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1. Introduction

Let { X,,, n>1} be a stationary sequence of associated random variables with distributior.x fungtion F(x),
or equivalently, survival function F(X)=1- F(x). We say that X, X,,..., X, are assoc.lated if for every
pair of functions #(x) and g(x) from R" to R, which are non-decreasing componentwise, the following
holds:

Cov(h(X). g(X)) >0

where X =(X,, X,,..., X,). An infinite family {X,, n > 1} is associated if every finite sub-family is
associated. We assume, of course, that the covariances involved exist.

The concept of association for random variables was introduced by Esary, Proschan and Walkup
(1967). It is very useful in reliability situations where the random variables of interest are very often not
independent but are associated. The asymptotic properties of associated random variables hav'e been
discussed by Newman (1980, 1984) and Birkel (1988a,b) among others. They observed that in any
asymptotic study of associated random variables the covariance structure plays an important role. We
impose conditions on the covariance structure of the associated sequence of random variables along the
lines of Birkel (1988a,b).

Consider the estimator F,(x) defined by

3

F(x) -+

Y (x) (1)
j=1
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where
1 if X > 0,

0 otherwise.

Y.(x) = { @
We propose F,(x) as an estimator for F(x) and study its asymptotic properties.

Esary, Proschan and Walkup (1967) showed that nondecreasing functions of associated random
variables are associated. Therefore, for fixed x, Yi,..., Y, are associated.

In what follows we discuss the strong consistency, pointwise and uniform of F,(x). These results are
useful in the study of kernel-type density and failure rate estimators of the unknown density and failure
rate function (see, for example, Bagai and Prakasa Rao, 1990). Asymptotic normality of F,,(x) is also
discussed. Some lemmas, useful in proving the results concerning F,(x), are stated and proved in
Section 2.

Throughout the paper C will denote a positive constant not necessarily the same from one step to
another.

2. Some lemmas

Lemma 2.1 (Sadikova, 1966). Ler F(x, y) and G(x, y) be two bivariate distribution functions, with
characteristic functions f(s, t) and g(s, t) respectively. Define

fs, 1) =f(s, )= (5,0)£(0, 1)
and
£(s, 1) =g(s, 1)~ g(5,0)2(0, 7).
Suppose that partial derivatives of G with respect to x and y exist. Let

0G(x,
A, = sup ——(E;Cx ) and A, = sup __~8G(axy, ») .
X,y X,y

Suppose A, and A, are finite. Then, for any T > 0,

(s, t)——g(s 1)

sup | F(x, y) = G(x, y)| < ds dt
X,y

(2
+2 suplF(x, ©0) = G(x, 00)|+2 sup|F(o0, y) = G(o0, y)|

A+ A
2-1T—2(3\/—2‘+4\/3T). O (3)
Lemma 2.2. Suppose X and Y are associated random variables with bounded continuous densities. Then, there

exists a constant C > 0, such that for any T > 0,

sup | P[ X <x, Ysy]—P[ng]P[YSy]KC{Tz Cov(X, Y) + %} (4)

X.y

Proof. Let
F(x, y) =P[X<x, Y<y]

and

G(x, y)=P[X<x]P[Y<y]
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in (3). It is easy to see that the function G(x, y) satisfies the conditions stated in Lemma 2.1. Then (4)
follows from Lemma 2.1 and the following inequality by Newman (1980); for all real s and ¢,

Lf(s, 1) = /{5.0) f(O, t) | <]tl|s|Cov( X, V). O

Lemma 2.3 (Birkel, 1988a). Let { X,, n=1} be a sequence of associated random variables with mean zero
and sup,| X, | < co. Let 5, =3"_, X and
u(n)=sup 3.  Cov(X, X,).

k=1 i tj—ki=n

Assume that u(n)=O(n" """ 272 for some r> 2. Then, there exists a constant C > 0, not depending on n,
such that

E[]S"]r] <Cn'?

oralln=1. O

The above lemma can easily be generalized to obtain the following result by methods in Birkel (1988a)

Lemma 2.4. For every « €1, an index set, let { X,(a), n =1} be an associated sequence with EX,(a) =

and
Sup Sup‘Xn<a)| ‘<\A < 0.
asl n21
- Let
S,(a)= Y X,(a)
Jj=1
and

u(n,a)=sup Y Cov(X(a X (a)).

k21 il j—kl=n
Suppose that there exists b > 0, independent of a € I and n > 1, such that for some r > 2, and all a € I and
121,
u(n, a) <bn™ =272,

Then, there exists a constant C, not depending on n and «, such that for all n > 1,

sup sup £15,.,,,(a) = 5,() [ <Cn7%. O

a€l mz20

lemma 2.5 (Newman, 1980) Let { X,, n>1} be a stationary associated sequence of random variables with
[ X}?] < oo and O <o?=Var(X;) + 2Z°° 2 Cov(X,, X;) < co. Then, n~ VS, — E(S,)) converges in distri-
wtion to N(0, 6%) asn— 0. O

3. The empirical survival function

Theorem 3.1. Let { X, n> 1} be a stationary sequence of associated random variables with bounded
mtinuous density for X,. Assume that, for some r>1,

S {cov(X. X))} = 0(n ).

Jj=n+1
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Then, there exists a constant C > 0 such that, for every e >0,

supP[|I-5,,(x) — F(x)] >£] <Ce ¥n™" foreverynz1.

Proof. Observe that,
Cov(Y,(x), Y;(x)) =P[X,>x, X;> x| = P[X;>x]P[ X, > x]
=P[X,<x, X;< <x]| - P[X <x]P[X,<x],

which is non-negative since Y;(x) and Y;(x) are associated. Then there exists a constant C > 0 such tha

E Cov(Yy(x), Y;(x)) < i sup{P[X1<x, X, < x| —P[X1<x]P[Xj<x]}
Jj=n+1 j=n+1 X

<y (Cov(x,, x)}",

j=n+1

by taking 7= {Cov(X;, X;)} ™"/ in Lemma 2.2 whenever Cov(X;, X;) >0 and if Cov(X;, X,) =0 ther
X, and X; are 1ndependent as they are associated and Cov(Y;(x), Y(x)) =P[X; <x, X;< x] Pl X<
x|P[X, <x] <[Cov(X;, X)]'/*. Furthermore

sup sup|¥;(x) — EY;(x)| <2
x J

and

1/3
u(n, x)=2 Z Cov(Yy(x), Y,(x)) < C Z {Cov(Xl, X, )} /
Jj=n+1 j=n+1
for all real x, where C is independent of n and x. From Lemma 2.4, it follows that, for every n > 1,
2r

supE (Y(x)—EY(x)) < Cn’

j=1

where C is independent of n and x. Then, by using Markov Inequality, we get that for every & >0,

]

sup P[|E,(x) = F(x)|>¢] = sup P|[|E,(x) - F(x)|" > ¢

X

< sup {n_z’e‘z’E

é(Y,(x) — EY,(x))

<Ce n™". m]
Corollary 3.1. Under the conditions of Theorem 3.1, for every x
E(x)—> F(x) a.s. asn— .

Proof. Observe that

[= =]

Y P[[f,,(x)—i(x)]>e] <Ce™ Y % <o forr>1.

n=1 n=1

The result then follows by using the Borel-Cantelli Lemma. O
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Remark 3.1. Corollary 3.1. is valid under the weaker condition

Ms

Cov( X, X,)»0 asn— oo

1
n g

1

J
for any stationary associated sequence as pointed out by the referee. This result is a consequence of
Theorem 7 in Newman (1984).

Next we obtain a version of Glivenko—Cantelli Theorem valid for associated random variables. The
proof follows along the lines of the proof of an analogous result for mixing sequences of random variables
(Roussas, 1989).

Theorem 3.2. Let { X,, n>1} be a stationary sequence of associated random variables satisfying the
conditions of Theorem 3.1. Then for any compact subset J C R,

sup[]f,,(x)~f(x)|: xEJ] -0 as. asn— co.

Proof. Let K; and K, be chosen such that J C[K;, K,]. Divide [K;, K,] into b, sub-intervals of length
§,~0 where {§,} is chosen such that

an—ln—r< 0. (5)
n
Such a choice of {8, ) is possible. For instance, choose §, = n~¢ where 0 <8 <r— 1. Note that
b, < C8 ' 6)
ltl,,=(x, ;, X, ;+1), j=1,..., b, = N, where
Ky =Xp1<x,5< - <x, ny1=Kj,
with
Xy j+1 X, ;<68, forl<j<N.

Then, forxelr,, j=1,2,...,N,
F(xn,jﬂ) <F(x) <F(xn,j)’

and
Ez(xn,j+1)<E(x)<E(xn.j)- (7)
Hence
[Fn(xn,j+1) _F(xn,j+1)] + [F(xn.jﬂ) _F(X)]
< F(x) - F(x)<[F(x, ;) - F(x, )] + [F(x, ) - F(x)]. (®)
Therefore

sup[| E,(x) - F(x)|: x 7]

< sup[|F,(x) - F(x)|: K, sxus]
< 1r\<nja<xN ‘Fn(xn,j)_F(xn.j)’ + lgljixN Fn(xn.j+l) _F(xn,j-#l)‘
+ F(x, ) — F(x)|+ F(x, 1) = F(x)|. 9
15eN xssg/, () = F(0)| 12N XS‘:}) IF(X"'JH) (X)| ®)

nj
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Now
F(x,,) = F(x) = F(x) - F(x, ;)
=(x-x, ) f(u*) forx,  <u*<x (10)

by the mean value theorem. Since f, the density of X; is bounded by the hypothesis, it follows that there
exists a constant C > 0 such that

|F(x, ;) = F(x)|<C8,,  |F(x, 1)~ F(x)|<C8,, (1)
for 1 <j< N and x €1,,. Then, for ¢ > 0, choose n = n(e) such that
2C8"< FE.

From (9) and (10), we get, for n > n(e),

P[supm(m—ﬁ‘(x)in]

x&J

max
1<j<N

N -—
<xirl
<CNe ¥n "= Ce ¥bn~" (by Theorem 3.1)

< r6 r

1<jsN

) F n/)|>3£]+P[ max nj+l) F('xnj+l)‘>38]

n,j+1) —F(xn,j)l > %’;8

E (X, ;+1) — F(x,,_j)‘ > %ED

The result follows by using (5) and the Borel-Cantelli Lemma. O

Theorem 3.3. Ler { X,, n>1)} be a stationary associated sequence of random variables with bounded
continuous density for X; and survival function F(x). Suppose that

i{Cov(Xl, Xj)}l/3<oo. (12)
Define
0%(x) = F(x)[1 - F(x)] +2§ {P[X1>x, Xj>x] —F—Z(x)}.

Then, for all x such that 0 < F(x)<1, n'/? [E,(x) — F(x))/0(x) converges in distribution to a standard
normal variable as n — co.

Proof. Observe that nF,(x) = X_,Y(x), with 0 < Var Y,(x) = F(x)(1 — F(x)) <1, and Cov(Y;(x), Y,(x)
> 0 by association. Using Lemma 2.2, we get that

0<Var Yy(x)+2 E Cov(Yy(x), ¥,(x))

Jj=1

<F0)( = F(x)+2 % (Cov( X1, X)) <

j=2
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by arguments similar 10 those given in the proof of Theorem 3.1. The result now follows from Lemma 2.5

due to Newman (1983). O

Remark 3.2. Theorent 3.3 can be extended to an invariance principle by using Theorem 2.2 of Newman

(1984).
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