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SUMMARY

The Poisson process approach for studying the association between environmental covariates and re-
current events depends on the stratification of study period into intervals within which the baseline
Intensities are assumed constant. In this work we investigate the problem of bias and variance due to
misspecification of this stratification. We suggest a cross-validation approach to choosing a stratification
model to balance the trade-ofl between bias and variance. We also establish a connection between the
Poisson process approach and case cross-over studies. Copyright
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1. INTRODUCTION

A point process formulation is commonly used for regression analysis with recurrent event
data, in which either the intensity is modelled as a function of the covariates or covariate
processes [1], or some other “marginal’ quantities are modelled to avoid strong assumptions
on the recurrent event process [2-4]. These approaches focus on subject specific covariates,
but fail for environmental covariates as they are the same for all the subjects at any event
time. However, environmental covariates are also important, especially in the study of air
pollution. Daily measures of air pollution indices, average temperature and humidity etc., may
affect relapse of, say, respiratory diseases, which can be identified with recurrent event data.
In Section 5 we consider one such example where the recurrent events are hospital admissions
for chronic respiratory diseascs. Although one could think of subject-specific covariates like
age, sex, some health index etc., we do not consider them for our illustration to keep it simple.

In a recent article, Dewanji and Moolgavkar [5] propose a Poisson process approach for
analysing such data, in which the recurrent events in an individual subject are assumed
to follow a non-homogeneous Poisson process with intensity depending on environmental
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covariates. Although the corresponding regression coefficients (the relative risk parameters)
are assumed to be the same for all the individuals, the baseline intensities can be different
for different individuals. In addition, the baseline intensity for an individual is assumed to be
piecewise constant in time having different values in different time intervals (called ‘strata’).
Therefore, different choices of stratification represent different models, with finer stratifica-
tion giving more flexible models. Our proposed method considers the conditional distribution
of events in a stratum given the number of events in that stratum so that the baseline in-
tensities within a stratum cancel out and the resulting likelihood becomes a function of the
regression coefficients only. With finer stratification, there may be no event in some strata
leading to loss of information and, hence, larger variance. We shall see later in Section 3 that
expected information depends on within-strata variation in the covariates, which is less for
smaller strata.

A model with a small number of big strata is misspecified if the true model corresponds
to a finer stratification. In such a case, the estimates obtained from the assumed model are
biased. A model with a large number of small strata may be able to avoid this bias, but,
because of the loss of information, the corresponding estimates are less efficient having large
variance. The purpose of this work is to investigate this bias—variance trade-off. We derive
the expressions for asymptotic bias and variance. We also conduct a simulation study to
investigate the small sample behaviour of these quantities. At the end, we try to come up
with guidelines for choosing a stratification model that is ‘optimal” in some sense.

In the next section, we briefly review the Poisson process approach of reference [S]. We
derive the expressions for asymptotic bias and variance in Sections 3, and also discuss our
simulation results. Section 4 presents our method for choice of stratification given the covari-
ates. Some properties of this method are investigated by simulation. In Section 5 we present
the analysis of the data considered in reference [5]. Section 6 discusses the connection be-

tween this Poisson process approach and case cross-over studies and Section 7 ends with
some remarks.

2. THE POISSON PROCESS APPROACH

Let x;, denote the vector of covariates at time ¢ consisting of all the subject and environment
specific covariates. For this approach, we consider only the time dependent covariates, and,
specifically, the environmental covariates. For each subject (say, ith) under study, we consider
a non-homogeneous Poisson process to describe the occurrences of events in the subject with
intensity given by

At x) = A explx/ B] (1

The baseline intensity /4; varies from subject to subject but is independent of time and the
relative risk parameter f§, which is of primary interest, remains the samec over all the subjects.
It is possible to allow some limited amount of time dependence in the A’s because of the
Poisson process formulation. Assume the /;’s, as function of time ¢. to be piecewise constant
over the study period (0,1], say, as in the following:

2i(t)=ry for teli=(y_,1), for I=1,... K (2)

with 0 =171 <7, < --- <14 =1 being prespecified. We call these /,"s ‘strata’ from now on.
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It is expected that, for a particular study at hand, there will be some natural candidate strat-
ifications. For our example in Section S, the natural candidates correspond to years, seasons.
months etc. In the absence of such logical choices, one has to use judgement on when the
baseline intensities may be constant. which is a difficult task. Let dy denote the number of
events for the ith subject in the stratum /,. Since the events in disjoint strata /,’s are inde-
pendent (because of the Poisson process assumption), the contribution of the ith individual to
the conditional (on d;/) likelihood is given by

o f 1L expl, Bl
L el L e L ;
o /I I{ { (_/,‘ explx) Bl di )y (3)

where £;;’s denote the d;; cvent times for the ith subject in [, with x,, being the value
of x, at time t=1t;;. Taking the product of Li(f#)’s over all 7, we get the total conditional
likelihood as given in equation (9) of reference [5]. Note that this likelihood can also be
derived by considering the supcrimposition of all the individual Poisson processes as a single
Poisson process with intensity (Y7 /) exp[x/f], for €1, and conditioning the likelihood
ond; =3%""_ dy. The likelihood for # can also be viewed as a profile likelihood by substituting
the /;’s (or (30, 7)) by the corresponding maximum likelihood estimates under fixed f in
the original likelihood (see reference [5] for details).

3. ASYMPTOTIC BIAS AND VARIANCE

Let us, for the sake of notational convenience, assume that there is only one environmental
covariate of interest. Using the likelihood contribution (3), one can easily write down the
score function as

K { J, x eXp[x,Tﬁ]dt} “
1

b=k T el pldr

Py
Since x, is the regressor process, we hold it to be non-stochastic in further calculation of
expectation and variance. Also, this being a conditional analysis given the d;’s, we consider
the corresponding conditional expectations. Note that the only random quantity in (4) is x,, .
Because of the Poisson process assumption, we have

f,/ x4t x, ) de
Sy, 7t x) dr
where 2;(t,x,) denotes the Poisson intensity, for the /th subject, at time ¢ with covariate value

x.. If the model (or stratification) is true, that is 4,(z,x,)= /7y exp[x,] for r€1;, then this
expectation (5) becomes equal to

Elv, ldy]l= )

/,{ Xt exp[x,Tﬁ] dt
I, explx! fldt

for all 7 and [, so that the expectation of the score function (4) is zero. Therefore, the
estimating equation for the coefficient f§ 1s unbiased. Hence, from the first-order Taylor series

(6)
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covariates. Although the corresponding regression coefficients (the relative risk parameters)
are assumed to be the same for all the individuals, the baseline intensities can be different
for different individuals. In addition, the baseline intensity for an individuai is assumed to be
piecewise constant in time having different values in different time intervals (called ‘strata’).
Therefore, different choices of stratification represent different models, with finer stratifica-
tion giving more flexible models. Our proposed method considers the conditional distribution
of events in a stratum given the number of events in that stratum so that the baseline in-
tensities within a stratum cancel out and the resulting likelihood becomes a function of the
regression coefficients only. With finer stratification, there may be no event in some strata
leading to loss of information and, hence, larger variance. We shall sec later in Section 3 that
expected information depends on within-strata variation in the covariates, which is less for
smaller strata.

A model with a small number of big strata is misspecified if the truc model corresponds
to a finer stratification. In such a case, the estimates obtained from the assumed model are
biased. A model with a large number of small strata may be able to avoid this bias, but,
because of the loss of information, the corresponding estimates arc less cfficient having large
variance. The purpose of this work is to investigate this bias—variance trade-off. We derive
the expressions for asymptotic bias and variance. We also conduct a simulation study to
investigate the small sample behaviour of these quantitics. At the end, we try to come up
with guidelines for choosing a stratification model that is ‘optimal’ in some sense.

In the next section, we briefly review the Poisson process approach of reference [5]. We
derive the expressions for asymptotic bias and variance in Sections 3, and also discuss our
simulation results. Section 4 presents our method for choice of stratification given the covari-
ates. Some properties of this method are investigated by simulation. In Section 5 we present
the analysis of the data considered in reference [5]. Section 6 discusses the connection be-
tween this Poisson process approach and case cross-over studies and Section 7 ends with
some remarks.

2. THE POISSON PROCESS APPROACH

Let x, denote the vector of covariates at time ¢ consisting of all the subject and environment
specific covariates. For this approach, we consider only the time dependent covariates, and,
specifically, the environmental covariates. For each subject (say, ith) under study, we consider
a non-homogeneous Poisson process to describe the occurrences of events in the subject with
intensity given by

2i(t,x,) = 4 expx] ] (n

The baseline intensity /; varies from subject to subject but is independent of time and the
relative risk parameter f3, which is of primary interest, remains the same over all the subjects.
It is possible to allow some limited amount of time dependence in the ;s because of the
Poisson process formulation. Assume the 4;’s, as function of time 7, to be piecewise constant
over the study period (0, 7], say, as in the following:

ri(t)y=1ry forteli=(t,_y,1], fori=1,....K (2)

with O0=1,<1;< -+ <14 =1 being prespecified. We call these /,’s ‘strata’ from now on.
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It is expected that, for a particular study at hand, there will be some natural candidate strat-
ifications. For our example in Scction S, the natural candidates correspond to years, scasons,
months etc. In the absence of such logical choices, one has to use judgement on when the
baseline intensities may be constant, which is a difficult task. Let d;; denote the number of
events for the ith subject in the stratum /;. Since the events in disjoint strata /;’s are inde-
pendent (because of the Poisson process assumption), the contribution of the ith individual to
the conditional (on d;) likelihood is given by

K H & 1 EXplXy, B]
7y = . : 3
b I%{u,meﬁmow} &

where ¢;;’s denote the d;, cvent times for the ith subject in J, with x;, being the value
of x; at time r=1;;. Taking the product of L(f)’s over all i, we get the total conditional
likelihood as given in equation (9) of reference [5]. Note that this likelihood can also be
derived by considering the eupuimposition of all the individual Poisson processes as a single
Poisson process with intensity (> | ;) explx/ ], for €1, and conditioning the likelihood
ond;=>_"_, dy. The likelihood for /)’ can also be viewed as a profile likelihood by substituting
the 2;°s (or (3.1, Z4)) by the corresponding maximum likelihood estimates under fixed f in
the original likelihood (sce reference [5] for details).

3. ASYMPTOTIC BIAS AND VARIANCE

Let us, for the sake of notational convenicnce, assume that there is only one environmental
covariate of interest. Using the likelihood contribution (3), one can easily write down the
score function as

MM*iii{m 4)

il

J;, X explx/ B1de
f[ explx/ f]dt

Since x, is the regressor process, we hold it to be non-stochastic in further calculation of
expectation and variance. Also, this being a conditional analysis given the dj,’s, we consider
the corresponding conditional expectations. Note that the only random quantity in (4) is x,
Because of the Poisson process assumption, we have

Sy, xidi(t,x, ) de
[y, #itxydr

iyt

Elx,, |du] = (5)

where 4;(t,x,) denotes the Poisson intensity, for the ith subject, at time ¢ with covariate value
v,. If the model (or stratification) is true, that is 2(t.x,)=/; exp[x,ff] for ¢/, then this
expectation (5) becomes equal to

J;, % explx flde
f explx! ] dt

for all i and [, so that the expectation of the score function (4) is zero. Therefore, the
estimating equation for the coefficient § is unbiased. Hence, from the first-order Taylor series

(6)
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expansion of u([}) as

O=u(Py=u(P)+(p — By () (7)

we get 0= E[u(f)] %E[—(/§~/3)u’([3)]. Here /() denotes the derivative of u(f) with respect
to fB. Since —u'(f) is a positive constant (as will be seen later in (10)), this implies that B is
asymptotically unbiased for f under the true model specification. Note that no condition on
the process x, is needed for this result to hold except that x, be an external process (that is,
the marginal distribution of x, does not involve the parameters of the recurrent event process).
Therefore, even if the process x, is autocorrelated, or there are time trends in x, [f 1s still
asymptotically unbiased for f# under the true model specification.

If the assumed model is more general than the true model (that is, the assumed stratification
is finer than the true stratification and each assumed stratum is completely contained in exactly
one true stratum), the expectation (5) is still equal to (6), for all i, / and j, leading to an
unbiased estimating equation, as before. If, however, the true model corresponds to a different
stratification than the assumed one and the kinds mentioned above (that is, there is at least one
stratum /; and at least one subject having an event in that /,, for whom the baseline intensity
is not the same throughout [;), then the cancellation of the baseline intensity in (5) does not
take place; hence, the estimating equation is not unbiased. The magnitude and direction of
bias depend on the values of x, and the true Z4;’s and the ‘distance’ between the assumed
and the true stratifications in a complicated way. In order to illustrate this, let us consider the
following simple example.

Suppose the true stratification is different from the assumed one in only one stratum, namely
[, for a fixed /, in a way that [, =/, Ul; and ;) N1 = ¢, with truc baseline intensities
and %, in 1), and /I, respectively, instead of being the assumed 4; in /;, for the ith subject
only having an event in /;. Then, from (5)

i f % exp[x! Bldr + /i % exply! f]de

E -
b an f,” explx; fldt + Jun ]1/: explx/ fldr

|d)] =

ilj

S, xcexplx! Bldt + 1 f, x, explx] Bl dt
[, expIxT BIde + i [, explxT Bl dr

(8)

where r; = Z;2/Ai1. As this is not equal to (6), this makes the only contribution to the ex-
pectation of u(f3), which is the difference (8) minus (6). A simple calculation shows that, if
ri>1, 0r Lyp> Ay, then (8) = (<) (6) if and only if

(/ x; exp[x; B] dt) (/ exp[x! f] dt) <(2) (/ exp[x,T/f]dt) </ X exp[xfﬁ]dl) (9)
J Iy in In S

If the x,’s in I, are, in general, smaller than those in I, then the LHS in (9) is smaller than
the RHS and, hence, the bias, given by (8) minus (6), is positive. Since —u'(f) is positive, we
have, from (7), positive bias also in 5. Note that, if #; < |, then we have the reverse inequality

in (9). This simple example illustrates how bias gets in f due to misspecification of model or
stratification. Extending this line of derivation for more general type of misspecification, one
can see that if both x,’s and the baseline intensities are generally increasing (or, decreasing)
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within an assumed stratum, then the bias in f is positive, whenever the true stratification is
contained in the assumed onc in the sense that each true stratum is completely contained in
exactly one assumed stratum. Even if the truc and assumed stratifications deviate a little from
the above mentioned relationship, f# can still be positively biased because of the dominance
of the positive bias contributions. However, on the other hand, if the x,’s and the baseline
intensities change monotonically within an assumed stratum but in opposite directions, the
bias will be negative. Once it is scen how bias develops, through the expectation of (4), one
can think of other scenarios for cither positive or negative bias. As a matter of fact, bias could
be zero or negligible because of cancellation of different bias contribution terms of opposite
signs depending on the values of the x,’s and the baseline intensities.

The asymptotic variance of u(f}) is given by the expected information ()= E[—u'(})].
From (4), we have —u/(f§) = E£[—u/(f)] and is given by

([, x7 exply! B1do)( [, explx! B1de) — ([, x explx; f]di)?
(;, explx/p)dr)*

This asymptotic variance depends only on the assumed stratification, not on the true one.
Also, note that the asymptotic variance of f§ is the inverse i~'(f) of (10).

By the Cauchy-Schwarz inequality, the numerator of each of the terms in (10) is non-
negative. Also, if the x,"s are constant within a stratum, then the corresponding numerator is
zero (the score function (10) is identically equal to zero). As expected, if there is no variation
in the x, values within a stratum. there is no information on the regression coefficient f§ in
that stratum. If there is more (less) within-strata variation in the x, values, there is more
(less) information, given by i(fs). on the regression coefficient f8 leading to smaller (larger)
variance of f. This fact can be used, by noting the pattern in the x, values, to obtain a suitable
stratification mode! so that the variance of [i is small (or the estimate is precise). Although
the results on bias suggest finer stratification, the x, values within strata, in general, tend to
be similar in such a case. Thercfore, as argued above, the estimate becomes less precise. This
is evident in the example of reference [5]. This is the bias—variance trade-off as mentioned
in the Introduction and discussed further in Section 6. A simulation study also supports the
above findings on bias and variance in finite samples.

(10)

«mzém{

4. MODEL CHOICE VIA CROSS-VALIDATION

Any available knowledge on time dependence of the baseline intensities and temporal pattern
of the x, values can be used in restricting the choice to a few suitable stratification models.
However, although the x, values can be known before the analysis, the baseline intensities are
unknown nuisance parameters. Hence, this choice of a few models has to be done in rather an
ad hoc way. In this section, we suggest a method of cross-validation to choose a stratification
model out of these few (say, S in number), given the covariates (x,’s).

Various authors have used cross-validation techniques for different purposes including choice
of prediction model [6], classification tree [7] and smoothing parameter in non-parametric
estimation [8]. Likelihood-based cross-validation techniques have also been used [9, 10] for
adaptive choice of smoothing parameter. Stone [11] has established asymptotic equivalence
between likelihood based cross-validation and Akaike’s criterion for choice of model.
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Table I. Proportions of chosen models when model .4 is true.

Baseline intensity Pattern Proportions
of x,
(ar.by) (ax, b2) (as.b3) (as, ba) A A A A S

(0.01,0.015) (0.015,0.02) (0.02,0.025) (0.025,0.03) I 0.02 027 056 0.12 0.03
11 0.21 033 026 0.12 0.08
(0.01,0.02) (0.02,0.03) (0.03,0.04) (0.04,0.05) I 0.00 0.14 061 0.21 0.04
1I 0.18 029 033 0.11 0.09
(0.01,0.03) (0.03,0.05) (0.05,0.07) (0.07,0.09) 1 0.00 0.01 0.74 0.15 0.10
11 0.11 0.20 042 0.12 0.15
(0.00,0.04) (0.04,0.08) (0.08,0.12) (0.12,0.16) I 0.00 0.00 079 0.12 0.09
11 0.13 0.16 047 0.19 0.05
(0.01,0.03) (0.01,0.03) (0.01,0.03) (0.01,0.03) I 0.74 0.14 0.06 0.04 0.02
11 0.52 0.16 0.16 0.08 0.08
(0.00,0.16)  (0.00,0.16) (0.00,0.16)  (0.00,0.16) I 0.73 0.14 0.07 0.03 0.03
11 045 0.18 020 0.12 0.05

For a fixed stratification model indexed by s (for s=1,...,5), we define cross-validated
log-likelihood (CVLL(s)) by

CVLL(s) =Y log L) (1)
i=1

where Lf.'” '(-) is the likelihood contribution from the ith subject, as in (3), corresponding to
the finest stratification indexed by s, and [}(_*3 is the estimate of f§ obtained by removing the
ith individual under the model indexed by s. This corresponds to the ‘leave-one-out’ cross-
validation and one chooses the model indexed by sy so that CVLL(s))= max, CVLL(s).

We carry out a small simulation study in order to investigate how good the above cross-
validation technique is for choosing the true model. We take the observation period as [0, 100]
and consider five stratification models given by 2 :[0, 100], .»4: {[0,50].(50. 1001}, 2 :{[0,20],
(20,501,(50,701,(70,100]}. 2 :4[0,20],(20,40], (40, 50],(50,70],(70.90],(90, 1001}, #s:{[0,
10],(10,20},...,(90,100]}. We take n=100 and f=0.05. For ecach simulation, data on n
subjects (that is, n Poisson processes) are generated using 4 as the true model with /4, 25,73
and /4 being the four vectors of baseline intensities for the n subjects in the four respective
strata of /4 and x,, as before, being the single covariate. The cross-validated log-likelihood
(CVLL) for this simulated data is calculated (note that s, here corresponds to the stratifica-
tion #) for all five models and the one giving the maximum CVLL is chosen, as prescribed
before. Based on 100 such simulations, we report in Table | the proportions of times the
different models are chosen. Here, we report only the cases when we assume #[a;, b;] dis-
tribution for /;, for i=1,...,4, for different values of (a;, b;)’s. As before, we assume that
the covariate takes a constant value x, in (¢ — 1,7], for £=1,...,100, and consider only two
patterns of x,, in which it follows (I) #[6 + 0.05¢, 10 + 0.05¢] and (I1) #[6,13] distribution,
respectively, so that the x,’s have an increasing trend and no trend at all.

We notice that the results depend on the patterns of x,. When x,’s are increasing (pattern ),
their values are less heterogeneous within strata for, say, . than for the other coarser models.
As a result, the finer stratification models give less precise estimates. and so the models Z
and . are chosen less often. However, as difference between the 4;’s increases, the true model
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#; is chosen more often, as cxpected, and since the bias becomes more prominent for . and
%, there is a shift in choosing the finer models. When the #;’s follow the same distribution
(the last two rows), then the bias is negligible and as a result the coarser models (in particular
the model 2, ) are chosen more often to give more precise estimate. For the second pattern of
x, having the same distribution for all ¢, x, values are equally homogeneous within strata and,
therefore, the estimates arc equally precise for all the models. Note that, from (5), bias is
also expected to be small. Hence, the choices are somewhat evenly distributed with 4 being
chosen more often as the £;’s become more disparate.

We also worked with exponential distributions for the 4;’s and normal distributions for the
x,’s leading to similar results. We also gencrated data from other models (than %) and found
similar results. The objective of this cross-validation method is to select a model that maintains
a ‘balance’ between bias and variance. It may not be choosing the ‘true’ model all the time, but
it addresses the problem of bias—variance trade-off in an adaptive way. In the next section, we
propose a strategy based on paired two-sample tests to choose a set of models having statisti-
cally ‘similar’ CVLL values. out of which the one with coarsest stratification will be selected.

For a study with a large number of individuals, this ‘leave-one-out’ cross-validation becomes
computationally prohibitive. One can then use m-fold cross-validation with a suitable m, in which
the set of individuals is divided into m random parts (referred to as cross-validation samples)
with roughly equal sizes and then the above cross-validation method is applied on the m parts.
In the next section, we illustratc application of this cross-validation method with real data.

S. AN ILLUSTRATION

Dewanji and Moolgavkar [5] presented analyses of a data set on multiple hospital ad-
missions for chronic respiratory disease in King County over the period 1990-1995. The
environmental covariates of interest were daily indices of air pollution and temperature. There
were 5362 admissions for 2801 individuals over this period. In the analyses, three air pollu-
tion indices were considered: carbon monoxide (CO) on the same day; particulate matter less
then 10 microns in diameter (PMy,) lagged by three days, and an index of light scattering
(LS), which is a surrogate measure of fine particles, on the previous day. In addition, the
analyses also included temperature (TMP) and day of week. To keep our illustration simple,
we exclude day of weck from our analysis here. As in reference [5], we consider five different
stratification models: a single stratum over the entire period; 6 strata corresponding to each
of the years; 25 strata representing different seasons; 72 strata corresponding to each month,
and 144 strata with two for each month.

We consider 28-fold cross-validation for our illustration dividing the 2801 individuals in 27
sets of size 100 and one of 101. Here, the last stratification with 144 strata is the finest, and
we use that for our calculation of CVLL (see (11)) for all the above five models. Although the
cross-validation method of the previous section chooses the model having the largest CVLL
value, our experience is that many models lead to similar values of CVLL. The one-standard-
error rule of reference [7] has not been satisfactory for differentiating between models, as there
is large variation between different cross-validation samples, but for a fixed cross-validation
sample there is little difference between different models.

For any two models under comparison, one can, intuitively, consider a paired two-sample
test based on, in general, the m pairs of individual contributions to the two corresponding
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Table II. CVLL values and the chosen model in bold face.

Covariates Stratification Models

One stratum 6 strata 25 strata 72 strata 144 strata
CcO —14625.86 —14588.96 —14586.31 —14586.44 —14586.50
PM o —12140.46 -12123.92 —12122.12 —12122.00 —12122.13
LS —12861.02 —12845.04 —12843.05 —12842.98 —-12843.06
CO + TMP —14611.03 —14588.06 —14590.34 —14588.32 —14588.38
PMy + TMP —12129.65 —12121.48 —12124.89 —12122.22 —12122.42
LS + TMP —12854.31 —12843.98 —12847.34 —12846.13 —12846.40
CO + PMyy + TMP —12133.92 —12120.23 —12124.71 —12121.13 —12121.23
CO+ LS +TMP —12855.59 —1284298 —12846.27 —12845.18 —12845.40

CVLL’s and conclude if one set of m contributions is statistically larger than the other.
We suggest the following strategy. Consider the model sy with the largest CVLL value and
compare it with the other models using a paired test with one-sided alternative as described
above. This gives a set of models, including so, which have statistically homogeneous CVLL
values. The coarsest one in this set is the chosen model, since that leads to more precise
estimates (as argued in Section 3).

In this illustration with m =28, we consider a parametric test (paired ¢-test) and a non-
parametric test (Wilcoxon signed rank test) for comparing models. In order to be conservative,
we use 0.1 as the size of the two tests and the null hypothesis of homogeneity is rejected if
at least one test rejects it. The results (the CVLL values) for different covariates are reported
in Table II, in which the one in bold face indicates the chosen model by the above strategy.
Besides considering the three air pollution indices (covariates) separately in the first three
rows, we also consider them one by one after effect of temperature (TMP) is controlled
linearly with a distinct slope for each season (see reference [5]). The corresponding results
are presented in the second three rows. The results for two pollutants and temperature are in
the last two rows.

As more covariates are included in the model, we expect less time dependence in the
baseline intensities and the coarser models to be chosen. However, the model with a single
stratum is strongly rejected. The model with six strata seems to be the choice, even with
a single covariate (except for CO). We notice, from the results of reference [5], that the
estimates are similar over the models with six and more strata and, among them, the standard
errors are smallest with six strata.

6. CONNECTION WITH CASE CROSS-OVER STUDIES

Note that the conditional likelihood of Section 2 is derived by viewing the data as arising from
a follow-up study. Those individuals not having any event in the study period do not contribute
anything to the likelihood because of the conditioning. The likelihood (3) reminds one of the
case cross-over likelihood, in which the covariate at the time of an event is compared with
the covariates at some suitably chosen ‘control” time periods (see reference [12, 13]). Here,
the covariates at the event times in a stratum are compared, instead, with those at all the time
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points in that stratum. This likelihood, therefore, can be viewed as that from a case cross-over
study possibly with multiple events and the set of control periods being the whole time interval
in a particular stratum. This may be thought of as a continuous version of the usual case cross-
over study. If for an individual there is at most one event in each stratum and the integral in
the denominator of (3) is replaced by a finite sum (since, usually, x, is piecewise constant), the
resulting likelihood is similar to that of reference [12] for a case cross-over study. However,
for multiple events, our likelihood is much simpler than the one derived in reference [12].

One may recall that the original idea behind the case cross-over design was to study subject
specific transient covariates [14]. Since, in principle, a case cross-over design chooses controls
from the same subject but at different times, all subject specific non-transient covariates are
automatically matched, thus precluding the analysis of relative risks associated with them.
We observe the same phenomenon in our study of recurrent event also. This approach is,
therefore, useful for studying subject specific transient covariates, or, in particular, environ-
mental covariates. Navidi [12] addressed the bias problem in case cross-over design due to
time trends (non-stationarity, in general) in covariates; our Poisson process approach leads to
a solution similar to his. Note that, as in the case cross-over design comparing hazards for the
same person at different times, our approach also requires the assumption of constant baseline
intensity within a stratum which may vary arbitrarily between individuals thus incorporating
the effects of any time-constant covariates. The stratification, however, allows some limited
time-dependence in the baseline intensity.

The likelihood for a case cross-over study is derived by mimicking the derivation of like-
lihood for a matched case-control study. However, the assumptions of case-control studies do
not always apply to the case cross-over studies, as discussed in reference [13]. For example,
possible autocorrelation between covariates over time makes the observed covariates for case
and control periods dependent; also, for environmental covariates, two cases occurring on the
same day must have the same covariate value, a between-stratum constraint not present in
case-control studies. Because the Poisson process approach is based on different assumptions,
these problems do not arise.

The issue of bias—variance trade-off in the case cross-over design was first discussed by
Mittleman et «l [15). As we have noticed already, a similar problem arises in the Poisson
process approach. Note that the different strata in a particular stratification mode! in the
Poisson process approach are the different reference or comparison sets from the case cross-
over viewpoint. For a model with large strata, the comparison sets are large, leading to
bias due to trend or seasonality. This trend or seasonality component, if it exists, makes the
baseline intensity within a stratum time-dependent, which violates the model assumption and
leads to bias. With smaller strata or comparison sets, the covariate values within a stratum
tend to be similar leading to the problem of overmatching with virtually no information on
the covariate effect and, hence, loss of precision. In the previous section, we discussed some
ways to resolve this trade-off issue.

7. CONCLUDING REMARKS
As noted in reference [5], one can allow some deviations from the Poisson process assumption.
For example, the baseline intensity of a subject may be allowed to change after an event.

depending possibly on the number of accumulated events. Then, the corresponding profile
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likelihood, following the same technique as in reference [5], turns out to be

lﬂl “"1:1l explx; . fl

=1 j=0 f,’l’ Yexplxff1dr
where d; now denotes the number of events in the ith subject at times #;; < --- <t 4 with
t;,0 = 0. This is similar to the stratification modelling of reference [1]. Note that this likelihood
also looks like a case cross-over likelihood with each event being a case time and the corre-
sponding control period being the time interval since the preceding event time (or time zero
for the first event) until the current event time in the same subject. This is similar to the orig-
inal case cross-over likelihood of reference {14]. More generally, one can also introduce time
dependence in the baseline intensities in a piecewise manner, as in (2). Then, the resulting
profile likelihood is again a case cross-over likelihood as before but with the control period
being the time interval since the beginning of the current stratum until the current event time.
One can think of employing a cross-validation technique (similar to that in Sections 4 and 5)
to choose an ‘optimum’ stratification model.

Instead of recurrent events, if we have fatal events leading to censored survival data, analysis

of environmental covariates can be carried out in similar manner. With piecewise constant
baseline hazard rates (different for different subjects), the profile likelihood for f is

eXp xr,ﬂ]
€D f exp[xf p1de

where D denotes the set of failed subjects, ¢ is the failure time for the /th subject in D and
1, is the starting time of the stratum in which ¢ falls. This also looks like a case cross-over
likelihood with control period for each event being the time interval since the beginning of
the current stratum until the event time. If we allow the baseline hazard rates to be the same
(piecewise constant) for all the subjects, the corresponding profile likelihood becomes

exp[x; fi]
in(t;.¢;) 8
S remen Jo " explad p1dr

where K, D; and the 7,’s are the number of strata, the set of subjects having the event in the
/th stratum, and the times defining the strata, respectively, #’s denote the observation times
(having the event or not) for the ith subject and #(t, ) is the set of subjects at risk at
time t,_;—. This is similar to both the case cross-over likelihood and the Cox likelihood.
Therefore, this can be used for analysis of both environmental and subject-specific (transient
or not) covariates. As commented in the previous paragraph, a cross-validation technique can
be employed to choose an ‘optimum’ stratification model. However, the properties of the
profile likelihood based estimates need to be investigated.

H::]»

no
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