (macroscopic) reaction-diffusion system 
involving mRNA (x) and enzyme (protein) molecules (y). The enzyme molecules 
are assumed to be quickly converted in the system to small polypeptide 
molecules which still possess their same enzymatic properties as before 
conversion and are capable of diffusion through intercellular gap junctions. Now 
taking into account the self-diffusion and cross-diffusion of the small enzyme 
(polypeptide) molecules the system (1.1) can then be represented by the 
following reaction-diffusion equations with zero flux boundary conditions :

on polysome template
Enzyme (Protein) + mRNA 

[translation]
mRNA + Aminoacids 
(carried by tRNA)

>

(1.1)

2. THE DETERMINISTIC MODEL

(2.1)



where A2 is the laplacian (diffusion) operator and Di and D2 are the constant 
coefficients of cross-diffusion and self-diffusion respectively. Since mRNA (x) is a 
macromolecule it cannot diffuse through the intercellular gap-junctions, but the y 
molecules are supposed to be small polypeptides formed from the protein or 
enzyme molecules and are usually capable of diffusing through the gap-junctions.

The boundary conditions imposed are

„ , = » < • * ' * «  <2'2’5r r — 0,1* $r r = 0,L
The equilibrium points (xo, yo) in the positive orthant of the system (2.1) are given 
by

V o  , 1 ( ° i  , a!  + ^ .M 
Xo andyo= - i -  + ( -  + — >

It is evident that
Ki K1 p2

y0 > p | ‘-«->Vo> a i (2 '3>
The characteristic equation of the linearized system of (2.1) is given by

X2 + A (g2 + + m2n2D2) + a2Px xQ + P2p/*0 + m2n2(a2» 1 + *„) = 0 (2.4) 

Now three cases may arise :

1) When Di = D2 = 0 (i.e., in the absence of diffusion) :
In this case the system is always locally stable because from (2.3) 01 yo >

2) When Di >  0, D2 >  0 ( i.e., with both positive diffusions) : Here the system 
is again always stable and the stability is attained earlier than in case (1).

3) If Di < 0  (D i = -d i, di >  0) i.e., the cross-diffusion is negative 
(remembering that 62, the self-diffusion coefficient is always positive), the 
instability is attained at

, ^ 2  +
di 2  T T  + — 51-------- <2 -5>2T0 m n a f Q

Bifurcation occurs when equality holds in (2.5), that is

^ 2  “aVo + M
d » =  —  + 2 2  ' (2 -6 )aTo m n a2xQ

At the bifurcation point (2.6), the dominant eigenvalue is X 1 = 0  and a stationary 
dissipative structure evolves provided the cross-diffusion coefficient is negative.

Next we shall investigate, by stochastic analysis of the same reaction 
diffusion process, the validity of the above deterministic observations i.e., 
whether the negativity of the cross-diffusion coefficient is an essential 
requirement for the diffusion driven instability leading to the spontaneous 
emergence of a dissipative structure and or a spatio - temporal prepattern for 
morphogenesis.



3. THE STOCHASTIC MODEL

In this section we shall follow simplified procedure, as developed by Haken 
(1977) and Nicolis and Prigogine, (1977) by considering the whole system as 
consisting of two interacting subsystems of volumes A V  and V  - AVwhere A Vis 
a small volume and V  - A V  is the volume of the rest of the system.

Assuming the whole system is filled with such small volume A V  we shall 
investigate the fluctuations in one of these volumes by averaging over the rest of 
the whole system. That is to say, we shall study the localized fluctuations (having 
a well-defined range) instead of a global analysis.

Let P (x, y, t) be the probability distribution within A V . Treating the reaction- 
diffusion system under investigations as a Markov process, one can then write 
the master equation as a closed-form equation (Prigogine et al. 1975; Nicolis and 
Prigogine 1977; Haken 1977) given by

d
— p (x,y,t) = p (x — 1 ,y,t) + jl y(x +  l)p (x + lj,t )  
at 1

+ a ^ x - 1 ) p ( i - 1 ,y,t) + a^cp(x,y-l,t)

+ P2(y+ O p (x j'+ l,()-p (* j,< )(ii + P1x>'+a1i  + a2x + a2*+P2y)

+ D Il < x >  J (y +l )p (x - l , j  + l , 0-yp( xly,i)J

+ < y >  |(x + l )p ( x+l j - ! , < ) - xp(x,y,t)I]

+ D £ < y >  | p (x ,y - l,t ) -p (x j ,t )

.... + (y+l)p(x,y+l,«)-yp(x,j ’,i)l (3.1)
Where the coefficients Di and D2 are the effective diffusion frequencies of 
transport of repressor molecules accross AS and are given by

(3.2)
< Hr AV i r

where < is the dimension of A V  or coherence length of fluctuations. <?r is the 
width of the layer surrounding the surface AS i.e. of the order of mean free path 
of the species and Dj are the macroscopic diffusion coefficients as referred to in 
section 2.

4. THE MOMENT EQUATIONS AND THEIR PROPERTIES

Multiplying both sides of the master equation (3.1) by x,y,x2,xy and y2 
respectively and then summing over all values of x and y, we have the first and 
second order moment equations as given by

d < x >  „ (4 1\
---------  = ii +a < x >  — P. < xy>  '  ' '

dt



d < y >  .  (4 2)
—  = a 2< * > - 0 2< * >  1 '

d <x2>  ,  ,
——-----  =  p +  (a +  2p) < x >  +  2a <x > +  0 < x y >  — 20 < x  y >

at 1 i l l

+  2D 1[< x >  <xy>  +  < x > < y >  -  < x >  < y > ]  (4.3)

— <xy>  =  j i  < y >  + (a j -  p j) <xy> +  a 2 < x 2>  -  P j < x y 2>

+  D ll< x >  <y2>  -  < x >  <xy>  -  < y >  <xy>

-  2 < x >  < y >  + < y >  <x2>]

+ D J < x >  < y >  -  < i jy > ]  (4 .4 )

d < y 2 >

d t
=  a ,  < x >  +  P ,  < y >  +  2 a ,  < x y >  -  2 p „  < y 2 >

+  2 £ > j [ < x >  < y >  +  < y >  < x y >  -  < x >  < ; y 2 > ]

+ 2D£<y> -  <y2> + <y>]  (4.5)
Now putting x = < x >  + 8 x  and y = < y >  + 8 y i n  equations (4.1) to (4.5) 
gives

d < x >
— - —  =  p  +  a  < x >  — p  ( < * >  < y >  +  < S x . & y > )  

a t  1 1

(4.6)

—  < & x 2 >  =  n  +  a , < x >  +  P j < x >  < y >  +  2 ( a 1- P 1 < y > )  < 8 x 2 >

+ (P, - 2 P j < x > )  < 8 x 8 j >  - 2 P 1 <8x28j->

+  2 0 1[ < x > < j >  +  < x > < 8 x 8 y > -  < j > < & ! > ]  (4 .8)

d  9
—  < 8 x 8 y >  =  a 2 < 8 x  >  +  ( a 1 - p 2 - p 1 < y > )  < 8 x 8 ; y >

— P j < x > < 8jy2 >  — P 1 < 8 x 8y 2 >

+  D  [ < x > < B ^ >  +  < y  >  < 8 x 2 >



-  « x >  + < y »  < 8x8y>  -  2 < * > < y > ]

— D2<&x6y> (4-9)

< 8 y2>  = a2< x >  +  p2 < y >  +  2q2 <8x8;y> -  2p2 <8y2>

+ 2Dt[ < x >  < y >  + < y >  < 8 x S y >  -  < x >  <8y2> ]

+ 2 D £ < y >  -  <8/>] (4.10)
Where < 8  x2> and < 8  y2> are the mean-square deviations of x and y 
respectively and <  8 x 8 y >  is the covariance of x and y. From the equation 
(4.10) we note that diffusion contributes explicitly to the evolution of fluctuations 
through the last term (of the right hand side) which expresses the deviation of the 
probability distribution function from the Poissonian regime. In the limit D2 -» °°, 
equation (4.10) is dominated by the diffusion term only and the system evolves to 
a steady state having a Poissonian distribution characterized by < 8  y2 > = 
< y > .  This agrees qualitatively with the results of Nicolis and Prigogine (1977).

Again since < y > eq. is a linear function of < x > eq- the latter also assumes 
a Poissonian distribution at the steady state when D2 -* °°. Hence we have 
(Nicolis and Prigogine, 1977).

<dx dx > = < x >  8 kr = X d k (4-11)l j  eq. 1 eq. y i.eq. jj
Where x j . e q .  are the macroscopic equilibrium values and

s kr =  0 for i = j  (4-12)
ii

^  0 for i ^  j
So that, when D2 -» °», <dxdy> = 0 and hence from equations (4.1) and (4.2) 
we see that the system gives rise to statistical averages identical to the 
macroscopic (deterministic) values.

Moreover, if D-t = D2 so that Di also tends to infinity, we find from 
equations (4.8) that at the steady <  y > eq. = 0, implying < x > eq. = 0 also.
That is to say the system becomes extinct as t -* «. This is biologically 
unrealistic and hence the effective cross-diffusion coefficient must have a finite 
value and cannot be equal to the effective self-diffusion coefficient D2 when the 
latter tends to infinity.

Also, if we assume that the system has initially a Poissonian distribution, it 
is clear from equation (4.10) that as t increases the system deviates further and 
further from the Poissonian regime.

The point is now to investigate whether the system reaches to a new stable 
steady state characterised by non-Poission distribution. The problem is 
investigated in the next section.



5. ONSET OF INSTABILITY

We set

a2 = o / l  (5-1)

h = h N 

x = Nt
where N is the number of mRNA molecules at equilibrium in AV. W e have also 
assumed for the sake of simplicity, that the inhibition constant 01 is equal to unity.

Obviously, a* , 02 and %z = 0 (1), whereas p = 0(2). Now we introduce the 
moment vector a = (a-i, a2) and the vector b = (b n , b i2, b22) expressing the 
deviations from the Poissonian regime.

< * >  1  ,
a . = -------, b . .  = — [<8x > — <x>)

1 N 11 N

< y >  1
“2= —  ■6!2= XF <SxSy>

b22 = ^ [ < 8/ > - < y > ] (5.2)

Substituting (5.1) and (5.2) into equations (4.6) - (4.10) and then neglecting terms 
which are multipled by

N
(assuming N is very large), we obtain a closed set of nonlinear differential 

equations for the first two moments given by

A A
—  = u + a 1a1- a 1a2

S - V . - m , <5 -31
and also a closed set of equations for b n , b i2 and b i3 which in a coincise matrix 
form are given by :



2 (a j—a 2 -  a j>  1)

d_
di

2a p x- \ )

-

'  6 u 2 V ,

* .2
=

S2“ l -  flia 2

0

°2 + 0 i “2 2 °2 D2 D1 *“ l + fl2 ̂ ° 1

2 ( ^  + 0 ^ )  -2(P2 + D , a ,  + D 2)

The characteristic equation of (5.4) with Xn as the eigenvalues are given by 

where
a3 + p^A2 + p l a + pg =  o

22

(5.4)

(5.5)

with

p2 = 3 (B -A )

Pj = 2A2 + 2B2 -  4C 

P0 = 4 (A -B )(A B  + C)

A = S, -  “2 -  a2°i (5.6)

B = p2 + a t O, + D2

C = « 1(D1- 1  X52+ a 2D1)

6. ONSET OF A SPATIAL DISSIPATIVE STRUCTURE

Now we consider the microscopic system (3.1) characterized by two 
diffusion coefficients Di and D2. Here we investigate the onset of spatial patterns 
through fluctuations, starting from an initial homogeneous system at the steady 
state.

The second moment equations admits nonoscillatory instability of the 
steady-state solutions if one of the eigenvalues vanishes. This happens when po 
in (5.5) becomes zero. This situation arises when

c  = 0

an d  A — 0
in (5.6).
Condition (6.1) is simultaneously satisfied when

(6.1)



A *  A
P2 =  H/(<ii+<i 2)

andD 1 = - a j a 2 (6.2)
Then at the biturcation point

D l =  -  a ja 2{gwen$2 = p/(ci1 + a2))
the eigenvalues are given by

A, = 0,X2 = —B a n d  \3 — —2B
and the system emerges into a steady-state dissipative structure.

This observation is in agreement with our macroscopic observation made in 
section 2 where also, for the emergence of steady-state dissipative structure, the 
cross-diffusion coefficient (D i) was required to be negative.

Fluctuation drives the system into nonoscillatory instability when

0 i < - V y

7. DISCUSSION

A bimolecular reaction-diffusion system involving mRNA (x) and enzyme (y) 
during embryonic development has been investigated in this study. A 
deterministic (macrocopic) model involving reactions and transport mechanism is 
first considered. It is observed that the macroscopic system gives rise to a 
steady-state dissipative spatial structure if the cross-diffusion coefficient is 
negative.

The analogous stochastic model of the same reaction-diffusion system is 
then constructed following the method of mean-field description of Nicolis and 
Prigogine (1977) and Haken (1977). The analysis is based on the study of 
localized fluctuations having a well defined range ( 4). It is noted that the 
stochastic system evolves to a spatial dissipative steady-state structure through 
non-oscillatory instability when the cross-diffusion coefficient is negative as in the 
analogous macroscopic system. Thus fluctuation drives the system into non­
oscillatory instability leading to a stationary spatial dissipative structure.

Negative cross-diffusion implies active counter transport, that is, the 
diffusive substance moves towards a higher concentration of another substance 
whereas self-diffusion implies a passive transport and the diffusive substance 
moves from a higher to a lower concentration of the same substance. The self­
diffusion coefficient is always positive whereas the cross-diffusion coefficient may 
be either positive or negative.

Although the existence of the negative cross-diffusion process in the 
epigenetic mechanism during embryonic development has not yet been 
experimentally established, the above study reveals that the existence of 
negative cross-diffusion in forming a stationary dissipative spatial structure as 
observed in the microscopic system is also a prerequisite condition if we 
consider the fluctuations of the diffusive system.

The results of this investigation are based on the truncation of the hierarchy 
of the moment equations to those for the second order variances. Regarding the



validity and limitations of the procedure we refer to the following observations 
(Nicolis and Prigogine, 1977) :

'Whenever the system has a unique asymptotically stable macroscopic 
steady-state, this truncation procedure is legitimate. But in the absence of an 
asymptotically stable macroscopic steady state, the higher order moments 
become increasingly important. Hence the results based on the truncation of the 
hierarchy of the moment equations can only be considered as short-time 
approximations of the systems behaviour starting from an initial distribution of the 
Poisson form. In fact, this procedure is sufficient to give a rudimentary idea of the 
behaviour of the system in the vicinity of the macroscopic steady-state.

For systems having marginal stability (e.g., the Lotka-Volterra model) or limit 
cycle, the solutions are expected to remain time-dependent. For bifurcating 
systems, on the other hand, after transient period of evolution we expect a new 
asymptotic solution to be established that is representative of the new regime 
beyond instability. One can really speak in this second case of ’order through 
fluctuations’.
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