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This paper concerns the existence of Markov perfect equilibria in altruistic 
growth economies. Previous work on deterministic models has established existence 
only under extremely restrictive conditions. We show that the introduction of 
production uncertainly yields an existence theorem for aggregative infinite horizon 
models with very general forms of altruism. Journal o f  Economic Literature 
Classification Numbers: 022, 026, 111.

1. I n t r o d u c t io n

An altruistic growth economy consists of a sequence (possibly finite) of 
generations and production technologies. Each generation derives utility 
from  its own consum ption and the consum ptions of some or all of its 
descendants.1 As we have discussed elsewhere (Bernheim and Ray [4 ]) , 
th is  framework is of wide applicability.

* We are grateful for helpful conversations with Peter Hammond, Christopher Harris, and 
Jam es Mirrlees, and to an anonymous referee for useful suggestions. An earlier version of this 
pap er was circulated as Technical Report No. 467, Institute for Mathematical Studies in the 
Social Sciences, Stanford University (June 1985). Ray thanks the Department of Economics, 
Stanford University, his affiliation when the first draft of this paper was written. This research 
w as supported by National Science Foundation Grant SES-84-04164 at the Institute for 
M athem atical Studies in the Social Sciences, Stanford University, Stanford, Ca..

1 Alternatively, each generation might derive utility from its own consumption and the 
utilities of its descendants. This “non-paternalistic” formulation raises different issues, but we 
d o  not consider them here (see, e.g., Pearce [17], Ray [19], Streufert [20]).



A central concept describing intertem poral behaviour for such an  
economy is that of M arkov perfect equilibrium.2 In such an equilibrium, 
each generation chooses consum ption optimally, given knowledge of its 
own endowment and the endowment-dependent behaviour of its des­
cendants. This is true of all possible endowments, and for every generation. 
Since M arkov equilibria are so simple, they may be m ore likely than com ­
plex equilibria to arise in practice, and their properties are certainly m ore 
amenable to study (see, e.g., Bernheim and Ray [6 ]) . In addition, M arkov 
equilibria will undoubtably turn  out to  be very useful in studying th e  
properties of more complex equilibria.3

The natural and basic question is: do M arkov equilibria exist in a  
reasonably wide class of altruistic growth economies? This issue rem ained 
unresolved (see, e.g., Peleg and Yaari [1 8 ]; Kohlberg [1 3 ])  un til 
Bernheim and Ray [4 ]  and Leininger [1 5 ] obtained independent affirm­
ative results for an aggregative (one-commodity) model displaying lim ited 
altruism. Altruism is limited in their models in the sense that each genera­
tion derives utility only from its own consum ption and the consum ption o f  
its immediate successor.4

This existence result is useful but restrictive. In particular, it is im portan t 
to study whether the result can be extended to  (a) a disaggregated m ulti­
commodity model, and (b) more general and far reaching forms o f  
altruism. Regarding (a), recent interesting work by H arris [1 2 ] em ploys 
techniques similar to that in Bernheim and Ray [4 ]  to  prove a  M arkov  
existence result in a many-commodity fram ework.5 But (b) is a tougher 
nut to crack. In fact, Peleg and Yaari [18 ] construct a finite ho rizon  
counterexample, showing the difficulty of obtaining a general result.6

In Bernheim and Ray [6 ] , we showed tha t the presence of uncertain ty  
(embodied naturally in the production technology) paves the way for a  
very general M arkov existence theorem in finite horizon models. U nfor-

2 See, e.g., Dasgupta [8 ] , Kohlberg [13], Leininger [15], and Bernheim and Ray [5 ] , a n d  
in the non-patemalistic context, Loury [16], Streufert [20], and Ray [19].

3 There is an analogy here with repeated games, where history dependent strategies 
incorporate one-shot “punishments” in order to sustain “collusive” outcomes.

4 Such limited altruism models have been explored in a variety of contexts. See, e.g., A rrow 
[2 ], Dasgupta [8 ], Barro [3 ] , Kohlberg [13], Loury [16], and Lane and M itra [14].

5 However, even in a stationary model, Harris [1 2 ] fails to establish the existence of a  
stationary equilibrium. This remains an interesting (and difficult) open question.

6 Two points are relevant here. First, more general history dependent equilibria will still 
exist, as Goldman [9 ] shows for the finite horizon case and Harris [11] demonstrates for the  
infinite horizon model. But Markov equilibria still demand our attention, as we have argued 
elsewhere (Bernheim and Ray [5 ]). Second, it is of some interest that similar problems do not 
arise in a non-paternalistic framework and Markov equilibria can be shown to exist 
(Ray [19]).



tunately, the techniques used in tha t paper are no t well suited for the 
infinite horizon problem.

The purpose of this note is to dem onstrate that the introduction of 
uncertainty also yields an existence theorem  for stationary M arkov equi­
libria in aggregative infinite horizon models with very general forms of 
altruism. The uncertainty is used to show tha t the best response of a 
generation, given its descendants’ strategies, exists. O ur proof depends 
critically on the fact tha t each generation’s equilibrium investment is a 
non-decreasing function of its endowment. As in Ray [19], this allows 
m onotone savings functions to be identified wth distributions of probability 
measures, and endowed with the topology of weak convergence. In 
Bernheim and Ray [6 ] , we have shown that this “m onotonicity” property 
has strong implications for the positive and norm ative features of 
equilibrium program s for a related model. U nfortunately, m onotonicity of 
policy functions depends both upon the existence of an aggregate good, 
and on a separability assum pton for preferences. Therefore, the infinite 
horizon result is m ore limited than its finite horizon counterpart.

We discuss the model and its assum ptions in Section 2. Section 3 states 
and proves the main theorem.

2. T h e  M o d e l

Consider an  infinite sequence of generations labelled / =  0 ,1 ,2 , etc. 
There is one commodity, which may be consum ed or invested. In each time 
period, decisions concerning production and consum ption are made by a 
fresh generation. Thus, generation t is endowed with some initial output, 
y , k  0, which it divides between consum ption, c, ^  0, and investment, x , §  0 
(yt = c, + x t). The return to  this investment forms the endowment of the 
succeeding generation.

The well-being of each generation will be determ ined by the sequence of 
consum ption choices. Specifically, we assume th a t generation f’s preferences 
can be represented by a utility function £ /,:R + -> IR , satisfying the 
following assumptions.

(U .l)  t / , ( < O f =0) =  «(<•,) +  ”(<•,+ !, Ct + 2, •••)•
(U .2) v is continuous in the product topology on real valued

sequences.

(U .3) u is strictly concave in c,.

Remarks, (i) N ote throughout that the model considered here is 
stationary. The techniques used can be adapted to  dem onstrate the exist­



ence of non-stationary M arkov-perfect equilibrium for non-stationary 
environments, at the expense of additional notation.

(ii) Implicitly, we assume that each generation’s well-being is 
independent of its ancestors’ choices. Trivially, this assum ption could be 
weakened to require separability between ancestors’ choices, current 
choice, and descendants’ choices. Further weakening of the assum ption is 
clearly impossible: if ancestors’ choices affect the current generation’s 
ordinal preferences over descendants’ choices, the use of M arkov policy 
functions will, in general, be suboptimal.

The investment chosen by each generation determines the endowm ent of 
its successor up to a random  disturbance, a>,, which is realized from the 
state space [0, 1], Specifically, the production function, / :  R + x [0, 1] -► 
R + , and disturbances co, satisfy the following assumptions.

(F .l)  / i s  strictly increasing and continuous in both x  and co,.
(F.2) There exists y  such that for all co,e [ 0 ,1 ]  and x > y ,  

f ( x , c o , ) < x .
(F.3) co=<a>() “  is an i.i.d. sequence of random  variables. The 

distribution of to is given by an atomless probability measure r\ on the class 
of Borel sets in [0, 1]. Let /i denote the product measure t j '  (see Halmos 
[10, p. 157]).

Remarks, (i) U nder (F.2), if y 0 ^  y, then for all feasible programs 
y , ^ y .  O n this basis, we restrict attention to endowments in [0, j ] . 7 It is 
possible to relax assumption F.2 by using a truncation argum ent (see 
Bernheim and Ray [4 ]).

(ii) It is relatively straightforward to relax the assum ption that the co, 
are i.i.d. However, some subset of past realizations will then affect expecta­
tions concerning future realizations. Thus, one would have to  allow 
strategies to depend on the history of past innovations, as well as current 
endowments. Strictly speaking, the equilibrium strategies would then not 
be M arkov. It would not, however, be necessary to allow conditioning 
of strategies on past actions, independent of their effects on current 
endowments, in order to obtain an existence result.

A M arkov strategy (for any generation) is a function s: [0, y~\ -> [0, v] 
such that for all j e [ 0 , j ] ,  0 ^ s ( y ) ^ y .  Let S° denote the set of 
conceivable M arkov strategies.

We will focus attention on stationary equilibria. Thus, we wish to 
describe the evolution of decisions when all generations select the same 
M arkov strategy, s. The following recursion determ ines the evolution

7 Or, if y  in general, to all feasible programs with v, ^m ax  {y , y} .



of capital stocks, given a>, s, an some initial investment choice x  for 
generation 0

c70(x, co; s) =  x

a ,(x ,co ;s) = s(f((T ,_ i(x ,c o ;s ) ,a ) ,)) , t = 1 ,2 ,. . . .  (1)

This, in turn, determines the evolution of consum ption decisions 

V,(x, «>; s) =f(<rr^ i ( x ,  co; s), co,) -  a,(x, co; s), t =  1, 2,. . . .

Let a =  (<Tj, a 2 ,...)  and y — (y ,, y2, ...), and define

V(x, co; s) = v(y(x, co; s)).

The strategy s e  S° constitutes a (stationary M arkov perfect) equilibrium 
if for each y e  [0, y ] ,  solves

max u (y  — x )  + E m V(x, a>;s). (2)
O^.x < y

Remark. N ote that by our continuity assum ption (U.2) and the com­
pactness of feasible program s in the product topology, the expectation in 
(2) is always well defined provided V  is measurable.

3. E x is t e n c e

We now state our central result.

T h e o r e m . Under the stated assumptions, there exists a stationary 
M arkov-perfect equilibrium. It is always the case that the equilibrium policy 
function, s, is non-decreasing, and may be chosen to be upper semicontinuous.

The general line of proof used below is similar to  tha t of Ray [19], and 
some specific steps are closely related to argum ents therein. We have noted 
these steps throughout, generally leaving them  to the reader, who may wish 
to consult Bernheim and Ray [7 ]  for complete details.

Proof. O ur first key lemma establishes tha t best response policy 
functions are always non-decreasing. The proof is identical to that of 
Theorem B in Ray [1 9 ]; we therefore om it it.

L e m m a  1. Fix s e S ° .  Suppose that fo r  y e  { y 1, y 2}, y 'e  [0,_p] ( i=  1, 2), 
y ] > y 2, problem  (2) is well defined. Further, suppose x l and x 2 are corre­
sponding solutions. Then x l 2: x 2.



Henceforth, we will restrict attention to non-decreasing, upper semicon- 
tinuous (use) functions. Let S ^ S °  denote the set of such functions. O ur 
next two lemmas establish tha t when future generations select s e  S, then 
problem  (2) is well defined.

L em m a 2. Suppose s e S .  For each x e [ 0 ,  y~\, and 1 2 :0 ,  o ,(x ,co ;s) is 
continuous in co almost everywhere.

Proof. By induction. Suppose that a ,_ j  does not depend upon 
(cot , a>l+ l, ...), and that <x,_, is continuous in co alm ost everywhere (this 
holds for / =  1). N ot then that a, does not depend upon (co, + i ,co, + 2, ...) 
(inspect (1)). Denote the set of discontinuities of a ,_ x by x. Since s is 
non-decreasing, it has at m ost a countable num ber of discontinuities on 
[ 0 ,y];  call them ( d u  d2, ...>. Let D',= { c o \f(o ,_ l(x,co;s),co,) = d i}. a, is 
discontinuous at co only if c o e D ,_ u  or coeD', for some i. S in c e /is  strictly 
increasing in co,, and since a ,_ l does not depend on co,, every (coT)T#,- 
section of D\ consists of a single point, and therefore has measure zero. 
Thus, D', has measue zero (see Halmos [10, p. 147]). Since D, is contained 
in the union of a countable num ber of sets of measure zero, it has measure 
zero. This completes the induction step. Q.E.D.

Two corollaries follow immediately:

C o r o l l a r y  2 .1. Suppose s e S .  For each x e  [ 0 ,  j ] ,  a(x,co;s), 
y(x, co; 5), and V(x, co; .s) are continuous in co almost everywhere.

C o r o l l a r y  2 .2. Suppose s e S. For each x ° e [ 0 ,  j ] ,  define D (x°) =  
{ c o ° e [ 0 ,  1 ]° °  | V(x, c o ° ;s) is discontinuous in x  at x ° } . For all * ° e  [ 0 , y~\, 
D (x°) has measure zero.

L e m m a  3. Suppose s e S. Then fo r  all x, y, 0  ^  x  <  y  ^  y,

is well defined, and continuous in (y, x).

Proof. The first term is continuous in (y , x). V  is simply the com posi­
tion of measurable functions, and is therefore measurable. Since v is boun­
ded on the space of all feasible programs (see (U.2)), the expectation is well 
defined. To show continuity for the second term, take some sequence

u ( y - x )  + E w V(x, co; s)

x n -> x. Then



By Corollary 2.2, V(x", to; s) ->■ V(x, co; .v) alm ost everywhere. Further, since 
[ 0, y ] K, which is com pact in the product topology, and since v 

is continuous, V  is bounded. Applying Lebesgue’s dom inated convergence 
theorem establishes continuity. Q.E.D.

Due to  difficulties involving the behaviour of policy functions at y, it is 
convenient to  work with quasi-equilibria, defined as follows. An s e  S  is a 
quasi-equilibrium if for each y e  [0, y ), s ( j ')  solves (2). Let 5 c S  consist of 
the functions s e  S  such tha t s (y)  =  y. As in Ray [1 9 ], S  can be thought of 
as the set o f distribution functions on [ 0, j ]  (where probability is rescaled). 
Our next lem m a indicates tha t if we start with some element of S, maxi­
mization for each y e  [ 0, _p] generates a unique “quasi-best” response in S.

Lemma 4. For each s e  S, there is a unique function s' = H(s)  such that 
s' e S, and fo r  all y  e  [0, _p), s'(j>) solves problem  (2 ).

Proof. Let h(y )  be the correspondence which m aps to  solutions of (2). 
By Lemma 4 and the maximum theorem , h is upper hemicontinuous. Let 
.v'fy) =  max {/;(>>)} for y  e  [0, _p), and s ' (y)  = y. Clearly, s' e S. Now suppose 
there is another u.s.c. selection from h(y),  s" e S .  For some y ,  s'(,y)>.s"(j>). 
Since s" is u.s.c. there is some y > y  with 5'( j> )> 5"(^). But this contradicts 
Lemma 1. Q.E.D.

Lemma 4 defines a mapping, H: S  -» S. A fixed point of this m apping is 
a quasi-equilibrium. We need to establish continuity of H. The key step is 
to prove that E w V  is continuous in s.

Lemma 5. Suppose some sequence <s">o° 5  converges to s e  S. Then 
fo r each x  e  [0, y ] , E a V(x,  co; sn) -> E m V(x, co; s).

P roo f Choose any co at which a  is continuous in a>. Suppose 
a,_  ,(x, co; s") -* a,__, (jc, co; 5) (this holds for t =  1). By assu m p tio n ,/is  con­
tinuous. Further, since a,(x, co; s) is continuous in co, a t co, and since / i s  
increasing in co,, s  m ust be continuous a t / (<r,_ ,(x, d>;s), co(). Thus, using 
(1), ct,(x, co; s") - » a ,(x , co;5). By induction, this holds for all t. Since / i s  
continuous, y(x, co; j ”) ^  y(x, co; j )  in the product topology. By (U.2), 
V(x, d>; s”) -» V(x, <b; .?).

By C orollary 2.1, a  is continuous in co alm ost everywhere. Thus, by the 
peceding argum ent, V(x, co; sn) -> V(x, co; s) alm ost everywhere. Combining 
this with the boundedness of V  (see the proof of Lemma 3) and Lebesgue’s 
dom inated convergence theorem  yields the desired result. Q.E.D.

G iven Lem m a 5, one proves continuity of the m apping H  in a m anner 
completely analagous to  the proof of Lemma 6 in Ray [9 ] , From  Lemma 3 
of Ray [1 9 ] , if 5  is endowed with the topology of weak convergence, every 
continuous function from 5  to  itself has a  fixed point. Thus, a quasi-equi­



librium  exists, with some policy function s e  S. Let x° solve (2) for y  = y  (by 
Lemma 3, jc0 exists). Define s(y) =  .y(y) for }>e[0, y), and 5(^) =  x° for 
y  = y. Since / i s  increasing in co, (so that y , = y  iff co, =  1), and since rj is 
atomless (so that n l { c o e  [0, l ] 00 | cot = 1 for some ?}] =  0), it follows that 
s is an equilibrium. Lemma 1 assures us tha t s must be non-decreasing. By 
construction, s is use. Q.E.D.
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