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In this paper, we give a Markovian proof of a well-known result of M. H. A. Davis on representation
of square-integrable martingales associated with arbitrary pure-jump processes. The main tool used to
replace the original (non-Markovian) set up by a Markovian one is an interesting idea originally due to
F. B. Knight. The main analysis then follows the classical line of investigating structures of martingale
additive functionals of a Markov process, wherein a Lévy system of the Markov process (in the
classical sense—due to S. Watanabe) plays a vital role.
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{. INTRODUCTION

Stochastic processes {X,,t=0} that evolve purely through jumps, but have
otherwise arbitrary laws, have been the subject of study in a number of papers.
The list includes [2], [3], [7] and [4] to name a few. One of the key issues had
been to understand the structure of square-integrable martingales “associated
with” (that is, adapted to the natural filtration of) such processes. In 1976,
M. H. A. Davis ([4]) proved a beautiful theorem that gave a complete description
of such martingales. On the other side of the story, investigation of the structure of
square integrable martingales associated with Markov processes has been a
classical problem. Methods were developed by Motoo and Watanabe ([11]),
Watanabe ([12]) to describe square integrable martingales associated with a Hunt
process. The aim of the present paper is to place the problem of analysing
martingales of a jump process in the latter setting. Using an interesting idea
proposed by F. B. Knight ([8]), the original pure-jump process {X,t=0}
(non-Markov!) is replaced by a strong Markov process {Z,,t>0} with r.cll paths
(indeed, a Borel right process), whose natural filtration is the same (after
completion) as that of the original process. This puts the problem of studying
square-integrable martingales adapted to this filtration on the same footing as the
problems considered by Motoo and Watanabe. This constitutes the first and the
key step in our approach. In this part, we omit proofs of the results stated, for the
sake of brevity of this paper. The interested reader is referred to [6]. After this, we
simply follow Watanabe’s method ([12]) to get a Markovian proof of Davis’
martingale representation theorem. The fact that the filtration in question does not
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permit non-trivial continuous martingales reduces the problem to investigating
only martingales (indeed, only certain martingale additive functionals) that are
compensated sum of jumps. Watanabe ([12]) resalised the potential usefulness, in
such context, of what came to be known as a “Levy System” for the underlying
Markov process. We exhibit such a system for our Markov process, and, Davis’
theorem comes out as a natural consequence.

Two cases, namely that of a single jump and that of infinitely many jumps are
presented separately in this paper. This is primarily because, even though the ideas
are exactly same in both the cases, the case of a single jump is notationally
somewhat simpler, and, thus makes access to the principal idea easier. The
understanding gained from the single-jump case would hopefully prevent one from

getting lost in the (naturally) somewhat more complicated notations for the multi-
Jjump case.

2. SINGLE-JUMP CASE

The basic process considered by Davis ([4]) can be described in its canonical
setting as follows:

Let Q=[0, c0] x R, where Ry, here as well as throughout this paper, denotes the
set R\{0}, and, let §°=B([0, o) x Ry) v ({00} x Ro). Let T and X be defined on Q
by T(w)=t, X(w)=x for w=(t,x)eQ. Clearly, T and X1, are random variables
on (Q, §°). The process {X,,t=0} is now defined on (Q, F°) by

X(wW)y=X(W) 1oy for weQ, t20. (n

As usual, let {§°},,, denote the natural filtration of the process {X,,t20}, and for
t>0, let §_=\/,;,§°. Clearly, \/;»0 & =V,>0 &~ =F. The law of the process
{X,,t=0} in this setting is determined by a probability on (€, F°).

Let us introduce a few notations to be used in the sequel. For a probability P
on (Q,§°), and, for te[0,0) with P(T>1t)>0, P, will denote the P-conditional
distribution of (T—¢t,X1;r<,,) given T>t, and, if further P(T21)>0,P,_ will
denote the P-conditional distribution of (T —t, X 1,7« ) given T 2t. It is clear that
P, as well as P,_, whenever defined, are once again probabilities on (Q, §°). Also
for xeR,, we denote by §, the degenerate probability on (Q, &° concentrated at
the point (0, x) e Q.

Let Q be any given probability on (Q, F°). Our entire analysis from this point

on will be starting from this given Q. We consider now a collection of probabilities
on (Q, ¥°), namely,

P={Q::te[0,00), Q(T>1)>0} U {Q,-:1e[0,00), QT2 1)>0} U {6, xeRo} (2)

This set P is of central importance in our approach, because this will be the state
space for the Markov process we are going to construct. Note that Qe P, since
0o=0. We give a topology on P as follows.

Consider the smallest topology on Q making all the functions wi {§, f(X(w)) ds,
te[0, ), feC, (R) continuous. It is easy to see that this topology makes Q into
a metrizable Lusin space with §° as the Borel o-field on it. P is now endowed
with the topology of weak convergence. Clearly, P then becomes a metrizable
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Lusin space. Further, the Borel o-field on P coincides with the o-field P generated
by the class of functions {es:S€F°} where es:P—[0,1], for SeF’, is defined as
es(P)=P(S). This topology on P ensures that our Markov process will have quite
regular paths (see Theorem 2.1 (ii} below).

For each PeP, we define two processes {Zf,t=0},{Z?_,t20} (note their
dependence on P) on (Q, &’ P) and taking probabilities on (Q, %) as their values,
by

ZP(w) = P, if t<Tw) and P(T>1)>0
Oy Otherwise.

P if t<T d P(Tz
ZP(w)={t if 1<Tw) and PT20>0 o0 Sowe  (3)

Oy Otherwise.

We then have the following theorem.

Denote, for PeP, the P-completion of §° by &%, and, for t=0 (resp., t>0), the

augmentation of & (resp., F°) with P-null sets of F by F’ (resp., F'_). Also, let
={Q,:te[0,0), Q(T>1)>0}uU {d,:xeR,}. Clearly, P* e P. Let P* denote the

restriction of P to P*.

THEOREM 2. 1 (i) For every peP, the process {ZF,t=0} is a strong Markov process

on (&, &, P) with state space (P*,P*). Moreover, all these processes have the

same borel transition function q defined by q(t,P,A)=P[ZFe A], t20, PeP,

AeP”.

(ii) For every PeP, the process {ZF,t=0} has all paths right continuous on
[0, 00), and, has, P-almost surely, {Z,-,t>0} as left limits in P on (0, o).

(ii)) (Q, &, &F,ZF, PeP") is a borel right process.

For a complete proof of the theorem, we refer to [6]. However, just as an
illustration, we present below the proof of (i). This rests on the following well-
known result (see [6]).

LEMMA Let 1 be any (FF)-stopping time. If P(t<T)>0, then there exists a unique
to <00 such that P[(T<ty A 1) U(T>to=1)]=1, and, in this case § =g . Other-
wise, ' =g

Proof of Theorem 2.1(i) Let PeP. We simply have to show that for any
(&F)-stopping time 7, any 20 and any A€ P.

P[ZP,, € A|§F]=2ZF[Z5% € A] P-as.on {t<aw)} (4

First of all, if P(t<T)=0, then Zf=2Z% =6, P-as. on {t<o}, so that, by
the above lemma,

P[Z!,, € A|F =144 P-as. on {T1< 0},
while

ZP[Z% e A1=04[Z?* € A]=1;5,c ) P-ass.
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On the other hand, if P[t<T]>0, then, by the lemma again, there is a unique

to<oo such that, P-as., 1=t, on {T>1,} and 1= T on {1,= T}, and, also & =&k,
Therefore, one has P-as. on {t<aoc},

PLZ7,, € A|FT )=V syearsiy+ P[Z5 4 € A|T> 161751
while

Z:’[Z!Z?E Al=lyyenrem+ZnlZlve AQlir<igy

Thus, in view of (3), we have only to verify that
P[Z} . € A|T>1,]=P,[Z e Al.
But this is immediate from the definition of P,,. O

As already pointed out, the process (Z¢,Q) rather than (X,,Q) is to be regarded
as the central process in our approach. But the probability space (Q, 3°)'——a
natural one for the process {X,,t=0}—does not, however, provide a convenient
setting for the processes {ZF,t>0}, PeP. So we transport everything to a natural
setting for the latter processes, as follows. i

Let Q be the space of all P*-valued right-continuous functions on [0, ) with
left limits in P on (0, ), and, let {Z,,t20} denote the coordinate process on Q.
Let §,=O'(ZS,S§I?) for 120, g'—_\/t;o &. and gt—:\/s>t8‘s for t>0, as }J_Sl.l&l.
Then, clearly for each PeP, there is a unique probability, to be called P again, on
(Q, %) such that {Z,t=0} is a strong Markov process under P with transition
function ¢g. Our using the same notation P for a probability on (€, &°) as wel} as
the associated probability on (©, &) should not lead to any major confusion, since
the interpretation will always be clear from the use. We shall write EP for
expectation under P, once again with dual interpretation. The following theorem,
which was proved in [6], ensures that from a probabilistic point of view nothing is
lost in shifting from (Q, §°, &, P) to (Q, &, &.. P).

THEOREM 2.2 Let ¢:P—R be defined by ¢(P)=E"(X,).
(i) & is a borel function, and, for all PP, the P-law of {X,,ZF;t20} on (Q,§°) is
the same as that of {¢(Z)),Z,;t<0} on (O, F).

(i) If & and ®F denote the P-completions of & and o(¢(Z,),t20) respectively,

then §"=®"; and, for each t20, if F and B denote the _augmentations of &, and
o(P(Z,), s<t) respectively by P-null sets of F¥, then F =®T.

Having thus laid down the Markovian set-up, we now proceed to exhibit a Levy
system for our Markov process {Z,,t>0}. Following [1], this would consist of a
pair (N, H), where N(P, 4), PeP, AeP, is a kernel on (P, P) with N(P,{P})=0 for
all PeP, and, H is an increasing previsible additive functional such that

forall0SfeP®P with f(P,P)=0 for all PeP,

EP[0<Z< f(Zs—,Zs)]=EP[ _\']st_(N(ZS_,dP’)f(Zs_)P’)} VpeP,t>0 (5)
s<t A

(0,1
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In a heuristic way, what it means is that the increasing process under the brackets
on the right is, for each PeP, the dual previsible projection of the increasing
process under the brackets on the left. Watanabe ([12]) proved the existence of
such a system for a Hunt process satisfying a certain hypothesis called “Hypothesis
(L)”. Later Benveniste and Jacod ([1]) constructed a Levy system for any Ray
process. But even that does not directly apply to our process which is only a right
process. Nevertheless, we are able to directly construct such a system for our
process. First, let us define counterparts of T and X on our new probability space
(€2, %) by
T(w)=inf{r=20:Z(w) e {d,:xeR,}}

X (W) =(Z W) , for weQ. 6)

Also, for any PeP, let F” denote the distribution function of T (equivalently, T)
under P, and, i¥ on [0, c0) x B(R,) denote a version of the regular conditional
distribution, under P, of X given T on {T <c0}. We can and do choose it so as to
be jointly P ® B([0, o0))-measurable. Clearly, A™«(.,.)=A(t+.,.).

Now, let us define {H,,t=0} on (Q, &) by

Hy=0, and, for t>0,

H= [ (1-F%s—))"'F’ds) on{Z,=P} N

(0,6 A T]
and N on PxP by

(=0 if P=4, forsome xeR,

N(P,dP’)J (0,P,dPy if P#6, and P=Q, #Q,

1
_FT(O)q

=A70,B)=4%t,B) if P=Q, and where B={xeR,:d,edP’} (8)

.

THEOREM 2.3 (N, H) is a Levy system for the process (Q, &, &> Z,, P P).

Proof Other things being clear from definitions, we really need only to show
that (5) holds. For f as in (5), the Lhs. equals

EP[ Z f(zs—>zs)1{l<f}:|+EP|: z _f(Zs—3Zs)1{r§’I_'>0):|

0<s=t 0<s=T

=(1—FP(t))( ) f(Ps-,Ps)>+ f ( )3 f(Ps-,Ps)+f(Pu—,5x))P(du,dx)

O0<s=t (0,71 xRg \O<s<u
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which after a little algebra involving a change of order of summation and
integration and a proper grouping of terms yields

X Q=F)f(P,_,P)+ [ f(P,-,6)Pds dx) *)

0<sst (0,61 x Ro

On the other hand, similar calculations makes the r.h.s. equal

(1 —F"(t))[ fa —F"°(S—))‘1FP°(dS)IN(Psk,dP/)f(Ps_,P')]

(0,1]

+ f Fp(du)‘: f (1—FP"(S—))_IFP"(ds)IN(PS_,dP/)f(Ps_,P')]
(0,1] (0, u) P
which upon noting that (1—FPo(s—))~'FPo(ds)=(1 — FF(s—))"'F"(ds) and then

interchanging the order of integrations w.r.t. u and s in the seond term yields
simply

§ FP(ds) | N(P,_,dP)f(P,_,P)
(0,1] P

1 ,
= Y AFP(S).}_Tsjq(O,Ps_,dP’)f(Ps_,P)
}?fsfpz P

+ [ F(ds) | A(s,dx)f(Py-. 5.,
g

which upon puting the expression for (0, P,_,dP’) and simplifying gives (*). O

Remark Davis introduced in [4] what he called the “Local description of the
process {X,,t=0}" and hinted at a connection of it with the “Levy System” as
introduced in [12]. The relationship of his “Local description” (A,n) with our
“Levy System” is clear, namely H,=A(t A T), and, N(Q,, {6,:xeB})=n(t,B). A
little reflection will reveal that times ¢ for which Z,_ =Q, are all that matter for the
purpose of compensation. Indeed, the totally inaccessible times of discontinuity of
the process {Z,,t 20} lie in {te[0,0):Q,_=0,}, and, it can be shown easily that
the totally inaccessible times of discontinuity of any square integrable {&,}-adapted
martingale are almost surely contained in those of {Z,,t=0}—and, of course, the
only jumps of a martingale that need to be compensated are the totally
inaccessible ones. Thus, in a way, our approach provides a connection between
Davis’ notion of “Levy System for the jump process {X,,t=0}” and the classical
notion of Levy System for a Markov process.

We finally go on to show how Davis’ representation theorem follows as a
natural consequence.

TheorEM 2.4 Any square-integrable (§9)-adapted martingale {M,} with M,=0
admits a representation given by
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M=hTX)ler— [  (1=F%s—))""h(s,x)Q(ds,dx) )

0,t A TI1xRo
for some function h on (0, 0) x R,.

Proof First of all, it is well known (see [6] for a complete proof) that there are
no non-trivial (F2)-adapted martingales with continuous paths. By Meyer’s
decomposition theorem, we have, therefore, that any square-integrable
(§9)-adapted martingale {M,} with M, =0 is necessarily of the form

M=) AM,—A4, (10)

O0<s=st

where A, is a previsible process. Next, let (R,),>, denote the resolvent of the
Ray-Knight compactification of P*. Consider martingales of the form

M,=R8(Z)~ R:8(Zo) — [ (AR8(Z,)— g(Z,) ds, (11)
0

where A1>0 and g is continuous on the Ray-Knight compactification of P*. Since
{R:g(Z,.),t>0} is the left limit process of {R,g(Z,),t>0} (see [9] for a simple
argument), it follows that AM;=f(Z,_,Z), for s>0, where feP ® P is defined
by f(P',P")=R,g(P")—R,g(P’). But then by Theorem 2.3, and, the uniqueness of
the previsible process {4,} in (10), we get

M=} f(Z,-.Z)— | dH,[N(Z,-,dP)f(Z,-,P). (12)

O<sst 0,11

It is now a matter of simple algebra to see that Eq. (12) can be transformed into
the form (9) where h is the function on (0, o) x R, defined by

h(t, x) = f(Q:-,0.)— f(Q:-, Q).

Thus, any martingale of the form (11) can be represented as in (9). Next, recalling
the well-known fact (see [6]) that for any (F@)-previsible process {Y,}, there is a
fixed function k() such that

YW <ty =H(t) forall t Q-as,

it is easy to see that if {M,} is a square-integrable martingale of the form (9) and if
{Y} is a previsible process such that {[},YdM,} is also a square-integrable
martingale, then this latter martingale is also of the form (9). The proof is now
complete in view of the fact that martingales of the form (11) generate all square-
integrable (F@)-adapted martingales (a basic result of Kunita and Watanabe,
which extends-without alteration to any realisation of a right process; for example,
one can simply repeat the proof in [10]). a
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3. CASE OF INFINITELY MANY JUMPS

As in the previous section, we start with a canonical space for the jump process.
Let Q,=R, Ao=B(R), and, for i=1, Q;=(0, ) x Ry, A;=B((0, 0) xR,). Let
(@, F) denote the product space ([]20Q:; X2 oY), and, (X°,8;,J1 5229
denote the sequence of random variables defined on (Q,§) by the coordinate
mappings, namely, for w'=(x%(s,, j),(s2, ja)..) €, XO%w)=x° and, for i21,
S{w)=s;, J{w')= j;. With this set-up, we can now define, in a natural way, a jump
process on (€, ¥) for which X° will be the initial state, and, for i21,5; the time
between the ith and the (i—1)st jump, and, J; the size of the jump. However, we
want to impose one simplifying assumption, namely, that there is no finite time

accumulation of jumps (we like to point out that this assumption is, by no means,
crucial for the main idea). We therefore restrict ourselves to

Q={W’EQ,: > Si(W')=°O}’ and §F° =&l
=1

Denoting T,=Y%., S; on Q, we have the jump process on (R, F°) defined by
XW=X"Wlogi<r,om+ L (X0 +I W+ + LWz mse<rasion (13)
n=1

Let P denote the set of all probabilities on (R, §°). We endow P with a topology
similar to that in Section 2. P then becomes a metrizable Lusin space, and, as 1n

Section 2, the Borel o-field PP in this topology coincides with the smallest o-field
on P making all the functions P+ P(S), se §°, measurable.

We now introduce certain notations which will prove to be quite handy in our
description of the underlying Markov processes. Note, first of all, that any PeP is

completely determined by the family {uf,n=0} when uj is the P-distribution of
X°, and, for n>1 and

n—1

(xoa(sb jl)’-ns(sn—l:jn—l))e l_l Qb /JS((xO,sl,jlr--,sn—lajn—l);‘)
i=0

is a version of a regular P-conditional distribution of (S,,J,) given
X=x%8,=5,J1=Jj1,0.0s 80 1=8 -1, Jne 1 = Jn—1-
We denote
Fo((x°,s, JiseeosSumts Jum 1) W)= (X% 81, jis e oy Sam 1 J— 1); (0, u] X Ro).
For PeP,%°€R, and, t20 such that F§(%% 1)< 1, Let P(%°) be defined by
pERE = 5

uPENE0; ) = ph(2%)-conditional distribution of (S, —1,J )
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given S;>t, and,
ﬂfg(go)((fossujn--~’sk-1,jk~1); )
= Me((X% 51 +8, jise s Se- 1o 1)), for k22, (14

If, moreover, u(%°%,t—) <1, P’_(x°) is defined by

pEe- 9 = P-conditional distribution of X, given X°=%° and §, 2t

Ps..0.
p-EYx% ds, x dj, = 1-Fix50)

ua((R0 6, x° —%%);ds, xdj;) if x°#%°
and,

0 (50 ; j
AR (C SETR /PRRE NSNS

MRS, Sy 4, Jiayeees Sim1s Je-1);-) if x0=x°
= (14y

l‘f+1((fo’tax0‘io>sl,f1,~-~,sk—1,jk—;)§-) if x®#x°
Similarly, ~for_ nzl, (®%5;, 1.8 e[ [f-0Q,  and  ¢2E, with
F5+ 1((5505 §17- () Jn)s t'_fn)< 1: where fn=2?=1 gi and £n=i0+2?=1 jia
Pi(%°,5,,..., j,) is defined by

P"
Hyt = 6:’“”

ﬂf+ 1((2(1),5‘1’ “eey L);dsl +(t_fn) X djl)
1—FF (X%, 5,..., J)t—F)

Uy (%" dsy xdjy)=

’

and,
AR5 15 Jyse e os Skm1s Jum1) )
=tr (B30 s oSyt =T sy o)) (15)
and, if, moreover
FPo (3050, Jst=E) =) <1, P{(X%5,..., ]
is defined by

ub?- = P-conditional distribution of X, given X°=x°,
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Sl=§1,...,‘]"=f" and sn+lél_fn

b e (R0 515, Ty dsy +(t—1) xdjy)
u’l’?-(xo;dsl X dj1)= 1_F5+1((i03§l’”-7 jn);t_'tn)

if x°=x"

B (RO, 5,y Tt —E X0 — %) ds, x djy) if XxO£Z

and,
Aul}:r-((xo’sl" vy jk— 1); )

P (50 & ¥ : ; e L0 _ on

k(X0 S5y Jms St =T Jise-es Ji); - if x"=Xx
_ P (Cart STRRINY A Jreees i) 15y

s (R0 8 0y ot =B X0 — %781, Gty Jiog)y ) Of XO#ER
Clearly, all the P, P?_, P", P"_ as defined above, for PeP, are also elements of P.
Let us point out that the seemingly complicated notations introduced above‘are
just rigorous descriptions of a very simple underlying idea, and, do not rema1n~oa
barrier to understanding once the idea is understood. Thus, for example, P?'(x )
(resp., P?_(%°) described the P-conditional law of the process {X,., s=0} given
X°=3° and S, >t (resp., S, =1), in exactly the same way as P describes the law of

the process {X,s=0}.
For each PeP, we now consider two P-valued processes on (Q, °, P) defined as:
PUX%w)) if 0<t<T,w) and FE(X°w);1<l1
Zi(w)= {
PHX W), S1(w), J 1 (W), ..., S,(W), J,(W)) i T(w)<t<T,4,(w) and
FPo(XOw),..., J (wt—Tyw) <1 orif T, ,(w)<t<T(w) and
FE(XO(w),...,J™ )it —T™ ) =1. (16)
{ PO(X%w)) if 0<t<T,w) and FE(X°(w)t—)<l
7P (w)= |
Py (XO(W), S,(W),...,Jow) if T(w)<t<T,, (w) and
Frs s((XO(w), S1(w), .., J(w); (e — Ty(w)) —) <1
orif T, (w<tZT(w) and
FR(XO(w), 81(W), ..., J o s (W) (6~ T, _ (W) —) =1 (17

With §°, &7, . +_, for PeP, being defined in the same way as in Section 2, we
have the following analogue of Theorem 2.1 (see [6]). Let
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P*={PeP:ube{d, xeR}}. Clearly, P*eP. Let P*=P|p..

THEOREM 3.1 (i) For every PeP, the process {ZF,t 20} is a strong Markov process
on (Q, ', &, P) with state space (P*,P*), moreover, all these processes have the
same borel transition function q defined by q(t, P, A)=P[ZF € A], t=20, PeP, AcP".

(ii) For every PeP, the process {Zf,t=0} has, P-a.s., all paths right continuous
on [0, 00) with {Z]_,t>0} as left limits in P on (0, o).

(i) (Q, &, F,ZE,PeP™) is a borel right process.

As in Section 2, we pass on to the natural space for our processes {Z7,t=0},
{ZF_,t>0} as follows:

Let Q denote the space of all P*-valued right continuous functions on [0, )
with left limits in P on (0, 00), and, let {Z,,t20} denote the coordinate process on
Q. With ¥, &, &,— defined on Q as before, we have, for every Pe P, a probability,
to be called P again, on (Q, ¥) making {Z,,t=0} a strong Markov process with
transition function g. Then the analogue of Theorem 2.2 is (see [6]).

THEOREM 3.2 Let ¢:P—R be defined by ¢(P)=E"(X,).

(i) ¢ is a borel function, and, for all Pe P, the P-law of {X,,ZF;t20} on (Q,°) is
the same as that of {§Z),Z,;t20} on (Q, ).

(i) If F° and ®F denote the P-completions of § and o(§(Z,), t=0) respectively,
then §°=GF; and, for each t=0, if ' and GF denote the augmentations of §, and
o(§(Z,), s <t) respectively by P-null sets of FF, then FF=06F.

On (Q, J), let us define
T,=inf{t L0: §(Z) # $(Z,)}
and, for n=>2,
T,=inf{t2T,-: §(Z)#$(Z+,_)}-

Also, let X°=¢(Z,) and, for n21, X"=¢(Z5,)1(5,< ). It is then clear from (i) of
the above theorem that (X° T;,X%,...,) on (Q, &, P) have the same joint distribu-
tion as (X°T,,X%..) on (Q,&°P), or, equivalently, if we define §,=T,
J,=X'—X° and, for n22, S,=(T,—T,_ s, ,<eop J.=X"—X""!, then
(X°,8,,7,,..) on (& & P) are equivalent in distribution to (X°S,,J,,...) on
Q 7, P).

For every PeP, and k21, let Af:(J]¥Z4 Q:x (0, o0)) x B(R,)—[0, 1] be a version
of regular P-conditional distribution of J, given (X% S,,...,J,_,S)), chosen to be
jointly P ® (FZ¢U; @ B((0, 00)))-measurable. Now let {H,, 20} be the increasing
process defined on (Q, &) by
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0 if t=0

H, = HY) if 0<tsTh
Y HS)+H"'¢t—T,) if T,<t=T,, (18)
k=1

where

HYs)= | (1 = F2((§(Zg), Sy, Tu_ 1)iu—)) " FE((P(Z0), St s Ti- 1) dW0) (19

(0,s]
Next, let N an P x P be defined by
(22(x% 1, B) if P=P%x% and where
B={jeRy: P}(x°¢, j)edP’}

1—Fi(x%t—)
Fi(x%t)— Fi(x%t—)

40, B,dP) if P=P° (x°)#PIx°)

/1,’,'+1<(x°,s1,...,j,,);t—Zsi,B> if P=PYx%s(,...,J,) and
1

where B={jeR0:P;'“(x°,sl,...,j,,,t-—Zs,», j>edP’}
1

1_F5+l<(x0>slv-‘7jn);<t_2::si> —>

F5+ 1<(xossb---5jn);t—zsi>-Ff:+l<(xo3sh"‘y _],J,(t—;s‘)—)
1

N(P,dP)= W

x g(0, P, dP")

if P=P'_(x%s,..., ) #PYx%S1,. s Jn)

LO otherwise. (20)

Then we have, analogous to Theorem 2.3, the following
Tueorem 3.3 (N, H) is a Levy system for the process {Z,,t=0} on (O, &, P).

Proof The previsibility of H is clear. The only thing to prove therefore is the
property (5). Let us call the quantity under EP on the left hand side of (5) as Y
and that on the right side by 17; It suffices to show that EP(Y, 1)=E" (T’, A~ T,)> and
that, for all n21, EXNY, , 1,,,— Y, 7)=EN(Y,, 1. — Y, 1), since then it wil
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follow, first of all, by induction that E(Y,, 5 )=E"(Y,, 1) for all n21, and, then,
using MCT, that E” (Y)= E"(Y) for all t>0 (note that T,1 oo, P-as). We only

prove EP(Y,, ;)=E" (Y,AT,) here, since the other identity can be obtained by
similar calculations.

Towards this, we note, on one hand, that

EP(Y,Aﬂ):yusw)[u—Ff(xO;t»( » f(P?_(X"),P?(x")))

R O0<sst

t+ § FT(X";du)( Y SP(x%), PI(x%)

0,11 O0<s<u

£ ] 2RO, dj1) S(PO_(60), PAGCO, jl»)]

=Iﬂ€(dx°)[ S (1= FP(x%; ) f(PO_(x), PY(x%)

O0<s=t

FOf MO ds, i) f(PO(x%), P, s, 11»], *

(0,11 x Ro

by using Fubini’s theorem and then grouping together appropriate terms. On the
other hand, similar technique yields

F2(x°% ds)
EPY 7 0 _ P 1
(T 1) = bl )[(1 D e

x | N(P2_(x°),dP") f(P?_ (x°),P)+ j F"(x ;du) |
P (0, u]
F(x°; ds)

e NP, a1, P |

=[pub dxo)l: { Fi(x° ds)j'N(Po (x°),dP") f(P?_(x°), P)jl

0,1]

-] uS(dx")[ 3 {(1 P 9) F(PO_(x%), PO(x®))
PY_(x%) #:;(x")

+ j A(xO; s, dj J(FE(x%; 8) — F{(x% s —)) f(P2_(x°), PY(x, s, jl))}

+ I PO (@ | HE55, (PR, P s,m)]
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which is easily seen to be the same as the expression (*). O

Turning towards a proof of Davis’ representation theorem, we simply denote by
g the random measure on (0, o) x R, as introduced by Davis in [4], and, for the
sake of brevity of this paper, we refrain from explicitly writing it down here. We
then have the following

TueoreM 34  Any square-integrable (§F)-adapted martingale {M,} with My=0
admits a representation given by

M(w)= | h(w,s, j)q(ds,dj)(w) 21

(0,t] X Ro

Proof First of all, one argues, in exactly the same way as in the previous
section, that if {M,} is a square-integrable (¥’)-adapted martingale of the form

M,=R,g(Z) — Rig(Zo)— [ (AR.&(Z) - 5(Z)) ds, (22)
[4]

where (R;);», is the resolvent on the RK compactification P* of P¥, g
continuous on P* and A>0, then

O<s<t (0,1] P

M= Y. fZ, . Z)— | dH,]| N(zs,,dP'>f(zs-,P') 23)

where feP ® P is defined by f(P', P")=R,g(P")—R,g(P).

It is now a matter of straight algebra to derive that if, for k=1, F*:[[f-o Q—R
is defined by

k-1
hk(xo’sl’-“’jk—l,ts j)=f(Pf:1(x0,Sl,--~,jk—1),Pf<x0,S1,---,jk—l,t— ; Si> 1))
~f(Pf: 1(x0’sl""7jk—l)’ P:“I(xo,sh"" jk--l)) (24)
and if h: Q% (0, 00) x Ro—R is defined by
W(PZoW),t,j)  if O<t<Ty(w)
h(w,t, j)= _ -
hk(d’(ZO(w)), Sl(w)9 ey Jk— l(w)5 t, j)
if ﬁ_l(W)<t§ TL(W), for k=2 (25)
then one has
le(o<z§ T,)(W) = h(W, Tl(w)a jl(w))l(t= T1(w)

- 1{0<1§T1(W)) f (1 —FI;(d’(Zo);S“))- lh(W, 5, Jj1)

(0,11 X Ro

X pi($(Zo); ds,dj,) (26)
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and, for n>1,

Mrl{f,.<t§ T,.”)(W)
= z h(W, ’Tl‘c(w)’jk(w)) + h(Wa Tn+ 1(W)a=7n+ 1(W))1(:=T,.+ 1{W)}
k=1

n

- ) (L —=FR(MZo), Sy, Tu—1);(s— T 1) =) " h(W,ss, j)

k= 1(Th - 1(w), Tu(w)] x Ro
X M{((d’(zo), .- -,jk— ), d(s— Tl'c— 0).dj)

— [ (=F((#(Zo), Sy, T);(s—T) =) " h(,s, j)

(Tn(w), 1] x Ro
X tn 1($(Z0o). S ..., T dls — T,), dj) 27

But this is the same thing as saying that every square integrable (&)-adapted
martingale {M,} of the form (22) has a representation given by (21). Let us also
note, as in Section 2, that if {M} is a square-integrable ({f)-adapted martingale of
the form (21), and, if {Y,} is any (FF)-previsible process such that {f}, Y.dM,} is also
a square integrable martingale, then the latter also has the form (21). This uses the
fact (see [6]) that {Y,,t=0} is an (§F)-previsible process iff it is of the form (P-a.s.).

Yr——-gl((P(Zo)a t)1(0<t§’f1}+ Z g"+l(¢(ZO), S_la- . 5‘7n’ t)l(fn<‘§ Tnei} (28)
n=1

The theorem now follows in view of the fact that martingales of the form (22)
generate all square-integrable (&’)-adapted martingales. O

Remarks 1. That we have chosen our basic jump process {X,t=>0} to be
real-valued instead of taking values in a general metrisable Lusin space (as was
done by Davis) is no restriction at all, since the exactly same idea can be carried
through in any abstract Lusin space, with possibly minor modifications (due to
lack of additive structure).

2. The more general case with possible finite time accumulation of jumps does
not pose any significant difficulty in extending our argument.

3. Our work seems to have a potential connection with another work of M.H.A.
Davis ([5]), wherein he discusses and studies “piecewise deterministic” Markov
processes in terms of their associated jump processes (non-Markov!). It should be
noted that the Markov process {Z,,t=0} introduced by us is a piecewise
deterministic process (although we have less regularity structure on the paths than
was imposed in [5]), and we have, in a way, used that to study the process
{X,120}.
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