Mathematical Social Sciences 18 (1989) 99-105 99
North-Holland

NOTE
THE OPTIMUM SIZE DISTRIBUTION OF FIRMS*

Satya R. CHAKRAVARTY

Indian Statistical Institute, Calcutta, India and Institute Jur Wirtschaftstheorie und Operations
Research, University of Karlsruhe, D-7500 Karisruhe, F.R.G.

Communicated by F.W. Roush
Received 11 July 1988
Revised 22 November 1988

Anindustry performance evaluation function, which is used for ranking alternative output distri-
butions, is usually expressed as a trading-off of the total output and a ‘numbers equivalent’, an
inverse index of industrial concentration. Using the Shannon entropy numbers equivalent, this
paper determines the output distribution that maximises the industry performance evaluation
function subject to the constraints that (i) a fixed total output is produced by the industry and
(ii) the total cost of producing the output is fixed. For a simple cost function, whose marginal
is linear in logarithm of output, the optimum distribution will be of the Pareto-type.
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1. Introduction

It has been often noted that the size distribution of firms, like that of incomes,
has a single mode and a highly skewed upper tail.! Many authors have regarded t.he
growth of firms as a purely stochastic phenomenon resulting from the cumulative
effect of the chance operation of many factors acting independently (see Ha‘nnah
and Kay, 1977, for further discussions). But the stochastic process theories attribute
the observed pattern of the size distribution of firms entirely to the operation of the
laws of chance. Thus, these theories rely too little on the ecohomic factors under-
lying the distribution of firm size. '

In this paper we adopt a normative approach to derive the size distribution of
firms. Essential to this alternative approach is the Blackorby-Donaldson-Weymark

* For comments and suggestions, I am grateful to J. Graaff, A. Sandmo and participant§ in a.semmar
3t the University of Karlsruhe. I am also grateful the German Research Foundation for financial he%p.

' We assume that a firm’s size is measured by its physical output. The formal discussion applies
tqually well to any other scalar measure of a firm’s performance.
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(1982) industry performance evaluation function, a Cobb-Douglas function of tota.
output and an inverse measure of concentration (a nwumbers equivalent index).
Using the Shannon (1948) entropy numbers equivalent index, this paper finds th
size distribution of firms which maximises (minimises) the industry performanc:
evaluation function (concentration) subject to the consw®raints that (i) a fixed tote.
output is produced by the industry, and (ii) the total cost of producing the outpu’
is fixed. The second constraint is adopted to hold thes resources available to th:
industry constant, which is appropriate in a partial equiilibrium evaluation. Thus
we determine the optimal output distribution in a secorzd best framework in whic:
a policy maker has direct control over the distribution of output but not over th:
resources available to the industry.

For a simple cost function, whose marginal is linear in logarithm of output, th:
optimal distribution has the Pareto density function. Therefore, we have shown hov
the Pareto distribution, as a size distribution of firmss, can be generated from :
second best optimization framework.

The paper is organized as follows: In Section 2 we «liscuss the industry perfor
mance evaluation function. Section 3 derives the optimu m size distribution of firms:
We make some concluding remarks in Section 4.

2. The industry performance evaluation function

The number of firms in an industry is indexed by n € N\, where N is the set of posi:
tive integers. For a given ne N, the set of all output djstributions is D", with :
typical element x=(x;,x,...,X,), where D" is the non-negative orthant of th:
Euclidean n-space R” with the origin deleted. The set of all possible output dis-
tributions is D:=J,_n D". For all neN, xe D", we write % for the sum of th:
components of x and (zy, 23, ..., Z,) := X/X for the vecto x of output shares. For an:
function H:D — R the restriction of H on D" is dendSted by H™.

The Blackorby-Donaldson-Weymark (1982) indust ry performance evaluatior
function is defined by E: D — R! where

E"x) 1= (%) ("), a

neN, xeD", 0<r=<1 and ¢g:D— R! is a numbers equivalent index. Thus the
evaluation of industry performance has been expressed g5 a trade-off between totz
output and concentration.? In the limit as r approaches one E" equals total outpu:
as r approaches zero it is the numbers equivalent.

2 . . .
When all the 7 firms in the industry have equal market sharess a numbers equivalent takes th
value n.

3 Thic § .
".Fl.ns is analogous to the requirement that welfare evaluation of jncome profiles should involve &
explicit statement of the trade-off between efficiency and equity. Sese Chakravarty (1988).
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The Shannon (1948) entropy formula Q: D — R! is defined by

Q"(x) := —.; z;logz; )

for all n e N, xe D" with the convention that 0log 0=0. Q is an inverse measure of
concentration; a highly concentrated industry will take on a lower value for Q and
is expected to be closer to the monopoly end of the spectrum from monopoly to
competition than an industry with a high value for the index. The Shannon entropy
numbers equivalent index is obtained by subjecting the formula in (2) to an expo-
nential transformation. Thus, the two indices are ordinally equivalent.*

We now consider analogue to (2) for output distributions defined in the con-
tinuum. Let F be the cumulative distribution function [F(x) is the proportion of
firms producing output less than or equal to x] on the interval [, v], where
0<u<v=oo. We write f(-) for the density function of the size distribution of firms
and m for the mean output. Then it is easy to see that the continuous translation
of Qin (2) is given by

v xf(x) log (xf(x)) dx.
m m

Q) := —j 3

u
3. The optimum size distribution of firms

Assuming that all the firms in the industry face the same technology, the feasi-
bility constraints introduced in Section 1 can be written as

gvxf(x) dx = m, “4)
u
SV s(x)f(x)dx=C, &)
u

where s is the identical cost function for the firms and C is the given cost for pro-
ducing m amount of output. Clearly, assumptions regarding the technology will
determine the shape of the cost function. For example, if the technology is subject
to constant returns to scale, then the cost function will have a constant average.

Because output is fixed, maximising the industry performance evaluation func-
tion is equivalent to maximising the numbers equivalent or an ordinal transform
of it.

4 Q has been popularised by Theil (1967) as an inverse concentration index. Alternative characterisa-
tions of Q or its numbers equivalent form have been carried out by Chakravarty (1988a), Chakravarty
and Weymark (1988) and Gehrig (1988).
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Definition. An output distribution in the continuum will be called optimum if its
density function maximises the objective function (3) subject to the constraints (4)
and (5)..
Theorem. The density function of the optimum output distribution is given by
k
fo=7 exp[~(am/x)(s(x)~ (b/a))}, 6)

where k>0 and, a and b are constants such that f; Sx)ydx=1.

Proof. We will invoke the Euler—Lagrange technique® for proving the theorem.
Let

L) = —jv "{fl") log (x{ix)) dx—1, H

vxf(x) dx—m]

U H

-lz[jvs(x)f(x) dx—C]

u

< logm—~ jv XJ;(ZX) log(xf(x)) dx — 4, [ jvxf(x) dx— mjl
u #

~a| | st ax- c).

]

where A| and A, are Lagrange’s multipliers.
Let h:[u,v]— R' be any function such that j” h(x)dx=0. For any arbitrary &

denote L(f+ ®h) by g(®). If Q(F) attains the maximum for some f, then g(&)

attains the maximum for ® =0. Now

v

£@ =togm | | ¥/ + @) log( () + @) dx
u
-4 [ va(f(x) + @h(x)) dx~ m]
H
-4 [ E S)(f(x) +@h(x)) dx — C] .
U

v

g@® =~ | ¥4 log(x) + RO dx
u

| xh(x)
~— h
m X I+ @) e o &

-A E xh(x)dx— 2, jvs(x)h(x) dx.

“ H

3 See Courant and Hilbert (1953) for a discussion.
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Since g’(0)=0, we have

—% jvxh(x) log(xf(x)) dx - jv (Al + %)xh(x) dx

u I
v
-4, j s(xYh{x)dx = 0. N
u
We rewrite (7) as
j {—;% log(xf(x))+ <,11 + %>x+ Azs(x)] h(x)dx=0. (8)
u
Now (8) holds for all /# such that j; h{x) dx=0. Therefore, we have
X |
- log(xf(x))+ <Al + E>x+ Ays(x) = A3, )
where A is some constant. From (9) we get
1T 1\, miy s(x)
f(x)—xexpk—m(\)u1+m>+ ¥ —mh, 3 } 10)
Clearly we can rewrite (10) as
k [ am b
= - —— —_—— !(1 y \,,
Jlx) =T exp | <S(X) a)} (11}

where k>0 and ¢ and b are constants such that j; flx)ydx=1.
To ensure that f given by (11) maximises Q(F) we need to verify the second order
condition g”"(0)<0. Now

, L (xh(x))? v
p - _ Y4 12
8@ m g,l x(f(x)+ ®A(x)) x (12)
which shows that
s 1 [V xH(x)
g70) = po ju s dx <0. (13)

Thus f given by (11) is associated with a maximum of Q(F). This completes the
proof of the theorem. [

It is important to note that exact identification of the parameters appearing in (11)
has not been made. The parameters &, @ and b are determined by constraints (4) and
(5) and the condition f; f(x)dx=1 as soon as the cost function s{x) is known.

A second feature is that the general formula in (11) shows the optimality of a long
upper tail although we maximise the industry performance evaluation function.
That is, the theorem shows that in the optimal situation firms of small as well as
of large sizes will exist side by side. To explain this feature let us consider two cost
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functions s, and s, where s, has a constant average J and s, has a declining average
over the interval [y, v], 0<u<v<oo. Clearly, for all x>x,, where X is the level of
output at which s,(x) =s,(x), s, has a smaller marginal than s;. We can also show
that for all x> x,, f;(x) < fo(x), where f; is the optimal density corresponding to the
cost function s;, i=1,2. That is, f, has a thicker upper tail than f;. This means that
if efficient production is to be ensured then the optimal situation should allow the
existence of more large firms (producing output more than x, and controlling a
reasonable portion of aggregate output) whenever s, is adopted against s,. But by
way of doing this we introduce some inequality into the size distribution of firms.
Thus, the optimal situation shows a trade-off between efficiency in production and
equity in the size distribution of firms. Equivalently, we say that optimality of along
upper tail is compatible with trade-off between production efficiency and distribu-
tional equity.

We may now illustrate the general formula in (11) by an example. Suppose that
the cost function is of the form

s(x):=%+xlogx. (14)

The marginal associated with (14) is linear in log x and takes non-negative values
if x=e!. It can therefore be said that the threshold parameter u for the optimal
output distribution corresponding to the cost function in (14) is given by el We
also note that for this cost function (5/a)—e~! can be interpreted as the fixed cost
of production. Substituting s(x) given by (14) in (11), we have

fx)=kx ", el=x<o, (15)

where r=am>0. Using the fact that f:fl f(x)dx=1, we can rewrite f(x) in (15) as
S =re’x7T L xze >0, 16)

which is the Pareto density function with the threshold parameter y=¢~!-r here

becomes the Pareto inequality parameter. It is obvious that the distribution has a
finite mean if r>1.

4. Concluding remarks

Most of the existing characterisations of the size distributions of firms place too
little reliance on economic theory. In this paper we considered the problem of gener-
ating the most preferred output distribution in the continuum that maximises the
industry performance evaluation function subject to a set of feasibility constraints.
A special case of the framework establishes the Pareto distribution as the most
preferred size distribution of firms. Thus, we have a characterisation of the Pareto

distribution as the size distribution of firms without recourse to stochastic foun-
dations.
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