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SUMMARY. Quantum stochastic flows are constructed for infinite degrees of freedom. 

The theory is then used to show that a classical countable state Markov process can be looked 

upon as one such commutative stochastic flow. 

1. Introduction 

The concept of quantum stochastic process was introduced by Accardi, 

Frigerio and Lewis (1982) and a construction of a quantum stochastic flow1" 

satisfying a quantum stochastic differential equation was carried out by 
Evans and Hudson (1988) and Evans (1889). However this construction 

was achieved under two restrictive hypotheses'?firstly that of finite degree 
of freedom for the noise space and secondly that of boundedness of the struc 

ture maps on the algebra of observables of the system. Here we build a 

theory of quantum diffusions removing both these restrictions i.e. with a 

countably infinite degree of freedom for the noise and replacing the bounded 

ness of the structure maps with suitable strong summability hypotheses on 

them. In the last section we apply this theory to the case of countably infinite 

state Markov chain and show that they can be understood as commutative 

quantum (classical) stochastic flows over the commutative algebra of 

functions on the state space. This extends the previous studies by Meyer 

(1989) and Parthasarathy and Sinha (1990). 

2. Notations and preliminaries 

All the Hilbert spaces that appear here are assumed to be complex and 

separable with scalar product < ... > linear in second variable. For any 

Hilbert space Ji we denote by Y (J?) and $(J{) respectively the boson Fock 

AMS classification : 60H99, 46L50, 81D99. 
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t Though the phrase "quantum diffusion" has often been used in the past, it seems that 

"quantum stochastic flow" is more appropriate in analogy with the terminology used in the 

theory of ordinary differential equations, 
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space over Ji and the ?*?algebra of all bounded linear operators in Jl. 

Let JIq and ?7? be two fixed Hubert spaces and we write 

Jt=JtQ?T(Jl). ... 
(2.1) 

For any feJiwe denote by e(f) the exponential or coherent vector in T(Jf) 
associated with / and by fi the set of all vectors of the form u ? e(f), u e Ji0, 

feJi. Also we adopt the convention of writing ue(f) in place of u?$e(f). 

Note that & is total in Ji. 

We fix an orthonormal basis {fy}^ of 3i and set Ej 
= 

\ Cj >< e%\(i, j ^ 1). 
The basic quantum stochastic processes of the theory are : 

' 
Mxio,n?E>) , i,j>i 

a(xio,t] ? e?) > ? > i, j = o 

Af 
= 4 ... (2.2) 

a*(Xlo,t] <8>ej) . i = 0,j>l 

^tl , i=j 
= 0. 

The quantum Ito's formula gives : 

dApA? 
= 

?fdA1}, i,j,k,l>0 ... (2.3) 

where dj 
= 0 if i = 0 or I = 0 ... (2.4) 

= 
d\ otherwise. 

For further details on these definitions and quantum Ito's formula the reader 

is referred to Evans (1989) and Hudson and Parthasarathy (1984). 

Definition 2.1 : L = 
{-Z^(s)}jj s o is sa,id to be an adapted square inte 

grable family of processes (w.r.t. Aj) 
if they are adapted and satisfy for each 

j > 0, t > 0 : 

S J ||^(?) ?e(/)||* rfv,(?)< oo, ... (2.5) 
?=o 0 

where e 

*/(*) 
= f (i+ll/MII8)?^/e^rc ?2(/e+) ? ? ^ ?2(*>+, ?) 0 

being looked upon as / 
== 

{/(*) |/($) e ?V}, ̂  a dense subset of J?. 
t 

We need to consider quantum stochastic integrals of the type S J 
?yj^O o 

Lj(s)dA{(s) 
and the next theorem sums up the result on their existence and 

their properties. We denote by fl(s) = < e^, f(s) > and fj(s) 
= 

fl(s) for 

j > 1 and P(s) =f0(s) 
= 1. We also choose *4t = 

{fe Jt\fi(.) 
= 0 for all 
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except finitely many j's} and for a given fe ^fi, set N(f) = max {jfl (.) ̂  0}. 
Set &(^H) = 

{ue(f)\ueJt0, fe^i). 

Theorem 2.2 : Suppose L = 
{Lfo)} 

is an adapted square integrable 
t 

operator family defined on &. Then X(t) = J 2 L\(s)dA?(s) exists in the 

strong sense on &(%4t) and defines a regular adapted process satisfying for u,vej?0, 

f,ge^H 

<ue(f),X(t)ve(g)>=\ ds S fi(s)gi(s)< ue(f), L?(s)ue(g) >, ... (2.6) 
0 i,j 0 

mf) t 

\\X(t)ue(f)\\2 < 2 exp (v^)) S J 2 ||^(?)?e(f)||?iyW. ... (2.7) 
j=0 0 i $5 o 

If L' = 
{Z^ (s)} is another adapted square-integrable operator family and 

X'(t) = J S ?/ MtfAj (5), then 
0 ij 5* 0 

<X'(?)ne(f), X(f) ve (g)> = ?ds S fi(s)g?(s){ < X'(s)ue(f), L) (s)ve(g) > 
0 ?,?5*0 

+ < L? (s)ue(f), X(s)ve(g) > 

+ 2 <ms)ue(f),L)(s)ve(g)>}. 
&5=1 

The proof is similar to that of Theorem 4.3 in Hudson and Parthasarathy 

(1984) and Theorem 2.1 in Parthasarathy and Sinha (1988). The second 

part is the quantum Ito formula. 

Now suppose L^e &(J/0), i, j > 0 and that for each j > 0, there exist 

constants Gj > 0 such that 

S ||?}^||2<C2 || u\\2foralluej/0. ... (2.8) 
i 5*0 

Note that 
2 || (L) <g) I)jr ||2 < G) || f \\2 for all jr e J/. ... (2.9) 
i 

Then we have 

Theorem 2.3 : Let L)(i, j ^ 0) satisfy (2.8). Then there exists a unique 

regular adapted process X = 
{X(t), 0 < t < T} satisfying : 

dX(t) = 
( 2 L) dm)) X(t), X(0) = X0 e ?(Jt). ... (2.10) 
I ? j 5* 0 J 
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Proof : First we set up the iterative scheme : 

X0(t) = x0 

Xn(t) = 
x0+? S L* X^^dMis), n > 1, ... (2.11) 

O i,j ?> O 

and show that 

IIJST^O-x^-xiOl^t/)!!2 < C^<^>>^3^ n^:o,i2 ?wi|2 i|e(/)ip, ... (2.12) 

where 

?f(T) 
= 

2exV[vf(T)] S Cf. ... (2.13) 

Note that Xx is well defined by (2.8) and Theorem 2.2 and it is also easy 

to verify (2.12) for n = 1. Suppose that (2.12) is verified for 1 <! n < k. 

Then it follows that 

|]X*(*)?e(/)ll < Const. ||Z0|| ||?|| \\e(f)\\ 
so that Xjc+x is well defined by (2.9) and we have by (2.7) 

P*+iW-i*(f)] ? (/)ll < 2 exp [v, (T)] 
N(f) t 

X S J E WLfrX^-X^sKueif?Wdvfis), 
... (2.14) 

which by (2.8), (2.9) and the induction hypothesis is 

r N(f) - t 

< 2 exp [vf(T)] X Of] J \\[Xk{8)-Xk^{s)] ue (/)||2 dvf (s) 

?f(T)k+1[ f 
v, (*)* ?v, 

(?)] 
||X0||2||W|n|e(/)||2 < 

leading to (2.12). From (2.12) it easily follows that X(t)ue(f)=s?lim Xw(i) we (/) 

exists for all u e Jt0,fe^f( and defines a regular adapted process. That X (t) 

satisfies (2.10) follows easily from the above estimates. 

Finally assume that there are two solutions X and X' satisfying 

X(0) 
= 

X(0) 
= 

X0. Then by (2.7) and (2.9) we have 

\\[X(t)-X'(t)]ue(fW < Const. } \\[X(s)-X'(s)]ue(fWdvf(s). o 

By iterating n times and observing that by virtue of (2.12), ||X(?)we(/)||, 

||X'(0^e(/)ll both are uniformly bounded in 0 < t <J T, and letting w -? oo 

we conclude that X = X'. 
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Suppose Lt(i > 1), Sj (i, j > 1), H e j8(J?0) with H self-adjoint satisfying : 

2 IIL^II2 < 0|M|2 for ail uej?0, ... (2.15) 
?-5=1 

2 Sf S* = 2 Si Si* 
= 

?j. 
5=1 ?5=1 

Observe that the series involved in the second part of (2.15) converges in 

strong operator topology and that if we designate S = 
{$j} in j/0 (g) g? in 

the matrix representation with respect to the canonical basis in *f?, then this 

implies the unitarity of S in J?0 ? J?. Now we make the following identi 

fication : 

M 

S'-?jI 

- S L'kS] 

if 1 < i, j 

if l<i,j = 0 

if 1 < j, i = 0 (2.16) 

M--; S VkLk if i=j = 0. 

That 2 L*k Ljc converges strongly is not difficult to see from (2.15) and the 

convergence of 2 L*k Skj follows from (2.15) and Lemma 2.4. We also observe 

that the above Lfs satisfy the following identities : 

?j+Lf+ 
E Lf L) 

= 
LJ+LT+ S U l? = 0. ... (2.17) J 

k^l ? 551 

The necessary convergences in (2.17) follow from (2.15) and Lemma 2.4. 

Lemma 2.4 : Suppose {Ajc} and {Bjc}, fc > 1 are two families of bounded 

operators in Ji0 such that 2 A*h Ajc and 2 B*k Bjc converge in strong operator 

topology. Then 2 A\ J3# also converges in strong topology. 

Proof : Let u, v e JtQ. Then 2 p*t>||* < C{ \\v\\2 and 2 \\Bkuf < C>||2. 
?55l k 5*1 

Thus for n > m 

< v, 2 Al Bjcu > 
k=m 

< ( ? 114^11 p?*?||)s 

or 
< S ||4tf>||? S \\Bkuf < Ofll^lP S \\B*vf 

ife 5*1 n = m k = m 

k=m 
sup 

| < v 2 .??EjBa^ > | 
k -? m 

cj S 
||??u||?)*-*0 

as m, %?> oo and hence the result. 
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Theorem 2.5 : Let {?]}, i, j > 1 be as in (2.16) with (2.15) satisfied. Then 

the quantum stochastic differential equation : 

dU(t) = ( 2 L) dM(t))U(t), U(0) = / ... (2.18) 
i, j^O 

has a unique unitary operator valued process as a solution. 

Proof: From (2.15) and (2.16) it follows that L) satisfies (2.8). Thus 

by Theorem 2.3 existence of a unique solution follows. The unitarity is an 

easy consequence of Ito's formula (2.17) and the proof is identical to that 

of Theorem 7.1 in Hudson and Parthasarathy (1984). 

3. Quantum stochastic flow 

Let ji be a unital*-subalgebra of ?8(J?0). 

Definition 3.1 : As in Accardi et al. (1982) and Evans (1989), we define 

a quantum stochastic flow on j? as a family {jt, t > 0} of identity'?preserving 

?-homomorphisms from jt into B(Jl) satisfying for Xe jt\ 

(1) j0(X) = X 

(2) jt (X) is an adapted process 

(3) there exist structure maps ?i\ : J?-+ ji ; i, j > 0 such that jt(X) 

satisfy a quantum stochastic differential equation : 

djt(X)= S ?((/4(X))dA|(?). 
... (3.1) 

i, j 53 0 

As in Evans (1989) it is easy to verify formally using Ito's formula that 

if such a {jt} exists then the structure maps have the following properties : 

for x, yeji, 

(1) /?j is linear on jt 

(2) /ij(/) 
= 0 ... (3.2) 

(3) /?j(Z)*=/?|(Z?) 

(4) ??. (17) = ?i] (X)Y+X/i? (Y)+ X 
iMX)rf 

(Y). 

Our aim is to construct a flow given the structure maps /?j satisfying 

(3.2). Clearly we need some summability condition to make sense of the 

structure equation (4) in (3.2). We give one such condition which, for finite 

number of degrees of freedom i and j, reduces to that of Evans (1989). 
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Assumption 3.2 : In addition to (3.2), we suppose that for each j > 0 

there exist constants a? > 0, a countable index set Jj and a family 

{Dj}j /. e?(Jt0) such that for all u e JiQ, Xej? 

2 mX)u\2 < S IIXD^II2, *5s0 

where ... (3.3) 

S||2)>||2<alN2 
iejj 

Remark 3.4 : Note that with assumption 3.2, the structure equation 

(3.2) now makes rigorous sense by Lemma 2.4 since the sum on the right hand 

side of (4) in (3.2) is of the form S 4(X)/?I(Y) 
= 2 /?f(X*)>f(7). k 551 k 5? 1 

The construction of jt in such a case is essentially along the lines of-the 

proof of Theorem 2.3. Before stating the theorem we need some notations. 

Notations : We fix / e +M. Then for u e Jt?, X e j?we set 

K<f (X, u)=\\Xu\\*, 

and 

? (3.4) 

S 

By virtue of (3.3) we note that 

Kf(T)=[ 
2evf(T)]N?) <x2. ... (3.5) 

[2ev^l S Kf)(ti(X),u)<K^?(X,u), ... (3.6) 

and 
K. (X, u) < [Kf(T)]n ||Z||? ||?||?. ... (3.7) 

Also we set ? fii)(I 
? ? 

(T)k 
sp (x, u) = s -Vt' 

; s ̂  

Sf(X,u)= lim S<?>(X,n)< [ 
S 

.[*jff* 
S 

-?]||X||?||?||i. 
... (3.8) 

Theorem 3.5 : Le? the structure maps ?i\ 
: J?-+ j? satisfy (3.2) and (3.3). 

Then there exists a constructive quantum flow {jt, t ̂  0} on ji sftisfying (3.1). 

Furthermore the map (t, X)?>jt(X) is jointly continuous in strong topology with 

respect to the strong topology in J??L S(J?0). Also jt satisfies the estimate 

\\jt(X)ue(f)\\* < 8f(X, u)\\e(f)f. ... (3.9) 

A 1-7 
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We begin with a series of lemmas concerning structure maps satisfying 

(3.2) and Assumption 3.2. 

Lemma 3.6 : For X e ji, there exist regular adapted processes j(ip(X) 

satisfying : 

mx)=x 

?<?> (*) = *+/ S Jl?-V(M*(X))dAi, ... (3.10) 
0 i,j^0 

such that for u e Jt0,fe+Jt, 0 < t < T, 

\\[j^(X)~j\^\X)]ue(f)f < KTX>u?f(t)n Mm (8J1) lb i 

and 

\\jT(X)ue(f)\\* < 8f(X, ?)Xf)||?. ... (3.12) 

Proof : The proof runs along clines identical to that of Theorem 2.3 and 

so we avoid giving/details. The inequality (3.11) is obtained by the method 

of induction starting with n = 1 for which it is immediate. The inequality 

(3.12) follows from (3.11) and an application of Cauchy inequality : 

< Sf (X, u)\\e(f)f. 

Lemma 3.7 : For each X e j?,jt (X)ue(f) 
= s-lim j (X)ue(f) exists and 

defines a regular adapted process on ^0(g) &(*J{). Furthermore, 

(i) \\jt(X)uetf)\\*<Sf(X,u) \\e(f)\\* 
< ?(/, T) ||X|| W IK/)II2, ... (3.13) 

where 

and 
a(/'T)-L?Tn)T?,l^J' 

(?) llbW-#)(X)]?e(/)ll< S 
[ 
K?)(X>u)"f(T)k 

|*||e(/)||.,. (3.14) 

(iii) # safe/ies (1), (2) and (3) o/ (3.1) ; 

(iv) (t, X)^> jt (X) ue(f) is strongly continuous with respect to the strong 
operator topology of +/t ?(Jt0) 
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(v) jt is ^-preserving as a form on Jt0?&(^i) i.e. < ve(g), jt(%*)ue(f) > 
= < jt (X) ve(g), ue(f) > V % ve^0 and f, ge^M. 

Proof : The existence of strong limit of j\n\X) ue(f) follows from the 

summability of the square root of the right hand side of (3.11) by virtue of 

(3.7) while the estimate (3.13) is an easy consequence of (3.8) and (3.12). 

Similarly the inequality (3.14) follows from (3.11). 

That jt(X) is linear in X and satisfies (1) and (2) of (3.1) is immediate 
from the construction of jt. To show that jt (X) satisfies (3) of (3.1) we note 

that by (3.10) and (2.7) 

\\jt(X)-X- ? 2 
js(^(X))dM]ue(f)f \\l 0 i,j&0 J l| 

^2\\[jt(X)-finHX)]ue(f)\\> 

+4e"/(? Nf ?\\[js(pi(X))-j(?-VQii(X)))ue(fWdvf(S) 
j=0 0 

which converges to zero as n?> oo by (3.14). 

From (3.11) and (3.4) we have that for X, Y e jt 

||i5(Z-7)^(/)||2 < ||e(/)J|2 (S i^.) \n=o Vnl I 

x- [2 exp (^))]* s |,(Z-DI* z*?|. rc=o Vn\ 0<4,0<jfc<^(/) 
1< k < n 

which proves the strong continuity of the map X?> js (X)ue(f) with respect 

to the strong topology in jt ? & (J/0) by virtue of the second part of (3.3) 
and an application of dominated convergence theorem. The continuity of 

the map ?-? jt (X)ue(f) follows from the differential equation (3.1) satisfied 

by jt (X) and from (3.8), (3.13). These two observations together yield (iv). 

Clearly j?*> (X*) 
= 

ffl (X*) for n = 0. Assume that ?J*-1) (X*) 
= 

Jin"1) W* f?r some n in the weak sense i.e. < ve(g), j\n~X) (X*)ue(f) > 
= 

<Jin~V (X)ve(g), ue(f)> for u, ve J?0, f, qej?. Then by (3.10), (2.6), 

(3.2) < ve(g), j (X*)ue(f) > = < Xve(g), ue(f) > + < ve(g), J S jJ*-D 
o ?,?>o 

(4X*))dMue(f)> 
= <Xve(g), ue(f)> + (ds 2 gi(s)P(s)< j^K^ (X)) ve (g), 

o %,j 

ue (/)>=< j?n\X)ve(g), ue(f) > an(i passing to the limit we have (v). 
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Lemma 3.8 : jt is multiplicative on jl as a form on JiQ(^&^H i-t-> 

for X, Yejt\%veJh\f,geJt:< ue(f), jt (XY)ve(g) > = < jt(X*)ue(f), 
jt(Y)ve(g)>. 

Proof : The proof is by induction and is different from that in Evans 

(1989) For this we set for fixed/, ge^fC ; % ve J?0 ; X, Ye ji. 

BSf (X, u) = Sf (X, u) 

Bf (X, u)= s B<rv (ri(X), ?) 

First note that by (3.4)?(3.8), the above sum is well-defined and furthermore 

/ N(f) in 

Bf(X,u)^af(T)( S 
a?) \\Xf\\u\\\ ... (3.15) 

where 0Cf(T) is as in (3.13). 

Set for n > 0, 

BSV (X, TXW (X*)ue(f),jV (Y)ve(g)>-<ue(f),jy (XY)ve(g)> ... (3.16) 

with j(rp defined in (3.10). Then we claim that 

+Gtj1iJk(Y*,v,g;X*,u,?)i} 
... (3.17) 

where 

v(T)= max {vf(T), vg (T)}, 

W.M = 
/[(I 

+ II/WIWI + II^WII2)]*^ <f?% (X, u, f) ; Y, v, g) 

= 
[2e^n]'hK/n-k+h) 

(**, u)B(IJr) (Y, v)\\e(f)\\* \\e(g)\\\ 

... (3.18) 
and the second summation in (3.17) is over ir's and jr9s subject to the 

condition ?x 
= 

jt 
= 1, 1 < ir+jr < 2 for 2 < r < k. 

For n = 0, it is clear that J3(J> (X, Y) 
= 0 and hence satisfies (3.17). 

For n, we have by an application of Ito's formula, (3.3), Remark 3.4 

and Lemma 3 7 (iv) that 

B<?> (X, Y) = 
{ S Ms)g?(s) {?<-? (X, /$7)+?<?-? (#(X), Y) 
OO^t^ NU) 

0 a* j^ N(g) 

+ S B?-? MW, ?kj(Y))}ds+R^ X, Y) 
*3M 
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where 

#?> = J ds S /, (%?(s) { < [?<?>(X*-j<?-i>(X*)M/), ??-?> (^(7))wto) > 

+ < ii""" faWMf), [ji-1^yj-ji-" (r)]?e(?) > } ... (3.19) 

By (3.11), (3.12) and application of Cauchy-Schwartz inequality it is easy to 

see that 

| Up) (X, Y) | < p$?> (X*, u)Rg? (Y, v)?+[Kf\Y, v)Rp (X*, *)]*} 

yn*(T)vf,g(t) 

Vn\ 

Thus for n ? 1, 

\\e(f)\\\\e(g)\\. ... (3.20) 

2?j(1) (X, 7) 
= RM (X, Y) and easily can be seen to satisfy the estimate 

(3.17) with n ? 1 by virtue of (3.20). It is easy to verify for any fixed i? ... ij?; 

jvjjc ; 1 ̂  k ̂ . n the followimg 

t 
d? 

0<j^ Mg] 
o o^i^N(f) - 

-T(?7) 

?da 2 \fHs)\\g3(s)\ ??* (??. (X), (u,f ; Y, v, g)* < <f?\\ Jx? n (\<zi<iN(f\ Jl Jk J Jl Jk, 

(X,u,f;Y,v,gy>Ag(t), 
... (3.21) 

?de s i/?(?)iiflrfwiGji;;;;;^?(?),?,/;r,%#<^;;:;f0 0 O^i^N(f) J1 JJc n Jk% 

t 
di 

0^j<~N(g) 

(X,u,f;Y,v,g)vft9(t), 
... (3.22) 

and 

1 
*- *,??, 

J ds 2 |/?(s) | |<?*(*) | 2 
G?,^(ri(X), u, f, ??'(Y), v, p)* 

0 O^i^N(f) r>l 
Jl 

0??j?N(g) 

Next assume (3.17) for (w?1). Using triangle inequality in (3.19) and 

the estimates (3.20)?(3.23^, the estimate (3.17) for BS$> >(X, Y) can be verified 

and then (3.17) is established for all n by induction. 
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By (3.5), (3.7), (3.15) and (3.18), we have 

\C%::.%(X,u,fi7,v,g)\ 

< {Iffll2 IHT N|2 |H2 ||e(/)||2 ||e(9r)||2} ag(T) Cut*)** [2e^T)T*r [Kf{T)f-k+sir. 

< {...}xg(T) ( 
S 

a*)*" [ 
s 

af] 
^ 

[Z,(20]?-* 

< {...}a,(T) ( 
max 

{ 
2 af, S af, ij ) Z,(r)]?-*. 

Thus by (3.17) 
n ato-k hie 

\BW(X, 7)| < Constant 2 a 
?:=i ?;!a/(^?&+1)! 

' 

where 

a = ^v(T)Kf(T), b = Sv(T) max 
j 

S af, ̂ (T), ^(T), l). 

<? 
an-khk i 

Since S 7t , =. 
< 

?= (a+6)?-> 0, we conclude that BSf> (X, Y)-* 0 
*.i?! V(w?*+l)! V^! 

as w?> oo and we have the desired result by appealing to Lemma 3.7. 

Proof of Theorem 3.5 : As in Evans (1989) we first claim that the weak 

multiplicatively of jt as shown in Lemma 3.8 and (3.14) implies boundedness of 

jt(X) in Jtfov every X e ji and in fact contractivity oijt map. This result 

allows us to conclude (i) strong convergence of j\n)(X) in JI as n?> oo (ii) strong 

continuity of (t, X)-+jt(X) (iii) [jt(X)T = jt(X*) for X e ̂from Lemma 3.7 

and that (iv) jt is a homomorphism of ji into ?3(J?). 

The next theorem shows that if we have a classical system of observables 

i.e., if J? is a commutative *-subalgebra of ?3(Mq), then the corresponding 

quantum flow is also commutative. 

Theorem 3.9 : Assume the hypotheses of Theorem 3.5 and suppose fur 

thermore, jt is commutative. Then for X, Y e j? ; s, t > 0 

ljs(X),jt(Y)] 
= 0. 

Proof: It is identical to that of Theorem 2.2 of Parthasarathy 
and Sinha (1990) with n = max {N(f), N(g)}. 
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4. Application to makkov chains 

Consider a countably infinite state Markov chain. As in Parthasarathy, 
and Sinha (1990), let G be a infinite group acting on a separable tr-finite measure 

space (?C, &, ?i) so that ?i is quasi-invariant under G action, and define the 

unitary representatiom Sg of G in L2(/i) by 

(Sgu)(X) = 

V-??j?r(9-1xMr1x),ueL*Qi). 
... (4.1) 

where ?ig (E) 
= 

fi(gE), E e &. Let m be a complex bounded measurable 

function on G X ?C and let ji = L& (pi), the commutative *-subalgebra of mul 

tiplication operators in ?3 (L2(?ij). For a countably infinite set F G G indexed 

in any suitable fashion by 71 the set of natural numbers, we set = Si S and 

Li = Simi, ... (4.2) 

where m$ 
== m e L^ (??). 

In Jt = L?/i) <g> r(L?&+) (g) L?F)) 
? 

L\ii) (g) r ( ? ?2(^+)), we write 
? JV 

dA?0 
= dt, dA? = 

dAf, dA? = dAu dA) 
= dAi 8} ((i, j > 1), with respect 

to the standard basis of l2. 

The quantum stochastic differential equation : 

dW 
=[ 

2 I {I* 
dA\+(Si-l)dAi-LlSidAi~-2L*Lidt^W 

... (4.3) 

with initial value W(0) 
= / has a unique unitary solution by Theorem 2.5 

<i = 
21 mi \2 converges strongly. If we now define 
i 

jt(X)=W(t)*X?IW(t). ... (4.4) 

if we assume that S L*Lt 
= 

21 m? ?2 converges strongly. If we now define 
i i 

so that j(Xt) satisfies 

dh(X) 
= 

^{jt(SrKX, Lt]) dAt+jt(S? X Si-X)dAi 

+jt([L*{, X]s. dAt}+jt(AX)) dt, ... (4.5) 

where 

AX) = 
Z{L*XLi 

- I 
L\LiX-\ XL?Li}, ... (4.6) 

Xe jt. We observe that the series in (4.6) converges strongly by hypothesis 

stated above and by Lemma 2.4 and in fact shows that L is a bounded map 

on jt with ||oe(X)|| < 2||X;? ||S L* ?i||. 
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Next we apply Theorem 3.5 directly to (4.5) to get a quantum flow. For 

this we need only to verify (3.2) and (3.3) for structure maps. For 

X e j8(Lz (/*)) we note : 

l4fX) = S-i [XMl MX) 
= f4>(Xr = [Lh X]8t 

fi%X) 
= 

(S^XSt-Xflii, j > 1), /*8(Z) = HX). ... (4.7) 

Now, 2 \\f4(X)u\\z < \\L\\ \\Xu\f+I,\\XLiU\\2, where we have written 
? ? 

L = s L?Lt. 

Forj>l> 

S \\ii){X)u\\* 
= \\M{X)uf < 2||XM[|2+2||Z^||2. 

i = 1 

Finally as we have already remarked, by Lemma 2.4 

IWXMI < i ||L|| ||X?||+? ||Z?tt||+IW ( 
s \\xl<u\\* )*. 

Thus (3.2) and (3.3) are easily verified. 

Theorem 4.1 : Let Xe j?= S(L2(ju,)), and let ?i\ be as given by (4.7). 

Then there exists a family of contractive adapted processes {jt(X), t ̂  0} satisfy 

ing (4.5). Furthermore, each jt is a *-homomorphism of J? and (t, x) -+jt(X) 
is strongly continuous with respect to the strong operator topology of J?. 

The proof of Theorem 4.1 follows from the verification of (3.2) and (3.3) 

and an application of Theorem 3.5. 

Let ?C be the state space of a countably infinite state continuous time 

Markov chain and let pt(x, y) (x, y e ?C) be the stationary transition probabili 
ties such that 

i(s?y) = 
^ ?tey)l*-o - (4-8) 

Then l(x, y) > 0 if x ̂  y and 2 l(x, y) 
? 0. We now realize this Markov 

ye?C 
chain as a flow. Put any group structure on ?C so that G = ?C, fi is the 

counting measure and O acts on itself by left translation. Set 

mx(y) = Vl(y> xy) iix^e 
= 0 otherwise ... (4.9) 

As in Parthasarathy and Sinha (1990), the structure maps can be computed 

for <j) e LJji), 

04(M (V) = mx(y) l<t>(xy)-<?)(y)]u(y), 

(fixx(<f>)u) (y) = 
[<}>(xy)-<?)(y)]u(y) 

(/4($)u) (y) = mx(y) [<?>xy)-<?)(y)\u(y), 
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and W?(fl*)(y)= S \mx(y)\2tt(xy)-<f>(y)]u(y). ... (4.10) 
xe?C 

The following theorem sums up the results in this case. 

Theorem 4.2 : Let the Markov chain be described as above with sup \ l(x, x) \ 
x e ?C 

== 8 < oo, and let (?> e ji 
= 

L^(/i). Then {jt(<f>), t^ 0} is a classical (commu 

tative) contractive, strongly continuous flow satisfying 

djt(<?>)= S {jt(i4(<?>))dAi+jt(ii%(c?>))dK 
xe?C 

withj{i((?>) 
= 

4>. 

Proof : We have only to verify the strong convergence of 2 | mx(.) |2 and 

appeal to Theorems 4.1 and 3.9. For ueL2(/i). 

<u, 2 \mx(.)[*u> = S S l(y, xy)\u(y)\* 
xe?C x*' ye?C 

= S [ S %,*</)]H2/)|2 
= - S l(y,y)\u(y)f 

ye?C x*e ye?C 

<8\\uf. 
Remark : Note that the condition of Theorem 4.2 is also sufficient to define 

the generator <? as a bounded map where ? (<j>) (x) 
= 2 l(x, y) <?> (y). In fact, 

ye?C 

|?0)(*)|< S l(x,y)\<f>(y)\ + \l(x,x)\\<?>(x)\ 

<2 sup j?(a?,a?)| |$|U. 

References 

Acoabdi, L. A., Frigerio, A., Lewis, J. (1982) : Quantum stochastic processes, Proc. Res. 

Inst. Math. Sei. Kyoto 18, 94-133. 

Evans, M., Hudson, R. L. (1988) : Multidimensional Quantum diffusions, Quantum probabi 

lity and applications III, Lecture notes in Maths. 1303, 69-88, Springer-Verlag. 

Evans, M. (1989) : Existence of Quantum diffusions : Probability theory and related fields, 

81, 473-483. 

Meyer, P. A. (1989) : Chames de Markov finie et representations chaotique, Strasbourg preprint. 

Hudson, R. L., Parthasarathy, K. R. (1984) : Quantum Ito formula and stochastic 

evolutions, Comm. Math., Phys. 93, 301-323. 

Parthasarathy, K. R., Sinha, K. B. (1990): Markov chains as Evans-Hudson diffusions in 

Fock space, to appear in S?minaire Probabilit?s de Univ, de Strasbourg, Springer-Verlag. 

Parthasarathy, K. R., Sinha, K. B. (1988): Representation of a class of Quantum 

martingales II, Quantum probability and applications III, Lecture notes in Maths. 1303, 

232-250, Springer Verlag. 

Paper received : July, 1989. 

Bevised : August, 1989. 

A 1-8 


	Article Contents
	p. [43]
	p. 44
	p. 45
	p. 46
	p. 47
	p. 48
	p. 49
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56
	p. 57

	Issue Table of Contents
	Sankhy: The Indian Journal of Statistics, Series A, Vol. 52, No. 1 (Feb., 1990), pp. 1-144
	Front Matter
	On Mixing for Flows of σ-Algebras [pp. 1-15]
	On the Characterization of Point Processes with the Exchangeable and Markov Properties [pp. 16-27]
	On a Generalized Stochastic Model for Estimating the Sizes of Spheres from Profiles in Thin Slices and an Associated Problem of Non-Identifiability [pp. 28-42]
	Quantum Stochastic Flows with Infinite Degrees of Freedom and Countable State Markov Processes [pp. 43-57]
	A Matrix Limit Theorem with Applications to Probability Theory [pp. 58-83]
	Characterizations of Continuous Distributions via Expected Values of Two Functions of Order Statistics [pp. 84-90]
	A Derivation of the Probability Density Function for a Modified Greenwood's Statistic and Testing the Uniformity [pp. 91-102]
	On Expectations of Functions of Order Statistics [pp. 103-114]
	Robust Prediction of Multivariate Stationary Processes [pp. 115-126]
	Existence of Unbiased Estimates in Sequential Binomial Experiments [pp. 127-130]
	On Two Conjectures about Two-Stage Selection Procedures [pp. 131-141]
	Book Review
	Review: untitled [pp. 142-144]

	Back Matter





