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A Novel Muitiseed Nonhierarchical
Data Clustering Technigue

D. Chaudhuri and B. B. Chaudhuri

Abstract—Clustering technigques such as K-means and Forgy as well
as their improved version ISODATA group data around one seed point
for each cluster. It is well known that these methods do not work well if
the shape of the cluster is elongated or nonconvex. We argue that for a
congated or nonconvex shaped cluster, more than one seed is needed. In
this paper a multiseed clustering algorithm is propesed. A density based
representative point selection algorithm is used to choose the initial seed
points. To assign several seed points to one cluster, a minimal spanning
tree guided novel technique is proposed. Also, a border point detection
algorithm is proposed for the detection of shape of the cluster. This border
in turn signifies whether the cluster is elongated or not. Experimental
results show the efficiency of this clustering technique.

Index Terms—Classification, minimal spanning tree, multiseed cluster-
ing, pattern recognition.

1. INTRODUCTION

Cluster analysis is the formal study of algorithms and methods
for grouping or classifying objects and data. Clustering is a useful
ad important technique in image processing and pattern recognition
2l (91, [11}, (15], [16]. There exist two classes of clustering
techniques, namely hierarchical and nonhierarchical technigues. A
hierarchical clustering is a nested sequence of partitions, whereas
a nonhierarchical clustering is a single partition. K -means [2] and
the Forgy [8], [19] algorithms are among the oldest nonhierarchical
techniques. Another approach, namely ISODATA [20] clustering is a
modification of A'-means technique by including additional criteria to
obtain better clusters. The A -means class of methods start with some
iitial seed or representative points and grow cluster around them.
There exist two basic problems related to all seed based techniques.
One is the choice of appropriate initial seed points. The other problem
s that these techniques are effective for clusters of spherical and
ellipsoidal shape. For clusters of more complex and elongated shape,
good results may not be obtained. This paper is concerned with both
problems.

From the basic idea of A -means algorithm, it is clear that a seed
point has the best capability to collect data if the cluster around it
is hyperspherical in shape. Any elongated or nonconvex cluster can
be considered as the union of a few distinct hyperspherical clusters.
To capture the data of an elongated cluster, we should, therefore,
tonsider more than one seed point in the cluster. This is the central
idea of the multiseed clustering method proposed in this paper.

To get an idea about the shape of the cluster, it is useful to find
out the border points. The border points signify whether the cluster is
tlongated or not. A novel border point detection algorithm is proposed
in Section II. According to the shape of the cluster one should be
tble 10 find automatically the seed points. The seed point detection
algorithm and the splitting technique are proposed in Section III. To
assign multiple seeds to a cluster a novel merging technique based
o1 minimal spanning tree of seeds and density at the border region
of two initial clusters is also proposed in Section IIL. The results on
Synthetic data are presented in Section IV.
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Fig. 1. Nearly opposite points with respect to a fixed point.

II. BORDER POINT DETECTION

Given a homogeneous set of points in two-dimensional (2-D) and
three-dimensional (3-D) space, we have a perceptual notion about the
points lying on the border as compared to those of the interior of the
data set. Detection of the border points and the interior points of a
dot pattern is a difficult job. In our work [17], [18] we described
an approach where the low density points are border points. But
density alone cannot capture the notion of border points, because
if the interior portion of any pattern is sparsely populated then the
interior points are also detected as border points. We have a perceptual
notion about the points lying on the border as compared to those
of the interior of the data set. Border points are not surrounded by
other points in all directions while the interior points are. The present
approach of border point detection is based on this observation.

Definition 1: A point x € S is said to be a nearly opposite point
of y € S with respect toz € Sif x, zandy (x #z and y # z)
almost lie in a straight line, i.e., if

d(x,y) ~
I y)s = d(x,z) +d(z,y) !
where d(x,y) means the Euclidean distance between two points X
and y.
Fig. 1 shows that (x,y) are nearly opposite points with respect to 2.

Note that if x is an opposite point of y then y is also an opposite
point of x with respect to z. I(x, ¥). may be called the degree of
oppositeness of x and y with respect to z.

Consider a neighborhood D around z. Let I, be the average of I(x.
¥)z; X, ¥y € D. If I, has a small value then z should be a border
point in the neighborhood. Intuitively, we make a threshold at %

Definition 2: A point x € § is said to be border point if the
average value of the degree of oppositeness, Ix < %

Definition 3: A point x € S is said to be interior point if the
average value of the degree of oppositeness, Ix > %

The degree of oppositeness I{x, y); satisfies the following prop-
erties.

1) I(x,y). is scale invariant.

2) I(x,y), is invariant under rotation and translation.

3) I(x,¥y)z € [0.1] for all x, y with respect to z.

4) I(x,y), = 0iff x = y.

5) I(x,¥), is symmetric. i.e. I{x.y)z = I(y,x), for all x and

y with respect to z.

Let m be the desired number of border points. The border point
detection algorithm of a data set § = {X1.Xz..... Xn} C RV is
as follows.

Algorithm BPD:

Step 1. Find the value of I, forall¢ = 1.2,.... .

Step 2. Rearrange the points according to the increasing order of
their value of Ix provided, Ix < %

Declare the first k ranking points as & border points. if
they exist.

To test the efficiency of the border point detection (BPD) algorithm,
several 2-D data were generated. Fig. 2(a) shows a nonconvex shape
data. The border points of this data are marked by dark smalf squares

Step 3.
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Fig. 2. Nonconvex shaped data. (a) A nonconvex shaped data of size 570.

(b) Border points obtained by applying BPD algorithm.

(Fig. 2(b)]. Here k is nearest integer to 48% of the total number of
data.

Another data, Fig. 3(a) shows an overlapping Gaussian cluster data
of size 107. The border points are shown as Fig. 3(b). Here k is
nearest integer to 30% of the total number of data.

The algorithm BPD is also useful for the basic idea about the
shape of the dot pattern. If the dot pattern is of hyperspherical shape
then the maximum and minimum of pairwise distances between the
border points are almost equal. If the dot pattern is elongated or
nonconvex then the difference between the maximum and minimum
of pairwise distances is usually greater than some threshold value.
So, for capturing any elongated or nonconvex cluster, we should

have more than one seed point.

(a)

(b)

Fig. 3. Overlapping Gaussian cluster data. (a) An overlapping Gaussian
cluster of size 107. (b) Border points obtained by applying BPD algorithm.

II. MuULTISEED CLUSTERING TECHNIQUE

Usually a clustering method has three main aspects namely.
initialization, cluster updating iterations and stopping criteria. At the
initialization stage, an initial partition is created and the (one or more)
seed points corresponding to each cluster are defined. During each of
the cluster updating iterations, the partitions as well as the positions
of the seed points are modified. The stopping criteria determine when
the execution of the method should end.

A. Initial Partitioning and Multiseed Assignment

The choice of the seed points depends on the shape of the clusters.
Usually, the nonconvex or elongated cluster needs large number of
seed points, while for convex and compact clusters one seed pef
cluster is sufficient to capture the data. The seed point selection
problems may be understood as follows.

Consider a set of objects represented as point data in R? feature
space. Given a set S of n data, we address the problem of selecting
a small subset V* C § of ng < n data that faithfully represents the
spatial organization of original data. The solution to this problem can
find applications in data compression, data clustering [2], [9]. (221
[23], pattern classification as well as statistical parameter estimation
[71, [9]. For example, in clustering, many algorithms start with 2
few seed points, where each seed point represents the core of o™
cluster. The minimum distance classifier or the k-nearest neighbor
classifier considers the seed points as the best patterns represemin,‘l
the classes. Quite often, a single best representative point is assumed
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10 be the mode of the pattern set. Density and mode estimation are
wo classical problems in statistics related to the estimation of seed
points. In many situations the problem of finding best representative
points may be considered as a generalization of mode estimation and
~ sed point detection problem.

In the literature of cluster analysis there exist several approaches
of seed point estimation [2]. Macqueen [12] chooses the first JX
data units in data set as the initial seed points. Forgy [8] takes
any desired partition of the data units into K mutually exclusive
groups and compute the group centroids as seed points. Astrahan
[1] computes the density for each data unit as the number of other
data units within some specified distance, order the data units by
density and choose the one with the highest density as the first seed
point. The subsequent seed points are chosen in order of decreasing
density, subject to the stipulation that each new seed point is at least a
minimum distance away from all other previously chosen seed points.
In another approach Ball and Hall [4] have suggested that the overall
mean vector of data set is considered as the first seed point. The
subsequent seed points are selected by examining the data units in
their input sequence and accepting any data unit which is at least
some specified distance, say , from all previously chosen seed points.
This process is continued until i’ seed points are accumulated or the
data set is exhausted. Ling [11] suggests that (K, d)-cluster has the
property that its elements are within a distance d of at least K other
elements of the same cluster and the entire set can be marked by a
chain of links each of length less than or equal to d. But there are
10 guidelines about how to choose I and d.

Chaudhuri et al. [6] suggested an approach for finding the seed
points in plane that is dependent upon the local densities of the points.
In this algorithm some outlier rejection was accomplished and the
ordering was done in terms of cumulative density. Also, there are
some guidelines about how to choose A and the distance d. But one
of the drawbacks of the algorithm is that the chosen seeds are close
o one another if the data is densely populated.

In this paper, a new parameter-free seed point detection approach
is proposed where it is necessary to estimate the density at the data
points. For this purpose we developed a kernel-based data driven
density estimation procedure [17] which is briefly described below.

Consider the given set of points S = {x1,Xz2,...,Xn} C R?.

Suppose F'(y) is a Borel scalar function on R? such that

Sup | F(y) < >

| F(y)dy < oo
yeER? R

lim |y]?F(y)=0

ly|—o0

/WF(y)dy=1

where |y| denotes the length of the vector y on R?. F(y) is termed
the kernel of the density estimator. Let f(y) be the actual density
function on R?. The estimated density is defined as

1 - X — Xj
fn<x)—m;F( - ) (m

where x,,x2,...,%, are independent and identically distributed
tndom vectors following the density f and {hn} is a sequence of
positive constants satisfying h, — 0 and nhi — oco. We take the
villue of h,, be equal to

/ 1
q
hy, = (—n>
n

where ¢ is the dimension ¢,, is the sum of the edge weights of the
minimal spanning tree (MST) [13], [14], [21] of the data set S; edge
weight being the Euclidean inter-point distance. We take the kernel

F(x) as
1 . .
_far iffxi -2 <1 Vi=1,2,....¢
F(x) = {0 otherwise
where x; = (zi1.Ti2....,25) and x = (1, 22....,2,) and ’

denotes the transpose.

So at the point x;;¢ = 1.2,....n, let 4; = {y : |lxi — y[| <
h.,y € S},i=1,2,...,n, the density of (1) can be expressed as
x #A4;, 1i=12,....n 2)

"= Qannd
where # A means the number of points of the set A.

It has been proved in [17] that the estimated density is consistent
and asymptotically unbiased.

Seed Point Detection:

Step 1: Find the radius h, as discussed before.

Step 2: Compute the density for each datum x from (2).

Step 3: Find the border points of the data by applying BPD
algorithm.

Step 4: Find the point where the maximum density occurs, say
x1*. Count the number of points of the present cluster,
say n.

Step 5: Let max; and min, be the maximum and minimum dis-
tances of the border points from the point x1*. Compute
Afy, = max, — mine. If Afy < ¢ then go to Step 7. If
Afy, > 6 then go to Step 6. (6 is the predefined threshold
value.)

Step 6: Remove the nearest neighbor points of x1* whose dis-

*

tances from x;* are less than or equal to min; from the
present cluster. Let S; = {y : ||x1* — y|| < min,} and
mo = #5;. Remove these mo points of Sy from the
present cluster. If n — mo is very small then go to Step 7
otherwise n + n — mo and go to Step 4.

Step 7: Stop.

Depending on # the algorithm SPD can automatically decide the
number of seed points in the cluster. The parameter ¢ is a measure
of circularity. If 8 is zero the data is perfectly circular which is
practically impossible. If § is large, then one seed should take care
of an elongated set of data. Thus, § should be a small quantity but
larger than the minimum interpoint distance in the data set. Let 1o be
the number of seed points in the cluster. The core (seed point) of the
cluster is the mode, i.e., the highest density point. max;, and ming
are the maximum and minimum distances of the border points from
the core (seed point). So, Step 5 of the algorithm SPD will decide
whether the cluster is elongated or not. If the cluster is hyperspherical
in shape then A f, will be almost equal to zero.

K -means type algorithm can capture the data of hyperspherical
shape and any elongated or nonconvex cluster can be considered as
the union of a few distinct hyperspherical clusters. So, to capture
the data of an elongated cluster, our next task is to define the initial
clustering and to label the seeds of each cluster. The following stages
are proposed for the purpose.

1) Assign the data to the seed points by nearest neighbor rule,
thus forming ng clusters, each cluster containing only one seed
point.

2) Merge two or more clusters until " clusters are obtained.

The second stage contains two steps. In the first step a few
candidate pairs out of "® C cluster pairs are chosen. In the second
step, only a few of these candidate pairs are merged. To find the
candidate pairs, we generate a minimum spanning tree of 1o seed
points. A pair of clusters is considered for merging only if their seed
points form an edge in the MST. The merging algorithm is as follows.
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Fig. 4. Seed point assignment procedure.

Merging Technique [MT]:
Step 1: Find the number of points, No of the two clusters which
are to be merged. Let C(x) and C'(y) be two clusters of
the two seed points x and y which are to be merged and
No = #C(x) U C(y)

Find the midpoint, z of the two points x and y.

Find the border points by applying BPD algorithm of each
C(x) and C(y) whose distances from z less than the
distance between z and x or y. Let B(C(x),C(y)) be
the border points set such that

x).C(y))

where d(x,y) is the euclidean distance. Let m =
#B(C(x).C(y)).

Find the border points of these m border points which
belong to C'(x) and C(y), respectively. Let i border
points called a;. az.....a; belong to C'(x) and remaining
J = m — i border points called b;.b2...., b; belong to
Cly).

Find mo = [p% No]. [a] means the largest integer < a.
For each ay. k =1.2,.... i find mo nearest neighbors in
C(x)UC(y). Let ni(x) and ni(y) be the neighbors of
ay coming from C(x) and C(y), respectively. Similarly
for each by, k = 1,2,....7, let nj.(x) and n}(y) be the
neighbors of b; from C(x) and C(y), respectively.
Find the value

Step 2:
Step 3:

={X:d(X,z) < d(z,%)}

Step 4:

Step 5:
Step 6:

Step 7:

Qlx,y)

Step 8: Go to Step 1 until all candidate pairs, which are from an
edge in the MST of the no seed points, are considered.

Order the edges in the MST in decreasing magnitude of
the () values. Go on deleting the edges corresponding to
the top of the order list until /\" subtrees (a subtree can be

a single node as well) are obtained.

In this algorithm MT, Step 3 to Step 7 are used to see whether the
data of the border region of the two clusters are densely populated
or not. In particular, for Step 6 that the ratios of ni(x) and
nely), i€, Dop=y Mk y)/Z',\ | 7k(x) and nj(x) and n}(y) ie.
i, ni(x)/ 34— ni(y) should be close to 1 if the two clusters
C(x) and C(y) are to be merged. Thus, the merging criteria can be
decided on the smallness of the quantity Q(x.y) (defined in Step

Step 9:

C(Sy)

7). This @) value is assigned to the edge of the MST between the
nodes x and y.

Note that only p should be specified in this algorithm. Our
experience is that p = 10 is a good choice. The choice of p depends
more on the number of data than its dimensionality.

The procedure is explained through Fig. 4. Here the number of
seeds ng = 3 and these three seeds are denoted as s1.s2 and s;.
Let the initial clusters corresponding to the seeds s;.s2 and s3 be
called C'(s1),C(s2) and C'(s3), respectively. In Fig. 4 these clusters
are enclosed by continuous lines. The MST of these seeds is given
by the dashed lines. Now, the cluster pairs (C'(s1),C(s2)) as well as
(C(s2),C(s3)) are considered for merging because there are edges
between s; and s2 as well as between s2 and s;.

At first, consider C'(s2) and C(s3) for possible merging. Let ¢2 be
the midpoint of the line 57535. According to Step 3 of MT algorithm
the border points are chosen from C'(s2) and C(sa). Thus, eight
border points numbered by 1.2..... 8 comes from the cluster C'(s3)
and seven border points numbered by 9.10,.... 15 comes from
C(s3). Here m = 15.¢ = 8 and j = 7. Now, the number of points of
the union of two clusters is 83, i.e., 83 = #C(s2)UC(s3). Consider
10% of the total, i.e., eight neighbors of each of the border poinis
numbered 1.2..... 15 and check which cluster they are coming from
(Step 5 and Step 6 of algorithm MT). For example, take the data
numbered 1. We have to compute n1(s3) and n1(s2) where ni(si!
is the number of its nearest neighbors (out of a total of eight) coming
from C'(s; ), k = 2.3. The nearest neighbors are enclosed by broken
lines and it is seen that n(s3) = 0 and n1(s2) = 8. In this way.
contributions for all 15 borders are collected to get the value of
Q(s2,s3) as defined in the algorithm MT in Step 7.

The same procedure should be repeated for the pair (s1.s2)
Here out of 17 border points of C{s;) U C(s2), ten border points
numbered by 1,2,..., 10 and seven border points numbered by
11,12,...,17 comes from C(s;) and C(s2), respectively. Here
#C(s1) U C(s2) = 110. So [10% of 110] = 11. Now for each
of the border points, again, 11 nearest neighbors are used to comput¢
Q(s1.82). It can be found that Q(s1.52) > Q(s2.53). So, the edx
between sy and s; is deleted and two clusters are obtained. In one
cluster there are two seeds while in the other there is only one
seed. This cluster is subject to cluster updating iteration described
below.

B. Cluster Updating

Now we consider the cluster updating iterations. Each of the
iterations i) redistributes the data and ii) updates the positions of
seed points of each cluster. Suppose that the number of seed point®
in the ith cluster C; is n;. The distance of x from the cluster (:
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is defined as the minimum of the Euclidean distances of x from the
n; seeds of C;. During the redistribution phase, x is assigned to C;
if its distance from C; is smaller than its distance from any other
cluster.

To update the seed point position, the data in the cluster C; is
distributed among its n; seeds so as to generate n; subclusters. The
centroid of each of these subclusters denotes a new seed.

C. Stopping Criterion

The cluster updating process is stopped if either a prespecified
number of iterations are completed, or the clustering results between
two consecutive iterations do not change significantly.

IV. EXPERIMENTAL RESULTS

To test the efficiency of the algorithm, several muitidimensional
random data clusters were generated. We demonstrate the results on
2D data only. Fig. 5 contains two clusters, one is elongated and
another is compact. Seven seed points are automatically found by our
SPD algorithm. The seed points (marked by dark squares) and clusters
around them numbered 1.2, ...,7 (marked by dashed circular arc)
are shown in Fig. 5(a). The MST generated by the seed points are
aso shown in Fig. 5(a). Some edges of the MST are deleted using
MT algorithm. The (J value for clusters pair numbered 4 and 7 is
greater than the @) values for all other cluster pairs defined by the
MST. So, the edge between the seeds of clusters numbered 4 and 7 is
disconnected. Clusters 1-4 are merged together to form one cluster
whereas clusters 5-7 are merged together to form another cluster.
Note that one cluster now contains four seeds and the other contains
Fhree seeds. Fig. 5(b) shows the final clusters of the data after a few
iterations of multiseed clustering.

Fig. 6(a) shows another data where the number of clusters is 2.
The seed points and clusters around them are numbered 1,2, ..., 16.
The MST of the seeds are also drawn in Fig. 6(b). The edge between
seeds of cluster 1 and 8 is deleted, leading to two clustering. Fig. 6(c)
shows the final clusters of the data after a few iterations of multiseed
clustering.

Another pattern is shown in Fig. 7(a). Fig. 7(b) shows the cor-
responding seed points and clusters around them numbered by
1,2,...,9. The MST generated by the seeds are also shown in
Fig. 7(b). Here edge between the seeds of cluster numbered 1 and
6 is disconnected. Out of two clusters, one is formed by merging
clusters numbered 2-7 and another by merging clusters numbered 1,
8, and 9. The final results are shown in Fig. 7(c).

V. DISCUSSION

The problem of multiseed clustering technique for a nonconvex
and elongated pattern is considered in this paper. K -means type of
clustering techniques are the techniques of one seed one cluster and
asingle seed point cannot correctly reflect the nature of the data of
at elongated and nonconvex shape. To capture the data belonging to
an elongated or nonconvex cluster, we have considered more than
one seed point in the cluster.

The computational complexity of the algorithm is as follows. The
maximum computational burden is on pairwise distance computation
which is a O(n?) algorithm in the worst case. Detection of border
boints is a O(n) while density estimation is a O(n logn) procedure.
Each seed can be computed in O(n) time. The clustering algorithm
complexity is similar to that of standard K -means algorithm. All com-
Putations are linear on dimensionality, increasing as the computation
of Euclidean distance increases with dimensionality.

The method can be extended to the case when the number of
tlusters K" is unknown. To do so, the MST of the seed points is

()

Fig. 5. The combination of an elongated and a compact cluster. (a) The
initial seed points, individual clusters, and the MST generated by the seed
points. (b) The final output.

generated and the @ value for any edge of the MST is computed
by Step 7 of MT algorithm. If for two seed points s and sz the
Q) value exceeds a predefined threshold 7' then s1 and s should
belong to two different clusters and the edge between s; and s2
in the MST is deleted. The number of subtrees obtained in this
way is the desired number of clusters. The split and merge criterion
proposed in this method can be applied to other clustering techniques
as well.

It is possible to generalize the approach so that splitting and
merging is activated in each iteration. To do so, at each iteration
the MST of the seed points should be computed after the new
positions of the seed points are found. Next, using the Q values
of the edges of the MST, the seed points are reallocated among
the K clusters. Then the iteration is completed and a new iteration
starts.
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Fig. 7. Two uniform distribution data of complex shape. (a) Original data.
(b) The initial seed points, individual clusters and the MST generated by the
seed points. (¢) The final output.

Fig. 6. Two clusters of a complex shape. (a) Original data. (b) The initial
seed points, individual clusters and the MST generated by the seed points.

(¢) The final output.
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