
On the Competitive Pressure Created by 
the Diffusion of Innovations*

D i l i p  M o o k h e r j e e  a n d  D e b r a j  R a y

Indian Statistical Institute, N ew  Delhi 110016, India 

Received August 30, 1988; revised Septem ber 17, 1990

W e consider the decision of a dom inant firm to  ado p t a sequence o f  p o te n tia l 
cost-reducing innovations, where the latest technology adop ted  diffuses to  a  co m ­
petitive fringe at an exogenous rate. W ith price com petition  on the p roduct m a rk e t, 
the leader optim ally spaces apart the adop tion  dates of successive innovations, so 
the industry is characterized by Schum petarian cycles of alternating  in n o v a tio n  an d  
diffusion. An increase in the rate of diffusion has am biguous effects on in n o v a tiv e  
activity, and, up to a point, hastens the pace of innovation . These results m ay, 
however, be reversed in the case of quantity  com petition. Journal o f  E conom ic  
Literature  Classification N um bers: 022, 612, 621.

1. I n t r o d u c t i o n

Recent years have witnessed the development of a large literature 
analyzing the incentives for firms to carry out R & D, and adopt cost- 
saving innovations (see, e.g., Arrow [2 ], Leibenstein [10], Kamien and 
Schwartz [7 -9 ], Loury [11], Dasgupta and Stiglitz [3, 4], Reinganum 
[14], and Spence [19]). One of the central insights of this literature deals 
with the tension between the requirement of static allocative efficiency 
subsequent to an innovation, and that of dynamic incentives for innovation 
ex ante. Due to inherent inappropriabilities and spillovers, an innovatof 
cannot obtain the full social surplus associated with an innovation. In fact, 
if the innovation already exists, it is socially desirable that it diffuses as 
rapidly as possible. But this would leave potential innovators with no ex 
ante incentives to expend resources on innovative activity.

This insight can be traced back to Schumpeter [16, 17], who 
emphasized that in the long run it may well be more important to promote 
ex ante innovation incentives, at the expense of restricting the diffusion of
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p roo fs of the  results, and  for detailed expositional advice that has im proved the q u a lity  o f  the 
p ap e r significantly. W e also thank tw o anonym ous referees for useful com m ents. T h is  paper 
is ded icated  to  Angela Bhaya Soares and  her abiding interest in Schum peter.



innovation ex post.1 The empirical work of Abramovitz [1 ] , Denison [5 ], 
and Solow [18] has further heightened the importance of technical 
progress as a key determinant of economic growth. Consequently, 
economists have been reluctant to advise weakening of patent protection or 
the pursuit of aggressive procompetitive policies in industries with signifi­
cant potential for technical progress.

An alternative viewpoint on the impact of competition on innovation 
incentives, associated in particular with the work of Harvey Leibenstein, is 
that competition acts as a “stick” that promotes innovative activity.2 From 
this perspective, it could be argued that faster diffusion of innovations 
enables followers to catch up faster with the innovator, thereby enhancing 
the latter’s incentive to introduce the next set of innovations. Such a view­
point necessitates a dynamic formulation of the innovation process, i.e., as 
one comprising a sequence of innovations. Alternatively, one may consider 
a single innovation with a variable date of adoption. In this paper, we seek 
to investigate the validity of this intuition in alternative settings.

Most theoretical literature on innovation incentives, however, employs a 
static formulation of the innovation process; it usually analyzes the incen­
tive for a firm to adopt a single innovation instantaneously or never at all.3 
No one would dispute that in reality, technical change is associated with a 
sequence of multiple innovations. Indeed, Schumpeter’s theory of capitalist 
development placed central emphasis on the cyclical nature of the innova­
tion process, where successive cycles are associated with different innova­
tions. In such dynamic settings, the intensity of innovative activity is 
necessarily multidimensional. For instance, the total number of innovations 
adopted within a given time period provides one aspect of the extent of 
innovative activity; another is the timing of adoption decisions. The case 
where a single innovation is never adopted may be considered almost 
equivalent to the case where one is adopted in the very distant future. 
Alternatively, it may be socially preferable to have a few innovations 
adopted instantly, rather than a larger number of innovations adopted at 
some distant future date.

The purpose of this paper is twofold. First, we develop a model of a 
dynamic innovation process with some “Schumpetarian” elements. Our 
model permits alternating cycles of innovation and diffusion. Second, we

1 To be sure, Schum peter [1 7 ]  d id  em phasize the  no tion  o f  (dynam ic) com petition , and  its 
importance in th e  innovation  process: th is is a  crucial ingredient o f his concept o f “creative 
destruction.” H ow ever, C h ap te r V III o f “C apitalism , Socialism , and  D em ocracy” con tains a 
clear statem ent o f  the  virtues o f m onopoly  in pro tecting  the  rents o f innovators, thereby 
generating ex  ante  innovation  incentives.

2 See Leibenstein [1 0 ] , especially Section III.
E x cep tio n s are  F u tia  [ 6 ]  and  R einganum  [1 4 ]. Also, som e in teresting  sim ulation 

Mperiments can  be found in Nelson and  W in ter [13].



investigate the effects of an exogenous increase in the diffusion rate, on 
both the number of innovations adopted, as well as their timing. We use 
the simplest possible formulation that permits an assessment of the relative 
validity of the two contrasting viewpoints discussed above.

Our model has a single dominant firm with access to a sequence of 
potential innovations. The adoption of any innovation necessitates a fixed 
cost, to be incurred at the date of innovation.4 Each innovation enables an 
immediate reduction in the unit cost of production of a homogeneous good 
or service. This can be interpreted to incorporate both process and product 
innovations.5

Follower firms are assumed unable to innovate on their own. Instead, 
they gradually imitate the innovations introduced by the leader. This 
allows their unit costs to drift down over time, approaching the leader’s 
current costs at an exogenous rate A. At each date, all firms simultaneously 
choose prices or quantities of their respective products. We adopt the 
simplifying assumption that payoffs on the product market are given 
by a single-period equilibrium of the relevant price (or quantity) setting 
game—there is no tacit collusion. Since the good is homogeneous, equi­
librium in the price game is characterized by absence of actual production 
by the follower firm: the leader prevents entry by pricing below the 
follower’s cost. In contrast, the quantity game involves positive market 
shares for both firms.

In the context of this model, we pose the following questions:

(i) Under what conditions is it optimal for the dominant firm to 
space apart the adoption dates of successive innovations, rather than carry 
them out simultaneously, or in close proximity to each other? This issue 
has a bearing on Schumpeter’s contention that the innovation process is 
inherently cyclical.

(ii) What is the effect of an increase in the diffusion rate X on the ex 
ante incentives of the leader to adopt innovations? In this context, no less 
important than the effects on the number and volume of these innovations 
are the implications for their timing. The answer to this question should 
have implications for government policies that affect the severity of patent 
protection (which influences the diffusion rate A).

4 W e concentrate on the adop tion  of m ethods based on existing knowledge, ra th e r  than 
R & D  aim ed a t producing new knowledge, which involves developm ent costs over an  entire 
developm ent period p rio r to the date of invention. This aspect, as well as our in terest in a 
dynam ic sequence o f innovations, and m ost im portan t, our em phasis on the nature  o f product 
m arket com petition, differentiate our model from  the interesting w ork of K am ien  and 
Schw artz [8 , 9 ].

5 See Spence [1 9 ] for a  description of how  p roduct innovations could be viewed as a  reduc­
tion  in the costs of providing services to customers. See also Schum peter [17, p. 92 ].



Our results indicate that the answers to the above questions depend cru­
cially on the nature of product market competition. Consider question (i). 
We show that in the quantity-setting model, the adoption dates of available 
innovations will be bunched together towards the beginning. The leader 
thus moves away from the competitive fringe and continues to do so in the 
early period of the industry. A period of early dominance results, which is 
then followed by a phase of inter-firm cost equalization as the innovations 
diffuse to the competitive fringe. However, the price competition model 
yields very different results. The existing stock of innovations are adopted 
in a phased manner, and the industry displays alternate periods of innova­
tion and diffusion. So far as the adoption of existing knowledge is concen­
trated, the Schumpetarian cyclical process seems to require competition in 
prices rather than quantities.6

We turn now to question (ii). As mentioned above, the existing theoreti­
cal literature has largely focused on a static notion of innovation, where 
only one potential innovation is available, to be adopted “now” or not at 
all. In such a context, increasing the diffusion rate X will unambiguously 
reduce innovation incentives. But with more than one potential innovation 
(or a variable date of adoption of a single innovation), matters are more 
complex. Consider the price-setting model: there, an increase in the diffusion 
rate cannot increase the total number of innovations adopted. But the 
effect on the timing of these innovations is ambiguous. Over some range of 
values of the diffusion rate, an increase in this rate will advance the adop­
tion date of the next innovation, without lowering the total number of 
innovations adopted. Over other ranges, it may delay adoption and/or 
reduce the total number adopted. The former result is explained by the 
Leibensteinian intuition that an increase in the diffusion rate enables 
followers to catch up faster, increasing the competitive pressure on the 
leader and motivating quicker adoption of further innovations.

Price competition is essential to this result. It is this form of interaction 
in the product market that induces innovation through competitive 
pressure. Indeed, this is precisely why question (i) is answered the way it 
is: the continuing adoption of innovations is motivated by a drop in 
follower costs, for which a minimum interval of time must elapse. Despite 
the fact that follower firms never actually produce, their potential ability to 
produce at progressively lower cost levels exerts competitive pressure on 
the leader.

6 Of course, if a  new stock of innovations becomes available, the quan tity-setting  m odel 
might also display cyclical phases of innovation. However, these phases would be correlated 
with the arrival o f new knowledge. This is different from  the periodic innovations predicted 
by the price-setting m odel.
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On the other hand, we will see that in the quantity competition model 
innovations are encouraged by the relative absence of competitive pressure. 
This is why the leader must adopt an innovation early if he adopts it at all. 
Since all innovations are bunched together at the very beginning, an 
increase in the diffusion rate reduces the number of innovations adopted, 
without affecting their timing.

Our results therefore capture the contrasting views of Schumpeter and 
Leibenstein regarding the effect of competition on innovation incentives. In 
the quantity competition model, the forces envisaged by Leibenstein have 
minimal impact, and the classical Schumpetarian thesis regarding the 
negative role of diffusion on innovation is vindicated. However, as 
described above, matters are quite different in the price competition model: 
some intermediate value of the diffusion rate may well be socially optimal 
for overall incentives to innovate. And to this extent, the tension between 
static efficiency and dynamic incentives is less than what it is commonly 
supposed to be. A certain degree of imitation and spillover not only 
reduces the static allocative inefficiencies associated with the monopoly 
power of the innovator, but may also increase the incentives for rapid 
innovation in the future.

This paper is organized as follows. Section 2 introduces some examples 
to illustrate the basic intuition underlying our analysis. Section 3 then 
describes the general framework and Section 4 considers the price competi­
tion model in detail. The contrasting model of quantity competition is 
treated in Section 5. Some of the longer proofs are relegated to the 
Appendix.

2. E x a m p l e s

In this section, we discuss in an intuitive fashion some of the issues 
intrinsic to a dynamic innovation model. Consider the simplest possible 
scenario where a pair of duopolists compete on a market for a 
homogeneous product. The firms have constant marginal cost; firm l ’s cost 
is c and firm 2’s is r, where 0 <  c < r. Call firm 1 the leader, and firm 2 the 
follower. Denote the leader’s reduced form profit function on the product 
market by L(r, c), where L  is increasing in r and decreasing in c.

Suppose initially that the leader considers a single innovation which 
reduces his unit cost from c to c'. The follower’s cost also drops by a frac­
tion of the cost reduction of the leader: r drops to r' = r — k(c — c'), where 
k represents the extent of diffusion. This is akin to the standard formulation 
of diffusion in static models of innovation, as in Spence [19]. The leader’s 
gross benefit from the innovation is equal to [ L(r ', c') — L(r, c)]. Clearly, 
an increase in the diffusion rate A reduces the follower’s post-innovation



cost r', and thereby diminishes the leader’s incentive to innovate. This is the 
basic Schumpetarian effect.

Now suppose that the leader has available a sequence of two potential 
innovations. The first innovation is as described above: conditional on 
adopting it, the leader may consider adopting the second one which will 
reduce his cost from c' to c", and the follower’s cost from r' to 
r" = r' — X(c’ — c"). The leader’s benefit from the second innovation is 
\_L(r", c") — L(r', c')]. Since an increase in the diffusion rate X lowers both 
r" and r', the effect on innovation incentives is not so clear any more. It is 
conceivable that the effect on r' outweighs that on r", i.e., the fact that the 
follower catches up more since the first innovation (the “Leibensteinian” 
stick) has a stronger effect than the reduction of post-innovation rents 
L(r", c") (the “Schumpetarian” carrot).

The presence of a potential sequence of innovations is a major feature of 
our analysis below. A second important feature is the explicit role of 
product market competition, to which we now turn.

To form intuition about the importance of the nature of product market 
competition, consider the artificial “static” scenario where there is no diffu­
sion and the follower’s cost is set at r, both before and after the innovation. 
The leader’s benefit from innovation is E(r) = L(r, c') — L(r, c).

Now ask the question: Does a decrease in r increase the innovation 
incentive E(r)  ? When both pre-innovation and post-innovation cost levels 
of the follower are decreased, both L(r, c’) and L(r, c) are reduced. In this 
sense both the “carrot” and “stick” co-exist in this thought experiment, 
though in a simplified form somewhat different from the “real” situation.

The behavior of E(r) depends on the nature of product market competi­
tion. The answer obviously depends on the sign of the cross partial 
derivative L rc{r, c). To illustrate most simply, assume that the product 
market is characterized by a linear demand curve

where P denotes price and q the sum of outputs of the two firms.
In the Cournot case, assuming positive production for each firm, routine 

computation shows that the leader’s profit under the cost configuration 
(c, r) is given by (X — 2c + r)2/9j8. Consequently,

P = A — Pq, X, P>0 , (1)

( X - 2  c' + r)2 ( X - 2  c + r ?  
E[r) = -------9/? 9/J (2)

so that



Therefore, under quantity competition, the sign o f  L rc is positive, and a 
lower follower cost reduces the incentive to innovate, ceteris paribus.

Turn now to the case of price competition. For the follower’s cost to 
matter at all, it must be the case that the leader limit prices the follower.7 
Therefore, the leader’s profit under the cost configuration (c, r) (with c< r)  
is ((A — r)//})(r — c), so that

E{r) = ^ j - { c - c ' ) .  (4)

Therefore

E ' { r ) = ~ ~ ^ <  0. (5)

Under price competition, the sign of  L rc is negative, and a lower follower 
cost increases the incentive to innovate.

These observations are easily understood using the Envelope Theorem, 
which states that the effect of cost reduction on the leader’s profit is 
proportional to the quantity of output produced by the leader. In the 
presence of potential price competition from the follower, the leader is 
forced to “limit-price” at slightly below the follower’s cost. A reduction in 
the latter resulting from more diffusion then causes the leader to set a 
lower price. Since the demand curve is downward sloping this increases 
the leader’s output, and therefore also increases the benefit from a cost- 
reducing innovation. In contrast, a reduction in the follower’s cost in the 
case of quantity competition causes the leader’s output to decline.

An anonymous referee has pointed out that the preceding result for the 
price competition model may not hold if the goods produced by the two 
firms are differentiated rather than homogeneous. For instance, if the 
demand function facing firm i is q, = a — ftp, +  ypn with (i > y and j  #  i, then 
it can be verified that for interior equilibria E'(r)>  0. In this context, the 
follower produces a positive quantity in equilibrium, unlike the 
homogeneous good context. This may lead one to conjecture that the 
crucial characteristic distinguishing our two models of product market 
competition is actual versus potential competition, rather than the strategic 
variables chosen (i.e., prices versus quantities). We do not, however, 
consider the case of differentiated products in this paper, and the validity 
of this conjecture remains an important open question.

The main results of our paper are based on the fact that the informal line 
of reasoning outlined in preceding paragraphs continues to hold in an

7 F o r fu rther discussion of this point, see Footno te 9 and the accom panying discussion 
below.



explicitly dynamic model, where the leader has access to a sequence of cost- 
reducing innovations, and where the follower’s cost drifts towards that of 
the leader’s. It turns out that there are a number of additional complexities 
involved in establishing the desired results, stemming from the dynamic 
nature of the analysis. Here is an example of one such difficulty.

Consider the price-setting formulation, and suppose that the follower’s 
cost is diffusing towards that of the leader, at an exponential rate X, 
starting from some initial value r >  c. The process is

r't = -k { r ' t - c ' ) ,  r'0 = r (6)

if the leader innovates, and

r,=  - X { r , - c ) ,  r0= r  (7)

if it does not adopt the innovation. The gain from the innovation at date 
0, expressed in present-value terms under a discount rate p > 0 is then

m  =  (r't - c ' ) -  {- ^ j ^  (r, -  c)]  dt. (8)

Taking derivatives and using (6) and (7), we have

1 r°°
E' (r )= —  \ e ^  + ̂ K c - c ^ - l i r - r ' ^ d t .  (9)

p Jo

The “static” analysis applied to (9), only applies at date 0, when r, = r't. 
The point, however, is that over time, the cost of the follower is not inde­
pendent of whether or not the leader had adopted the innovation. Indeed, 
the sign of the expression within the integral of (9) depends on the date t; 
it can be shown to be initially negative, and eventually strictly positive (as 
/ -» oo). Nevertheless the entire integral can be shown to be negative. These 
results are shown in succeeding sections to extend to the case of an 
arbitrary (finite) number of innovations, with adoption dates chosen 
endogenously, as well as to all downward-sloping demand curves.

Our purpose in this section has been twofold. First, we discussed an 
example to provide the basic intuition driving our analysis, differentiating, 
in particular, between the quantity and price-setting models. Second, we 
argued that there are further considerations that are inherently dynamic, so 
that the static intuition does not take us “all the way.” The proofs of our 
main results are consequently somewhat complicated. Nevertheless, a 
dynamic model is indispensable for the kind of questions we are interested 
in.



3. T he  M o d el

There is a single leader and a “competitive fringe” of followers, which we 
shall represent by a single firm. There is available (to the leader) a finite 
stock of cost-reducing innovations, numbered 1 to n. The innovations must 
be adopted in the given order, though two or more adjacent innovations 
can be adopted simultaneously. It will help to think of this stock as an 
existing body of scientific knowledge capable of improving the product or 
the production process, which can be adopted in stages. Accordingly, we 
shall often refer to each innovation in the sequence as a stage. The leader 
is said to be in stage k  if he has adopted the first k  innovations. So the first 
stage is 0, and the last is n.

The i'th innovation costs an amount X ‘ to adopt, and this cost is 
incurred at the time of innovation. An innovation has the effect of instantly 
reducing the unit production cost of the innovator. We therefore associate 
with the i'th stage a unit cost c', where c ° > c ‘ > ••• > c" > 0 . The initial 
cost of the leader is c°, while that of the follower is r°, and we assume that 
r° > c°.

We adopt the Schumpetarian assumption that the follower lacks the 
ability to innovate. However, the innovations adopted by the leader diffuse 
to the follower, creating a downward drift in the follower’s unit cost. 
Specifically, assume that if at time t, the follower’s cost is r„ and the 
leader’s cost is c, (with rt > c t), then

f ,=  - X ( r , - c , ) ,  with r0 = r° (10)

for some X >  0. This parameter X is the diffusion rate.
At any given instant of time, the two firms compete in the product 

market. We assume that there is no tacit collusion, so that we can write the 
one-period profit of the leader solely as a function of the current vector of 
costs: L(r, c).s

One cannot hope for a general theory that applies irrespective of the 
nature of product market behavior, as subsumed in the form of the payoff 
function L. Indeed, this is a major point that we shall emphasize. In par­
ticular, we shall be contrasting the cases of price competition and quantity 
competition. We now proceed to define these two models.

8 It can be checked th a t the analysis generalizes to the case where there are a large num ber 
o f followers, all of whom  have the same cost r, (at time I). In  fact, in the price-setting case, 
o u r analysis is consistent with free entry (i.e., an infinite num ber of potential firms, all of 
whom  have cost r,). Consequently, the absence of tacit collusion is a na tu ra l assum ption  in 
these contexts. In the quantity-setting model, however, the generalization to  m ore th an  one 
follow er requires m ore work.



Let D(p)  be the aggregate demand curve for the product. Throughout, 
we shall assume that D is differentiable and strictly decreasing, with 
D’(p) < 0. Further, we assume that the profit function n(p, c) = 
(p - c ) D { p )  attains a maximum with respect to p  at a finite (monopoly) 
price, and that n is strictly increasing in p  at all prices below p,„(c) (which 
denotes the lowest monopoly price at cost c).

Price Competition. In this context, given r>c,  it is clearly the case that 
L(r, c) is either the profit accruing to the leader when he limit prices the 
competitive fringe, or it equals monopoly profits.9 The latter case arises if 
pm(c) is smaller than the limit price r. Solely for ease of exposition, we shall 
assume throughout that the price-setting equilibrium necessarily involves 
limit pricing. That is, r , ^ p m(Cj) for all /.10 In the other case, the follower’s 
cost is of no consequence to the leader, and nothing of substance is lost by 
ignoring this alternative.

Quantity Competition. With firms choosing quantities, we assume that 
the demand curve is such that a unique Cournot-Nash equilibrium exists.11 
L(r, c) then denotes the leader’s equilibrium payoff in this game.

We complete our description of the model with a statement of the basic 
problem faced by the leader. The leader and the follower interact over an 
infinite time horizon. The leader seeks to maximize the present value of 
profits, discounted at some rate p >  0. He must optimally choose the dates 
T \ ..., T" at which to adopt the innovations 1,..., n. Each innovation may 
be adopted instantly, at some future date, or never. Given the ordering of 
the stages, the leader is constrained to pass through the stages 1,..., i before 
he can contemplate adopting innovation z-f 1. However, some or all of the 
innovations may be adopted simultaneously. Of course, the leader is aware 
of the diffusion process that brings down the costs of the competitive fringe.

9 It should  b e  po in ted  o u t th a t there  are  som e non triv ial technical issues involved in 
establishing th e  valid ity  o f th is statem ent. F irst, in the case th a t the m onopoly  price exceeds 
the limit price, there  are  problem s w ith the existence o f an  equilibrium  in  pure strategies. This 
problem can  be  resolved by using a  finite grid for prices, o r  by altering the sharing  rule when 
firms “tie” in prices, o r  by studying m ixed strategies. In all these cases, the  payoffs o f the  lim it 
Pricing solu tion  is achieved as an  equilibrium . Second, there could be equilibria  involving dif­
ferent sets o f  payoffs. B ut all these o ther equilibria involve a t least one firm  selling (o r 
threatening to  sell) below  cost. Such strategies m ay be ruled ou t o n  g rounds o f lack of 
credibility, a n d  th en  only the equilibrium  payoffs described in the text rem ain. In  th is paper, 
however, we w ish to  keep these technical issues to a  m inim um.

10 A sufficient cond itio n  for this is th a t
"  In Section 5, we im pose a  further condition  on the dem and  curve to  analyze the  quan tity - 

setting case.



Formally, given an initial cost vector (r°, c°), the leader solves the 
following dynamic programming problem.

/•oo n

max V{r°, T\ ..., T")= L{r„ c, )e~" dt -  £  e '" 7"*' (11) 
r‘,...,r" Jo j = 1

subject to
O ^ T ' ^ a o ,  J '+1> r  (12)

r ,=  -X (r,-c ,), r0 = r° (13)

c, =  c°, 0 ^ t < T '

=  ck, Tk^ t < T k+{

=  c”, t ^ T " .  (14)

4. Adoption D ecisions under Price Competition

We start by defining the value functions for the leader’s dynamic 
programming problem, corresponding to each possible stage of the innova­
tion process. Starting with the last stage n, define for each r > c",

f> oo

!>(/■,»)= e~ pt D{rt) { r - c n)dt, (15)
Jo

where

r , 3 e ~ * ‘(r — cn) + c", 0. (16)

Recursively, having defined v{r, s) for all s = k  + 1 ,..., n, define for each
r > c k,

v(r,k) = sup
7> 0

j V " '  D(r,)(rt -  <*) dt + e ^ pT[y(rT, k  -I-1) -  X k+ *] J,

(17)

where
r , s e ~ x' { r - c k) + ck, t*z 0. (18)

It is convenient to pose the leader’s problem as choosing a “threshold” 
follower cost at which the innovation will be introduced. The change of 
variable to z where (z — c")/(r — c") = e x‘ (from (16)) yields for any r>  c"

1 r  ( z  — cn\ plk 
v(r,n) = - \  I ------- )  D(z)dz  (19)



while v(r, n) =  0 if r = c". A similar change of variable yields the value 
function at earlier stages

n  rr ( z — ck\ptl
v(r ,k)=  max ------ * D(z) dz

ck < r' < r J r' — C J
- rk\p!>- 

~k+ ( :-----t )  l v { r ' , k + \ ) - X k+l^ \  (20)

if r >  c . If r =  c , then of course

v(ck, k) = sup e ~ pT{v(ck, k -f 1) — X k+x). (21)
7 > 0

The following result characterizes the value functions and the associated 
optimal policy functions.12

P r o po s it io n  4.1. The value functions v(-,k),  k = 0, 1, n are all well 
defined, continuous, and strictly increasing in their first argument. In addi­
tion, for each k  = 0, 1,..., n — 1:

(a) Given any r > c k, the maximum in (20) is attained at a unique 
value, which is denoted by g(r, k).

(b) There is a threshold value rk + l ^ c k such that the function g( - , k)  
has the form

i m Jr & ck ^ r ^ r k+l
*<r' * ) = V * ‘ if , > r*+K (22)

Thus, conditional on being at the k  th stage, the (k  + 1 )st innovation is adop­
ted at the first instant that the followers cost is less than or equal to rk + i.

(c) I f c k ^ r ^ r k + 1, then v(r, k) = v{r, k + I) -  X k+l.
(d) v(- ,k)  is differentiable, with

vr(r, k  + 1) i f  ck ^  r ^  rk + 1

i f  r > r k
vr(r,k) = {D(r)  ( p \  v(r,k) ;f k+l (23)

k j  (r - c k)

Proof. See the Appendix.

Part (b) of this Proposition demonstrates a distinctive feature of the 
price competition model: the leader is motivated to adopt an innovation

12 In the case r =  ck, the natu re  of the optim al policy is obvious: conditional on  being in 
stage k  adop t the (A- +  1 )st innovation  instantaneously if v(ck, k  +  1) ^  X k + 1 an d  never 
otherwise.



only if the follower’s cost falls far enough to exert sufficient competitive 
pressure. In particular if the leader is at stage k, and the follower’s current 
cost is less than or equal to the threshold rk + 1, the ( k +  l)th innovation is 
adopted instantaneously. Otherwise the leader waits for the follower’s cost 
to drop to rk +1 before adopting. Of course, if rk + 1 = ck, then the (k + l)th 
innovation is never adopted.

The sequence of thresholds r \  r2, ..., r" need not be monotone decreasing. 
This implies that it may be optimal for the leader to group successive 
innovations; e.g., if rk <  rk +1 then innovations k  and (k + 1) are adopted at 
the same time, or else neither of them is ever adopted. So innovations will 
be grouped in the following manner: there are /e  {1, 2,..., n] groups, where 
group i consists of innovations F(i), F(i) + 1,..., L(i), i.e., F(i) and L(i) 
denote the first and last innovations in this group. Clearly, L(i)~^F(i) and 
L(i) + 1 =F(i+  1); also F( 1) =  1 and L{l) = n. The groups are defined by 
the property that rF<n̂ r k for k  = F(i) + 1,..., L(i) and rF̂ > rI' '̂ + ^  = 
ru , ] + All of the innovations in group i are adopted when the follower’s 
unit cost falls to the threshold level rFU). Following this is a period of 
diffusion while the leader awaits the fall of the follower’s cost to the 
threshold level rFU+ 11 of the following group (z'+l), at which point this 
group of innovations is adopted. Of course, if rF(,+ n =  cL(,), then the 
(z + l)th  group is never adopted. In general, thus, there will be periodic 
bursts of innovation, followed by intervening periods of diffusion.

One might expect that the precise pattern of grouping of innovations will 
depend on parameters such as the diffusion rate X, the discount rate p, and 
the demand function D(p). This, however, turns out to be never true: the 
groups {F(i), L(z); /=  1,..., /} depend only on the “R & D technology,” i.e., 
the cost levels and adoption costs {c!, X 1; i = l , associated with 
different potential innovations.

P ro po sitio n  4.2. The optimal grouping o f  innovations {F(i), L(i); 
z '= l , ...,/} depends only on {c ' ,X ‘; z = l , the unit cost levels, and 
adoption costs associated with successive innovations.

Proof. See the Appendix.

In what follows, we shall examine the effects of varying the diffusion rate 
X on the leader’s optimal innovation strategy. Since Proposition 4.2 implies 
that the grouping of innovations is independent of X, we may proceed on 
the assumption that we are dealing with a set of / (compound) innovations, 
where each compound innovation corresponds to an optimal grouping of 
primary innovations. To preserve notational uniformity, we shall hence­
forth assume that there are I innovations, with c\  X \  and r' being the unit 
production cost, adoption cost and threshold follower cost associated with 
the /th innovation. Since the innovations are already optimally grouped, it



follows that the thresholds r‘ form a monotonic sequence, r l > r2 > > r l, 
and an innovation is adopted singly if the follower cost r becomes equal to 
the corresponding threshold.

We begin by describing the total number of innovations that will 
optimally be adopted (in finite time) by the leader. Proposition 4.1 implies 
that conditional on the (;'— l)th  innovation being adopted, the ith innova­
tion will be adopted if and only if r‘> c ‘~ l. This, in turn, is equivalent to 
the condition that i) — X '> 0 .13 So the total number of innovations
adopted is given by N  where v(cJ~ \ j )  — X J > 0  for j —i , . . . ,N  and 
v{cn, N + 1 ) - X n +1^ 0 .

Now consider an increase in the diffusion rate X. Given any stage j, this 
lowers the cost r, of the follower at all t >  0. Given our assumption that 
r,<pm(ct), and that D{p)(p — c) is strictly increasing in p  for all prices p  
below the corresponding monopoly price, it follows (from a straight­
forward induction argument) that an increase in X reduces v(r, j )  for all 
r>ci ~K This establishes the following:

P r o p o s i t i o n  4.3. An increase in the diffusion rale X cannot increase the 
number o f  innovations adopted.1*

Thus, the effects of increased diffusion on the total number of innova­
tions adopted are quite Schumpetarian: fewer innovations are adopted 
because faster diffusion erodes the profitability of adopted innovations. 
However, this may provide a misleading picture of the overall effect of dif­
fusion on innovation incentives. In a dynamic setting innovative activity is 
necessarily multidimensional; in particular, the effect on the timing of 
adoption decisions is also important.

In fact, the picture is considerably different once we examine the effects 
of diffusion on the timing of innovations. Without loss of generality, 
assume that all innovations are adopted for X small enough.15 Now note 
that the threshold rk(X) for the Arth innovation at diffusion rate A, is 
decreasing in A .16 That is, if the diffusion rate increases, then a lower level 
of follower cost is required to exert enough “competitive pressure” on the

13 This follow s from  the fact th a t r‘ solves Q(r', i — 1) =  ((c '~  1 — c‘)/(r‘ — c 1)) v(r‘, i) — X ' =  0, 
and that Q is stric tly  decreasing (see the A ppendix, P ro o f o f P roposition  4.1); so r‘ > c '~ '  is 
equivalent to  £>(c,_1 , i — 1) =  v(c‘ l, /) — A "> 0 .

14 This presum es th a t the diffusion ra te  is strictly positive to begin with. T he result m ay not 
hold if A goes from  zero to  positive (see M ookherjee and  Ray [1 2 ]) .

15 If some in n o v a tio n  is not adopted  for A small enough, then it (and  all succeeding 
Potential in n o v a tio n s)  m ay be ignored, since the preceding argum ents im ply th a t such an 
mnovation will n o t be adop ted  for any diffusion rate.

16This follow s from  the fact th a t rk(A) solves Q(r, k — 1, A) =  ( (c * ^ 1 — ck)/(r — c*)) 
l’(r. k, /.) — x k =  0, w here A is used as an explicit argum ent in v and  Q. Since an  increase in 
'• lowers u, an d  Q  is decreasing in r, rk(A) m ust be decreasing.



leader to innovate at any stage. Intuitively, this follows from the fact that 
the leader’s innovation incentive is a decreasing function both of the diffu­
sion rate, and the follower’s cost level. Now define r1 = lim Ai0 ^(X),  and 
assume that r° > r1. In words, for small values of X, we suppose that the 
leader will not adopt the first innovation instantaneously. In what follows, 
we consider the timing T(X) of the first innovation, and how it varies 
with X.

P r o p o s i t i o n  4.4. Suppose that r ° > r 1; i.e., for small enough values o f  the 
diffusion rate X, the first innovation is not adopted at t = 0. Then there exists 
X* > 0 such that for any X e (0, X*), the timing T(X) o f  the first innovation is 
finite, but 77A) goes to infinity as X tends either to 0 or X* in this interval.

The proof of this is as follows. Let X* be defined by v(c°, 0 ,1*) — X 1 =0, 
so the first innovation is adopted in finite time if and only if X < A*.17 For 
any Ae(0,A*), the adoption time T(X) satisfies rl(X) = c° + e~ XTW[r0 — c0]. 
Hence, r ° > r t implies that T(X)-> oo as A->0 +  . Also, r1(A*) =  c°, so 
T(X) -»ooasA ->A * —.

Proposition 4.4 serves to establish the basic point of this paper: the rela­
tion between diffusion and innovation dates is not necessarily monotonic, 
and both “Leibensteinian” and “Schumpetarian” effects may therefore 
coexist. The intuition is as follows. By Proposition 4.1, the timing of the 
first innovation is determined by the date at which the follower’s cost drops 
to the threshold value r'(X). This date depends on the speed of diffusion in 
two ways. First, the threshold value r l(X) is decreasing in X: an increased 
diffusion rate then requires the follower’s cost to fall to a lower level before 
triggering the first innovation. This delays the innovation date, and 
represents the Schumpetarian effect. Second, the speed at which the 
follower’s cost drops towards the threshold value is determined directly by 
the diffusion rate. Faster diffusion causes the follower’s cost to drop faster 
towards the leader’s cost, thereby causing the leader to innovate earlier. 
This is the Leibensteinian effect.

When there is a very “small amount” of diffusion, the first innovation is 
indeed adopted, but only in the distant future.18 The reason is that it takes 
a long time for the follower’s cost to fall sufficiently to exert the necessary 
amount of competitive pressure on the leader: the Leibensteinian effect 
dominates over this range. On the other hand, when A approaches X* (from 
below), the threshold value r‘(A) approaches the leader’s cost c°. This is

17 X* exists since v(c°, 0,1) -»0 as i->oo, while by assum ption  the first innovation  is 
adop ted  for k  small enough. The continuity  of v in /  follows from  an induction argum ent.

18 A sim ilar result holds for the adop tion  of la ter innovations as well. An analogous 
argum ent establishes that as X -* 0, an adjacent pair of (groups of) innovations will have an 
increasingly larger time period separating their adoption.



because the rents from the innovation are now tending to vanish. Despite 
the fact that the follower’s cost is now falling more rapidly, it takes, again, 
a long time for it to fall to such a low threshold. Over this range, then, the 
Schumpetarian effect dominates.

Proposition 4.4 leaves the intermediate behavior of the adoption time 
unspecified. In general, we have not been able to characterize this behavior, 
though there is reason to conjecture that the function will be [/-shaped. 
This conjecture is borne out in the example studied in Mookherjee and 
Ray [12], where a linear demand curve permits explicit computation.

5. A d o p t io n  D ec isio n s  U n d e r  Q u a n t it y  C o m pe t it io n

It turns out that the results of the previous section are substantially 
altered once the product market is characterized by quantity competition. 
Our main result (Proposition 5.1) states that all available innovations that 
are ever adopted will be adopted instantly.

We assume that for each pair (r, c), quantity competition yields a unique 
equilibrium payoff vector, and that the quantities produced by the leader 
and the follower (Q t and Q2, respectively) are strictly positive.19

Our proof makes use of the following conditions imposed on the 
quantity-setting game at any date t. Let P{ ■) denote the inverse demand 
curve.

(Cl) P{Q)  is thrice differentiable whenever P > 0 ,  and P"(Q) <  0.

By (Cl), the derivatives L r(r,c), L n(r,c)  are well defined. We also 
assume

(C2) L rr(r, c )<  0 for all r ^ c.

The economic content of (C l) is essentially that the demand curve is 
concave. We do not defend it except to say that it is an assumption fre­
quently made in the literature. Condition (C2) is a stronger restriction. It 
says that the effect of an increase in follower cost on the leader’s payoff is 
diminishing as the follower’s cost rises. While we do not find this an 
unreasonable assumption, it is nevertheless nontrivial.20

It can be checked that a linear demand curve, or more generally, any

19 The uniqueness o f C o u rn o t ou tpu ts will be a  consequence o f condition  (C l)  below on the 
demand curve.

20 Note th a t o th e r  analyses o f R & D  often have to  invoke special assum ptions on  the 
nature of C o u rn o t-N a sh  profit functions, e.g., Reinganum  [1 5 ]. However, her assum ptions 
are somewhat w eaker, essentially requiring th a t L ,c <  0, a condition  im plied by ( C l ) and  (C2). 
The condition L rc< 0  plays an  im portan t role in the p roo f o f P roposition  5.1; the intuitive 
explanation o f  th is h as been provided in Section 2.



demand curve of the form P(Q) = A — bOc, for A >  0, b > 0, c ^  1, satisfies 
both (C l) and (C2).

We are now in a position to state

P r o p o s i t i o n  5.1. Suppose that the demand curve satisfies conditions 
(C l) and (C2). Then, under quantity competition, all the innovations that are 
adopted at all are adopted instantly. Moreover, i f  a certain set o f  innovations 
is adopted at some initial follower cost r, then this set will continue to be 
adopted for all r' >  r.

So, under conditions (C l) and (C2), quantity competition exhibits 
markedly different features from its price-setting counterpart. An existing 
stock of innovations is never “spaced apart” in the adoption process; 
adoption occurs instantly, or never.

Put another way, Proposition 5.1 states that the diffusion of technical 
knowledge to the follower creates no additional competitive pressure. 
Indeed, the proof of the proposition reveals that under quantity competi­
tion, the leader has a greater incentive to innovate when the follower has 
a higher cost (i.e., L rc is negative). Therefore, the existing stock of technical 
knowledge that is potentially profitable is actually profitable at the initial 
date itself. In our quantity competition model, cyclical waves of innovation 
and diffusion will coincide exactly with the spurts in the development of 
applicable scientific knowledge. In contrast, price competition creates (via 
the diffusion process) conditions for further innovation that did not exist 
when follower costs were high.

Proposition 5.1 also states that innovation is more likely when the initial 
disparities between leader and follower are high rather than low, which is 
in marked contrast to the price competition model.

Observe that under quantity competition, the innovation process is not 
Schumpetarian, in the sense that there are no cycles of alternating diffusion 
and innovation. On the other hand, it is Schumpetarian in that an increase 
in the rate of diffusion can only lower the commercial viability of innova­
tions:

P r o p o s i t i o n  5.2. Assume (C l) and (C2). Under quantity competition, an 
increase in the rate o f  diffusion cannot increase the number o f  innovations to 
be adopted, and will generally lower it.

A p p e n d i x

Proof  o f  Proposition 4.1. Equation (19) implies that v(-,n)  is well- 
defined, continuous, and strictly increasing over r ^  c”. Arguing by induc­
tion, it follows from (20) that each of the functions v( -,k), k = 0, 1,..., n -1



is well-defined (since a continuous function is being maximized over a com­
pact set) and continuous (by the Maximum Theorem) at any r > c k. Con­
tinuity at r = ck also follows from the fact that this is true for v(-,n),  and 
by an inductive argument. That v(- ,k)  is strictly increasing follows from 
the argument that given any r and r' with r >  r' ^  ck, the leader always has 
the option (when the follower’s cost is r) of not innovating as long as r > r', 
and choosing the optimal policy from r' onwards when the follower’s cost 
becomes equal to r'. Since the leader will earn positive profits in the first 
phase, it must be the case that v(r, ck)> i>(/•', ck).

That (a)-(d) hold is established by induction. We first show that it holds 
for k  = ( n -  1). Let S(r') denote [(1/A) J;. ( ( z - c H~ ‘) / ( r - cn~ l ) f lx D(z) dz 
+  ((r' —c"_1)/(r —c"_1))p/;' {v(r', «) — X"}] for any r' between r and c"_1, 
so v(r, n — l j s m a x ^ - i^ ^ ^ t r ' ) .  Now (19) implies that v(r, n) is differen­
tiable, with vr(r, «) =  D(r)/X — pv(r, n)/X(r — c"). Hence S(r') is differen­
tiable; letting il/(r') denote the derivative of S, we obtain

p ir’ — c” 1 YPI'/̂  — 1
W )  =  A ( r - C" - » r  ' Q ( r > '  H ) ' (24)

where Q(r, n) = ((c"_1 — cn)/(r — c")) v(r, «) — X n, for any r>c".  Clearly, 
Q( -, n) is differentiable. We claim Q( •, n) is strictly decreasing. To establish 
this, note that sign Qr{r, n) = sign[tv(r, n) -  (i;(r, n)/(r -  c"))] and

v(r,n)  (X + p )v ( r ,n ) D(r)
------ ~ - v r(r, n) = — ------- ------------—
r — c X(r — c ) A

( A + p )  r V z - c" V M m  wD(z) d z ----- -—

>

X (r — c”) Jc« \ r  — c 

D(r),
A(r — cn) J£» \ r

i + t ,  r f z - c ' Y 1 . = 0, (25)

where the inequality uses the fact that the demand curve is downward 
sloping.

By (24), the sign of is the same as that of Q(r', n). Since
limr Q(r’, n ) < 0, (a) and (b) follow from the argument that either (i) 
lin v ic„-i Q(r', « )< 0 , in which case Q(r,n) < 0 for all r > c n~ l, so 
g(r, n — 1) =  c”~ 1 and it pays to never adopt the nth innovation, or (ii) 
lin v ic*-. Q(r' ,n)  > 0 , in which case there exists a unique r" such that 
Q{rn, n) = 0. In this case the fact that Q( -, n) is strictly decreasing implies 
that min(/-, r") is the unique maximizer of S  with respect to r' between r 
and c"~l.

For k  = n — 1, (c) is obvious, and it remains to show that (d) holds.



Parts (b) and (c) imply that v{-,n — 1) is differentiable at r ^ r " ,  and 
differentiation yields

p v { r , n -  1)
if r > r"

k k ( r - c n- 1)
D{r) p v ( r , n - 1) pQ(r ,n)  

k f r - c ”- 1) k l r - c " - 1)

Since Q(rn, n) =  0, it follows that limrir« vr(f, n — 1) =  limrtr» vr(r, n — 1). So 
v is differentiable at r = r", as well, and (d) is established.

Next, we show that if (a)-(d) hold for k  = m, . . . ,n  they also hold for 
k  = m — 1. Let i r, m — 1) denote the derivative of the right hand side of 
(20), defined for r' between cm~ 1 and r. Then,

’ — cm ~ 1 \  p/x
r — c

D(r') , , S i p v ( r ' ,m ) -X "  
-----------+  v r ( r  > m ) +  7  ■> : « - !

(26)

Suppose r ' ^ r m + 1. Choose M e  {m + 1 , n }  such that r’ ^ r k for 
k  = m + \ , ..., M  and r’> r M + \  Since (c) and (d) hold for k  — m,...,n, 
v(r',m) = v(r', + and v,(r' ,m) = vr(r', M )  = D(r')/A-{p/k)
{v{r', M)!(r' — cM)) by virtue of (23). Using this in (25), we obtain 
(combining with a straightforward computation for the case r > r m+i 
which uses expression (d) for vr(r', m))

p f r ' - c m- ly / ; Q ( r ' , m - 1)
1 ) - ^ —

where

,f / > r , +1

1 )= {  1 ’ (27)
(cm 1 — cM) v(r', M) y  . otherwise.

7 ^ 7 *  ±  xv i = m

Properties (a)-(c) now follow by reasoning analogous to the case of 
k  = n — 1, i.e., that Q(- ,m — l)  is continuous and strictly decreasing at 
any r > c m_1. The continuity of Q is obvious at r '# r m+1. To establish 
continuity at r' = rm + \  note that the right hand limit is 
((cm- 1- c m)/(rm + l - c m))v{rm + 1, r n ) - X m, while the left hand limit 
is ((cm~ { - c M)/(rm + 'i - c M))v(rm + \ M ) - ' Z t l m X i. Now by (c), 
v(r' ,m) = v ( r \ M ) - ' £ f t m + l X l for any r ' ^ r m + i. This implies that 
v(r,, M ) / ( r ' - c M) = v(r’, m ) / ( r ' - c m) - Q ( r ' , m ) / ( r ' - c m) for any r '< r m+l



is defined by the property Q(rm + \  m)  =  0, it follows that 
v(rm +1, M)/(rm +1 — cM) = v(rm +1, m)j(rm +1 — cm). Hence the left hand 
limit exceeds the right hand limit by Q{rm + m), which equals 0, and Q is 
continuous at r’ =  rm + '.

To establish that Q( -, m — 1) is strictly decreasing, the continuity of the 
function implies that it suffices to check that it is strictly decreasing at all 
r’ =£rs, s = m , m +  1 , n; r ' ^ c m '. At all such values of r', Q is differen­
tiable. Using the convention that M  = m  if r ' > r m+l, the derivative of Q is

Q r '  =
vir>M y
r —c

(28)

at r’ #  rs, s = m , m +  1,..., n, since at such points, M  is locally independent 
of r’. Now by (23) and the induction hypothesis, vr(r ' ,M)  = 
D(r')/X — (p/X) (v (rM)/( r '  — so that vr(r', M)  — (v ( r M ) / ( r ‘ — cM)) = 
D(r')lk — ({p + k)IX){v(r', M)/(r'  — cM)). Since at the Mth stage the leader 
always has the option of not adopting the ( M  + 1) th innovation, it follows 
that the right hand side of (28) is not larger than

D(r') (p + A)
d (z ) dzX X (r' — cM)JcM\r'  — c

which is negative via reasoning analogous to (25), since r' ^  cM 1 > cM. 
This completes the proof that (a)-(c) hold for k  = m — 1; the proof of (d) 
is identical to that used for k  = n — 1. |

Proof o f  Proposition 4.2. Given any group i, it is true that rhU) <  rk for 
all k  =  F(i) +  1,..., L(i), and rF{,)< r k for k e  {1,..., F(i)— 1}. (The latter 
inequality follows from the fact that rFU) < rFU~ S) ^ rk for any group 
( /— S ) < i  and any innovation k  in this group.)

Take any k e  { I , F ( i )  — 1}. Since Q{- ,k  — 1) is strictly decreasing, 
Q(rFii\ k - l ) > Q ( r k, k - l )  = 0 = Q(rFii\ F ( i ) - \ ) .  Now Q(rFii\ k - 1) =  
((ck 1 — cUl>)/(rn ') — cL{,))) v{rF{' \ L(i)) — X f i ' /■•(,> from which it follows 
that

(f*- 1 - ^ ' 1) / !  X j > ( c FU)- l - c L(i))/ £  X s. (29)
j  = k  j = F ( i )

An analogous argument establishes the weak inequality counterpart of (29) 
for k e  {ir( /)+  1, £(*')}• Hence, given the last innovation L(i) in a group, 
and defining the function a(k, L(i)) = (ck~ 1 — cz'(,))/Z/'=it X J f°r k ^ L { i ) ,  
the first innovation F(i) of the group equals min{arg min^^^,,) a{k, L(i))}. 
Given L(l) =  n and working backwards recursively, this uniquely identifies 
the / groups. |

642'54/l.|0



For the proofs of Propositions 5.1 and 5.2, recall that we are using 
L(r, c) to denote the Cournot payoffs to the leader when the cost con­
figuration is (r, c). Define, for r > c n

/»co

v( r ,n )= \  e~ptL(r”, cn) dt, (30)
■'o

where

r" = cn + e~p‘(r — cn), tpO.  (31)

And recursively, having defined v(r, ,v) for r > c s and s = k + \ , n ,  define 
for stage k  and r > ck,

v(r, k) = sup j  [ r e~p'L(rk, ck) dt + e ' pTiv{rkT, k  +  1) -  X k +1 ] 1, (32) 
7 > 0  (J0 J

where

rk = ck + e ''(r — ck), t ^ O .  (33)

Proof o f  Proposition 5.1. Suppose, first, that « =  1. Define for r >  c°,

E(r)=  f ”  e - p,\_L(r\, cl ) - L ( r ° ,  c0) ]  d t - X l. (34)
•'o

Using (30)—(33) for k  = 0 and n =  1, we have for r > c°,

t>(r, 0) = f e~ ptL(r°t , c°) dt +  sup  e ~ pTE(rT). (35)
o r>o

The result for n =  1 follows if E(r) is a nondecreasing function of r. To 
show this, it suffices (from (34)) to prove that for each r and each t^O, 
Z,(r) = L(rj,  c l ) — L(r°, c°) is a nondecreasing function of r. Now,

^ p . =, e - ^ L A r ) , c ^ L r{r0l ,c°n.  (36)
dr

Now note that >  r) ^  c x for all t, so using condition (C2), it will suffice 
to show that for all t,

L A r ^ c l ) ^ L r{r°t , c \  (37)

which in turn will follow if L rc(r, c) ^  0 whenever r — c >  0.
For any such pair (r, c), use Q t and Q2 to denote the equilibrium leader



and follower outputs, respectively, and let q = Qi + Q2- By the Envelope 
Theorem, L r(r, c) = Q 1P’(q)(dQ2/dr), so that

and

SO? dO, 8 
L rr{r , c ^ F {q ) ^  + Q l -

d 0 2 dOi „  d 
L rc(r, c) =  P’(q) - f o ~ f c + Q i dc

(38)

(39)

Routine computation shows that

2  +  r\(q)x 
dr 3 + t](q) ’

where ri{q) = qP"(q)IP’{q) and x  = QJq.  Consequently,

— \p' (  ^  dx d q \ 8
dr L  ̂ dr J 3 + t](q)dr dr \_dq {  3 +  rj(q) J J

while

_a_

dc P\q)
dQi
dr

t](q) dx + dq_
3 +  r\(q) dc dc

\S_ f ij(q)x 
d q \ 3  + ti(q) } ]'

(40)

(41)

Now (40) exceeds (41), since the first order conditions for a Cournot 
equilibrium imply that dq/dc = dq/dr, dx /d r> 0 >  dx/dc, while i ) ( q ) ^ 0 
by (Cl). Therefore, 0 ^ L rr^ L rc, as P'{q){dQ2ldr){dQJdr) ^ § ^  
P'(q)(dQ2/8r)(dQl/dc), and the proposition is proved for « =  1.

Now use induction to establish the proposition for an arbitrary number 
of innovations. For any stage k, suppose the proposition is true for stages 
k  +  1,..., n — 1. Then

CO

v(r, k)  =  e~ p'L(rt, ck) dt +  sup e~ pTE(rT, k), 
•'o o

where

E(r, k)  =  f"  e - p'[L(r'„ cI<r)) -  L(r„ c*)] dt -  £  X' ,  
n j = k + 1

r', = c^r) + e - x' ( r - c sir)), t >  0,

\ck + e ;'(r — ck), t ^ O ,

(42)

(43)

(44)

(45)



and s(r) is the maximal index (not less than k +  \)  such that innovations 
k +  1 , j(r) are adopted instantly, conditional on k +  1 being adopted at 
follower cost r. Since the proposition is true from stage k + 1 onwards, s(r) 
is nondecreasing. Hence there are at most a finite number of values of r at 
which s(r) switches value. Now, the Maximum Theorem implies that 
E(r, k)  is continuous in r, since

E(r, k ) =  v(r, k  + 1) -  f " e~ p,L{rt, ck) dt - X k + l. (46)
0

Now at any r where j(r) is locally independent of r, an argument identical 
to that used in the case n =  1 establishes that E (r , k ) is locally non­
decreasing. Combining with continuity, it follows that E(r, k)  is everywhere 
nondecreasing on r > ck. Hence the optimal date of innovation A: is T = 0 
(if E(r, k)  ^ 0) or T =  oo otherwise. This completes the proof. |

Proof o f  Proposition 5.2. Include A explicitly in expression (42) to write

E { r ,k - ,A )= C  e - “']_L(r'n c ^ ) - L { r t, c kn d t -  ^  (47)
j = k  + 1

where r\ and r, are given by analogues of (44) and (45).
First suppose that k  =  n — 1. Then ,y(r, A) =  n for all (r, A). Differentiating 

(47) w.r.t. A, we have

E x(r,«; A)= -  [°° te~(p + ̂ ' t H r ' , ,  c")(r-  c") - L r{rt, cn~ 1 )(r-  c"̂ " 1)] dt. 
Jo

Recalling that the right hand side of (36) is nonnegative, it follows that

E>{r, n; A) ^  0. (48)

Recalling that innovation n takes place if and only if E(r, n; A) ^  0, the 
proposition is established for the last stage. Now use induction to establish 
the result for all k: an argument similar to the case where k  = n — 1 
establishes that E k(r, k; A)<0  at any A where s(r, A) is locally independent 
of A, and for other values of A we use the continuity of E  in A. |
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