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Abstract—The unsteady flow of a liquid film on a cold/hot rotating disk is analysed by means of
matched asymptotic expansion under the assumptions of radially uniform film thickness that varies
with time. The velocity, temperature and rate of heat transfer are determined for both the cases. Two
new non-dimensional parameters x and f8 are defined and the variation of the uniform film thickness
with these two parameters are shown graphically. Depending on «, a novel feature of flow reversal
on the free surface of the film is obtained when the disk is heated from below axisymmetrically.
A physical explanation of this flow reversal is also provided. It is further shown that heat flows from
the disk to the film for R < R. and from the film to the disk for R > R, when the disk is cooled from
below. These heat flow directions are reversed when the disk is heated from below. Moreover, in this
case, heat also flows from the free surface to the curve 7. = 0.

1. INTRODUCTION

Flow of thin liquid film on a smooth solid surface by the action of gravity either on
stationary vertical walls or on inclined planes has attracted scientists due to its enormous
applications in the modern technological world. Thin film can also be produced by the
action of centrifugal force on a smooth rotating disk. It is surprising that most of the
theoretical and experimental work on the production of thin film is confined to the former
type of analysis; not much attention has been paid in the literature to the latter one,
although the application of the formation of thin film on a rotating disk is increasing with
the advancement of science and technology. For example, the study of heat transfer from
arotating disk to a thin film is used to promote the absorption of vapour into the liquid on
the disk. Specifically the absorber unit of a space-based vapour-absorption refrigeration
system will use a liquid film thinned by the centrifugal force on a rotating disk to enhance
the absorption of the refrigerant vapour into the absorbent. Since a falling film cannot be
produced in a micro-gravity environment, the vapour-absorption cycle is more appropriate
than a vapour-compression cycle for a micro-gravity application.

Production of thin film on a rotating disk can also be used in the micro-electronics
industry to coat the photoresist on silicon wafers for integrated circuits, for magnetic
storage disks, for magnetic paint coating on the substrate, etc. This technique of coating is
known as spin coating in the literature. In this process, a thick layer of fluid is distributed
initially over a horizontal disk, often containing concentric grooves, and the layer is
subsequently thinned by spinning the disk at high angular velocities. At the start of the
spinning, most of the liquid is ejected from the wafer leaving a thin film which flows slowly
outward from the centre of the disk under the action of centrifugal force. As the film thins
the liquid evaporates causing the increase of fluid viscosity, which reduces the radial flow.
Eventually, the viscosity increases to such an extent that the radial motion virtually ceases.
After a while the spinner is stopped and the process is completed by evaporating the
residual in an oven.

It is well known that the evaporation starts from the surface layer of the film and during
the process of evaporation the latent heat is extracted from the film as a result of which
a solid skin is formed on the surface layer which puts greater resistance to the remaining
liquid for evaporation. During baking, the inner liquid starts evaporating, as a result, there
may appear cracks, waves, etc. on the surface layer of the film. To suppress these unwanted
cracks, waves, etc., the film may be cooled by cooling the disk from the underside. This
paper is addressed to the study of heat transfer from disk to thin film as well as the
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development of a velocity field on the rotating disk when it is either cooled or heated from
below.

Earlier works on the production of thin film on a rotating disk and the study of heat
transfer may be classified into two groups depending on the deposition of liquid on the
rotating disk. In the first group the liquid is deposited either in the form of an impinging jet
or as a continuous stream at the centre of the rotating disk. In this group Watson [1]
analysed a free-falling jet which impinges on a horizontal plane. Espig and Hoyle {2],
Miyasaka [3] and many others measured the film thickness while Butuzov and Rifert [4]
and Ishigai et al. [5] examined the flow pattern, heat transfer and film thickness. In the
study of the other group, a thick uniform layer of liquid is distributed over the disk which is
then spun. Emslie er al. [6], first initiated the study on the development of thin film. In this
group of investigation, later on, Meyerhofer [7], Tu [8], Jenekhe [9], Higgins [10] and
Hwang and Ma [11] studied the film thickness and its dependence on various parameters
like rotational speed, concentration of the liquid, surface tension, non-Newtonian effects,
surface roughness, etc. Dandapat and Ray [12] examined the heat transfer from the film to
the disk as well as the film thickness when the disk is cooled axisymmetrically from the
underside. To solve the non-linear coupled differential equations, they have neglected the
effect of thermal stress on the free surface as well as the variation of surface tension with
temperature in their investigation. But it is well known that the thermal stress and the
surface tension plays a vital role on the thin film development on a rotating disk. So it may
be worthy to reconsider the problem of Dandapat and Ray [12] (hereafter referred to as
DR) by taking into account the effect of the variation of surface tension with temperature
and thermal stress on the free surface. In this investigation we shall study the film thickness,
velocity field and heat transfer when the disk is either cooled or heated axisymmetrically
from below. Following ref. [12] we also assume:

(i) The disk radius is much larger than the film thickness, so that the edge effect can be
neglected.

(i) The film flows under planar interface under the conditions justified by earlier
researchers, starting from Emslie et al. [6].

(i) The Reynolds number Re = Ughy/v is small and the dimensionless parameters
B= g AT/hoQ? and & = y AT/ pohdQ? are less than 10, where Uy, ho, Q, v, ¢’ &', po and 7 are
the characteristic velocity, initial film thickness, angular velocity, kinematic viscosity,
gravitational acceleration, thermal expansion coefficient, density at room temperature T,
and the variation of surface tension with temperature, respectively. AT stands for the
difference in temperature between the centre and a point at radial distance ﬁho from the
centre of the disk.

(iv) Adjacent to the liquid fitm at the free surface is a gas or liquid vapour, and therefore
the viscosity ratio, p,/p; (Where py and p, are the viscosities of the liquid and gas phases.
respectively) is much less than unity and any motion of the gas is neglected.

(v) All physical properties except density and surface tension are constant and indepen-
dent of temperature.

2. MATHEMATICAL FORMULATION

Consider a uniform film of viscous heat-conducting liquid on a disk whose radius is large
compared with the thickness of the film. Initially, the system is at the room temperature 7.
Simultaneously the system starts rotating with a uniform angular velocity about an axis
normal to the plane of the disk and an axially symmetric temperature distribution which
decreases/increases radially outward from the axis of rotation is imposed on the disk. The
origin is fixed at the centre of the disk and the z-axis pointing vertically upwards is the axis
of rotation.

For axisymmetric motion, the governing equations, after using a Boussinesq approxima-
tion in the cylindrical coordinate (r, 8, z) system, become

u, + (ury+w, =0, h
ul + uur - (172/") + ‘vu: = - pr + v[urr + (u//r)r + u::]’ (2)
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o+ uv, + (uv/r) + we, = v[o, + (t/r), + v,.], (3)
Wy + uw, + wWw, = — p. + V[W" + (l/r)w, + sz] + g/a,(T— TO)’ (4)

where u, v, w denote the velocity components along the radial, circumferential and axial
directions, respectively, and p is the pressure. Here the subscripts denote derivatives with
respect to the indicated variables.

The energy equation after neglecting viscous dissipation becomes

i+ ul, + wT, = K[T,, + I/nT, + T..], (5)

where K is the thermal diffusivity. It should be noted here that in deriving equation (4) we
have used the variation of density

o = poll — (T — Tp)],

in the momentum equation.
For t > 0, the boundary conditions are:

(1) no-slip conditions at the disk
ur,0,t) =0, v(r, 0, 1) = Qr, wir,0,t)=0 (6)
(2) the imposed temperature distribution
T(r, 0,0y = Ty — A(r*/2)T}, (7)

where 7o and T, are positive constants and # takes values either 1 or — 1 depending on
whether the disk is cooled or heated from below.

At the free surface z = h(t), the jump in the normal stress across the interface is balanced
by surface tension times curvature, and the shear stress equals the surface tension gradient
along the interface. Under the assumption of a planar interface these are given by

—p+2uw, =0, (8)
pu: + w,) = — (a7, 9)
HU, = _(6T)Tz’ (10)

where ¢ denotes surface tension. Further, the thermal boundary condition at the free surface
:=h(t) is given by Newton’s law of cooling

T, + L(T—T) =0, (11)

when L and T, denote the heat transfer coefficient at the free surface and the temperature in
the gas phase, respectively. The kinematic condition at the free surface is

h, = wir. ht). (12)

The initial conditions for the velocity components and the temperature are as follows:
ur, z,0) = v(r, z, ) = wi(r, 2, 0) = O, (13a)

T{r,z,0)=T,. (13b)

Further, the film thickness satisfies the initial conditions
h = hy, hy=0 att=0. (13¢)

Following von Karman [13], the solution of the above system may be assumed in the
well-known similarity form (for details see ref. [12])

u=rfzt), v =rg(zt), w = w(z,t),
p=—(r?/2A(z,t) + B(z.1),
T=Ty— Ar?/2)M(z,t) — iN(z,1). (14)
Equations (1)-(5) after using (14), reduce to the form
2f4+w, =0, (15a)
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o+ P =g+ Wl —vfo = Az0), (15b)
gr — gW. + Wg, = vg.., (15¢)

A, = Agd M, (15d)

M, —wM+wM,=KM,_,, (15¢)

N, + wN,=2KM + KN _,. (15f)

Here equations (15a), (15b) and (15c) are the consequence of equations (1), (2) and (3).
Again equations (15d), (15¢) and (15f) are obtained from equations (4) and (5) after using
equation (14) and equating the terms of order r? and r°. It is clear that the similarity solution
for temperature as assumed in equation (14) is compatible with the temperature boundary
condition (7). It should be emphasized here that the last equation of (14) holds for large but
finite values of r (since the radius of the disk is large compared with the film thickness) so
that 7" can never tend to — oc . Further, the r-independent term of equation (4) after using
(14) becomes

w, + 3w, —vw, + B, + 2g'a’N =0. (16)

Now, B(z,t) can be evaluated by integrating (16) with respect to z, from z = 0 to z = h(t), and
thus we can evaluate the pressure from equation (14) after finding A(z,1) from (15d) (for
details see ref. [12]).

The boundary conditions (8)—(11) on the free surface z = h(t) can also be simplified by
using equation (14) and, equating the terms of the different powers of r, we get

Ah,t) = 0, (17)

1. = GAWM, (18)

g.=0, M,=0, N,=0 (19)

M.+ LM =0, iN,+ LGN+ T, — T,)=0. (20)

To study the effect of the variation of surface tension on film development we assume L = 0
in this analysis and obtain

A(h,ty = 0,
Jfo= A M,
g.=M_.=N.=0 onz=h). (21a)

In the above system of equations we have assumed the variations of surface tension in the
form

6 =360 — T~ Ty),

where 7 = — 61, which is positive for most of the liquids, and a, is the surface tension at
temperature 7.

Using equation (14) in the boundary conditions (6) and (7) on the disk, the kinematic
boundary condition (12) at the free surface can be simplified. The set of simplified boundary
conditions are given by

1(0,t) = w(0,1) =0, g(0,1) = Q, (21b)
M@Q,t)=T,, N(0,1) = 0, (21¢)
hy = w(ht) atz= h(). (21d)

Stmilarly the initial conditions (13) reduce to the form:

f12.0) = g(z,0) = w(z,0)=0
att=0.
h = h. hy=0 and T z,0 =T,

3. SOLUTION FOR SMALL REYNOLDS NUMBER

During the course of spinning we may arrive at the situation when the centrifugal force
and the viscous shear across the film are of comparable magnitude. At this stage the
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Reynolds number Re(=Ugho/V) will be much less than unity and this balance of forces
defines a characteristic time (cf. refs [6, 10, 12]) ¢, such that

ty = v/(h5Q?), (22)

where the characteristic velocity scale U, is defined as hy/t,. We introduce the dimensionless
variables as

T = [/[b, é:: Z/h(), H = h/ho, R: r/ho, F= hof/U(),
G=g/Q, M=h/AT)M, N =N/AT, A = A/Q* W=w/U, (23)

where AT = |A(R3)T|.
Non-dimensional forms of equations (15) and (21) (after dropping primes on M, N and A)

are
2F + W, =0,

Re(F, + F* + WFy) = Fe: + G* + A4,
Re(G, — GW; + WG,) = G,
oRe(M, + WM; — W:M)= Mg,
oRe(N, + WN;) = Net + 2M,
Ag = pAM(, ), (24)

where ¢ = v/K is the Prandtl number.
The dimensionless boundary conditions are, for 7 > 0,

FO,1)= WO0,1) =0,  G(0,1)=1, ~
MO, 1) =1, N(©O,7)= } at¢ =0, (25)

Fe(H,71)=aiM(H, 1), G:(H,7)=0,
M H,7)= N:(H,7) = A(H,71) =0, at{=H (26)
H{t)= W(H, 1)

and the corresponding initial conditions are
F(S,0) = G(£,0) = W(,0) = M(E,0)= N(,0) = A0 =
HO) =1, H,(0)=0. 27

The above coupled, non-linear system of equations (24)—(27) can be solved by expanding
the dependent variables in terms of the powers of Re in the form:

(&, 1) §R€’¢,é T) (28)
and )
H(t) = Hy(t) + ReH(r) +

Substituting equation (28) in the system of equations (24)—(27) and equating the different
powers of Re we can get different sets of equations involving the dependent variables F, G,
W....Solutions to the zero-order set are:

B ) |
Fo(é,7) = 5 + (/tﬁH DEX+ (@h + H—EA[?H ),
GO(é’ T): 1’
_ApEt 1 s L P
Wol, 1) = 2 —g(A,BH—l)f —(eA+ H 2AﬁH )é2,
AolE, 1) = BAE — H),
MO(C_sT)= 1»

No(¢, 1) = — & + 2HE. (29)
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It is to be noted here that the effect of a temperature boundary condition as well as the effect
of the variation of surface tension with temperature (viz. parameter o) can be seen in the
zero-order solutions.

To obtain the solutions for higher-order terms straightforward but lengthy calculations
need to be performed. So we avoid the details of these repetitions (please see ref. [12]) here.
To determine the film thickness we use the kinematic condition given in equation (26) as
follows:

Ho. + ReH,, + O(Re?) = Wy(H,t) + ReW,(H,1) + O(Réd).

Comparing the orders, we have

2
Ho = Prs 23— yumz, (30)
4 3
= (JBH3 — 2H2 — 2;aHo)H, + Ci2B*H + DBIH}
+ EH{ + FiaH§ + 3724*cH3, (31)
where
299 127 107 — 131o
= — —— =
9072° 2268 1440
68 5 19
E=gys t7 ﬁ@o" #po 126
_6l S
10 T 127

The solution we have obtained so far by finding F, G, W, M and N does not satisfy the
initial conditions (27) due to the large-time-scale assumptions as explained earlier. For
a uniformly valid solution, an inner expansion for short time is nceded and this solution
must be matched with the long-time-scale solution by using Van Dyke’s technique [14] of
composite matched asymptotic expansion.

3.1. Short-time-scale analysis

In this analysis, we shall define a new time scale in such a way that the local inertial term
(e.g. the term f, in equation (15b)) is of the same order of magnitude as the viscous and the

centrifugal terms in the governing equations. The dimensionless variables in this part are
used as

tQ) T -

7= = F=F,G=G, W=W,H=H M=M, N=N, A=A and ==
JRe Re

In this stretching of the temporal coordinate system, the corresponding equations become
2F+ W,=0,
Fi+ Re(F* + WF,)=F,, + G + 4,
Gz + Re(—GW, + WG,) = G,
oMz + Rea(WM, — W,M) = M,,,
oNz+ ResWN, = N,, + 2M,

A, =M. 32
The boundary conditions are
F(0.7)= W(0.7) =0, GOx=1 MO7)=1, N(©,7) =0, 33
FAH T) = 2aM(H7), G,(H1)= M,H71)=0,
N,H )= AH.7)=0, H;=ReW(H, 1) (34

F=W=G=M=N=A4=0, ati=0, H=1  H;=0. 3%
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Expanding the dependent variables according to the perturbation scheme (28), and solving
the zero-order set we get

Ho(@) = 1,
o0 —-p2T
Go=1-2Y e misinlpan) M d 7 >0,
n=1(2) Dn 2
o —{(PE/onR o}
Mo=1-2 % e sm(pm),
n=1(2) pn
_ 0 ‘(Pl/ﬂ)f
Ao =ABin—1) + 2B4 ) cos(pay), 0<n<i. (36)
n=1(2) 'l

Expressions for F, and W, are quite lengthy and straightforward so we dropped them
and they will be supplied on request. First-order correction to the film thickness for
a short-time-scale can be obtained from the kinematic condition as

Hi: = Wy(1,7). 37

The solution of equation (37) satisfying equation (35) gives the O(Re)correction for film
thickness as follows:

_ ) o0 1 (_1)(m 1)/2
H@) = —(Ga+d+4p Y —4[1———}

m=1(2) Pm Pm

( 1)(m 1)/2 .
-4y —5[(—1)""*“/2/“(1—»/31) +w—p—](e-"3nf—1)

m=1(2) pm m
g (_1)(,",1)/2 . o0 1 e 1 1
— 2)a0 (e P —1)—8 —le i+ = |- =
o ps, W 7R
)(m+n 2)/2

(e A% —1)

+ 8iuo Z Z

m=1(2) n=1(2) pmpn

S (-1 (€7 —1) (e PW—1)

Z Z _ 2 - 2
m=1(2) n=1(2) PmPn(Pm Pn/o') palo Pm

+4,1[3i i {1_(_1)(m+n)/2+<1__(__1)(m“n)/2> }

— 81

m=1(2) n=1(2) Pm + P Pm — Pn
i (e™Prt 1) (e7PaT—1)
x 20,2 2 2 - 2
PmPn D — Pa/0) pa/o Pm
v v A ™2 —1) (e™7»—1)
—32 Z Z 2 2 [ 2 - 2
m=1(2)n=1(2)pm(pm - 2pn) 2pn Pm

z = A eCRtrh ) (-1
—64 ) 3 ) 2[( ) 3 )} (38)
m=1Q2)n=1(2)I>n pm(pm — DPn _pl) (pn + pl) pm

where

Altm = pm/[(pn - pm) + pl - 2p (pn + pm)]

By using the technique of composite matched asymptotic expansions due to Van Dyke
[14], we have matched the short- and long-time-scale solutions and obtained the expression
for the film thickness which is uniformly valid for all times as

He(t) = Hoft) + (3 + An)r—0.24998 Bt
+ Re[H,(r) + H,(t/Re)—0.66087 — 3916660
+ 0.875003 — 000000056201 ].

It is to be noted here that for large T, H, has been calculated and then used as the initial
condition for equations (30) and (31) along with H, = 1. These equations are then numer-
ically solved using Gill's modified method [15].
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4. RESULTS AND DISCUSSION

Setting 4 = 1 or — 1 we shall obtain the case of cooling or heating. Figures 1 and 2 depict
the variation of the composite film thickness with time for various values of § and o when
the disk is cooled or heated from below, respectively. It is clear from Fig. 1 that for fixed «,
the film thickness increases with . Here f acts as a heat sucking parameter.

Therefore, as f§ increases, the temperature of the film decreases and hence the density of
the fluid increases which results in higher resistance for film thinning. On the other hand, for
fixed B, as « increases, the film thickness decreases. Here o is the measure of thermocapillary
force which is induced owing to the variation of surface tension with temperature. Since the
disk is cooled axisymmetrically, the surface tension is low at the centre, and hence
a thermocapillary flow is induced at the free surface in the favourable flow direction. Thus,
a enhances the film thinning when the disk is cooled from below. Figure 2 shows the reverse
action for f and « when the disk is heated from below. This is due to the fact that for fixed o,
p, the heating parameter, enhances the film thinning with its increment, whereas for fixed g,
a introduces an adverse thinning effect. Thus, the thermocapillary flow which is induced in
this case has opposite flow direction, i.e. towards the centre. This fact can be seen in Fig. 3, in
which we have plotted F against ¢ for different values of &, § and 7. One can find from Fig,

0.1 |-

Fig. 1. Variation of composite height H® with respect to time t for Re = 0.25, ¢ = 0.5 and for
different values of (%, f). For cooling (—) for (0.001, 0.001); (- - -) for (0.5, 0.001); (------- ffor (0.5, 2.5)
and (- x - x - x -) for (0.001, 1.0).

0.1

0 0.4 1.2 2.0 2.8 3.6 4.0
T

Fig. 2. Variation of composite height H® with respect to time t for Re = 0.25, ¢ = 0.5 and for
different values of (2. f). For heating (- -) for (0.001, 0.001); (- - -) for (0.5, 0.001); (----- - ) for (0.5, 2.5)
and (- x - x - x ) for (0.001, 4.0).
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jthatfor x = 0.5, B = 0.001,6 = 0.5, T = 3.0, F becomes negative for £ > ¢ such that F = 0
¢ = £ This shows that x introduces a reverse flow (towards the centre of the disk) at the
jee surface. For cooling, Fig. 4 shows that F increases as « increases for fixed §, whereas
f decreases with the increase of § for fixed «. Thus, for cooling, thermocapillary effect
enhances the film thinning. Figures 5 and 7 (Figs 6 and 8) show the changes of G and W with
sand § when the disk is cooled (heated) from below.

Non-dimensional temperature distribution in the film which is developed due to cooling
or heating the disk may be expressed as

2
T‘)A”T r_ z(-’%)M(:, 1)+ AN(E 7, (39)

where R = (r/ hy). In equation (39), the positive sign corresponds to cooling and the negative
sign to heating the disk from below. This gives

RZ
T.= — /"t<’2—>M<(f,r) — IN«(&,T). (40)

40 |-

30
s
<
#
&5 10
0 [ENEREN
0.1 0.2 0.3 0.405 0.6\{: 09 °
3
_10 -

Fig. 3. Variation of radial velocity with & for different values of a, § and t. For heating (—) with
1= 0,001, # =0.001 and 1 =0.5; (----) with « = 0.5, $ =0.001 and 7 = 0.5; (------ ) with « = 0.5,
B =25and 1=0.5 (-O-O-0O-0-) with « = 0.5, = 0.001 and = = 3.0.

F x 102

Fig. 4. Variation of radial velocity with & for different values of «, § and t. For cooliny (-} with
1=0001, § = 0.001 and 1 = 0.5, (----) with « = 0.5, § = 0.001 and 7 = 0.5, (------- ) with a = 0.5,
f=25and 1=05; (-O-O-0O-0-) witha =05, f# = 2.5 and 7 = 3.0.
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1.00

0.96
G
0.94
0.92 —
)
1 1 1 | L i
0 0.2 0.4 0.6 0.8 1.0
4
Fig. 5. Variation of cross-radial velocity with ¢ for different values of «, § and t. For cooling (—)
with « = 0.001, # =0.001 and t =0.5; (----) with x=0.5, § =0.001 and t =05, (- ----- ) with

x=05f=25and 1 = 0.5, (-O-0O-0O-) with 2= 0.5, f = 2.5 and r = 3.0.

1.00
0.98
G 0.96
0.94 |-
0.92 |-
2R R B B |
0 0.2 0.4 0.6 0.8 1.0
4
Fig. 6. Variation of cross-radial velocity with ¢ for different values of «, § and . For heating (—)
with 2 = 0.001, f =0001 and t = 0.5; (----- ) with x =05, $=0.001 and 1 =05, (------- ) with

2=05f=25and 1 =0.5; (-C-0O-C-O-)with x = 0.5, f = 2.5and 1 = 3.0.

W x 102

Fig. 7. Variation of axial velocity with ¢ for different values of x, # and t. For cooling (—) with
x=0.001. =000 and t = 0.5:(----) with x = 0.5. §=0.001 and 7 = 0.5, (--- -~ ) with x = 0.5,
p=25and t =05 (-7 -2-"-)withx =05 = 25and 1 = 30
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W x 10?2

~50

Fig. 8. Variation of axial velocity with ¢ for different values of %, § and 1. For heating (—) with
x=0.001, # = 0001 and t = 0.5; (----) with x = 0.5, f = 0.001 and © = 0.5; (

------- ) with & = 0.5,
B=25and 1 =05{(-C-0O~-C-0O-) witha2 =03, § = 2.5 and 7 = 3.0.

Fig. 9. Variation of M, with respect to ¢ for different values of «, § and t. For cooling (--) with
2 =0.001, f = 0.001 and 1 = 0.5; (----) with « = 0.5, = 0.001 and 7 = 0.5; (

------- ywitha = 0.5,
f=25and 1 =05 (-0C-0O-0O-) witha=05,§=25and 1 =30

Fig. 10. Variation of M, with respect to & for different values of %, f and . For heating { -} with
x=0.001, § = 0.001 and t = 0.5; (----) with & = 0.5, = 0.001 and 7 = 0.5; (

------- ) with 2 = 0.5,
f=25and =05 -0O-O-C-) with 2 =05 =25and t =30
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Fig. 11. Variation of N, with respect to ¢ for different values of «, f and 1. For cooling (-—) with
x = 0.001, § =000l and 7 = 0.5; (----) with a = 0.5, $ = 0.001 and v = 0.5, (------- ) with o = 0.5,
B=25and 7 = 0.5; (-O-O-0-) with . = 0.5, f = 2.5 and © = 3.0.

Fig. 12. Variation of N; with respect to ¢ for different values of «, § and 1. For heating (—) with
o = 0.001, $=0.001 and 1 = 0.5; (----) with = 0.5, § = 0.001 and t =0.5;(------- ) with & = 0.5,
B=25and 1 =0.5; (-O-0-0-0O-) with a = 0.5, f = 2.5 and 7 = 3.0.
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Fig. 13. Variation of R, with respect to ¢ for different values of «, f and . For cooling (—) with
o = 0.001, f = 000! and 1 = 0.5; (----) witha = 0.5, § = 0.001 and 1 =0.5,(------- ) with o = 0.5,
B=25and 1 =0.5; (-O-0O-0-0-) with « = 0.5, § = 2.5 and 7 = 3.0.

Figures 9 and 11 (Figs 10 and 12) show that M, < 0 and N, > Oforall & # H irrespective of
cooling (heating). Thus, the sign of the heat flux T at a point depends on the position in the
R-¢ plane. Therefore, it is always possible to draw in this plane the locus of T : = 0, which
separates the zones of heat flow directions, i.e. from the disk to the film and from the film to
the disk. It is to be noted that for cooling (see Fig. 13) heat flows from the disk to the film or
from the film to the disk depending, respectively, on whether one is in zone R < R, or in the
zone R > R, where R = R, represents the locus of T, = 0. Figure 14 depicts the heat flow
zones for the case of heating. From equation (40) one can see that the direction of heat flow
for heating is exactly the reverse of that in the case of cooling, i.e. heat flows out from the
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Fig. 14. Variation of R, with respect to ¢ for different values of «, f and t. For heating (—) with
x2=10.001,8=000land t = 0.5; (----- ) with 2 = 0.5, =0.001 and = 0.5;(------- ) with « = 0.5,
f=25and 1 = 0.5 (-O-~-0O-0-0-) with « = 0.5, f = 0.001 and t = 3.0.

film to the disk for R < R, and from the disk to the film for R > R,. Moreover, heat will also
flow from the free surface to the curve 7, = 0. It should be pointed out here that the curve
T = 0 touches the free surface in the case of cooling whereas there is always a gap between
the free surface and the curve T: = 0 depending on 2, in the case of heating. This gap is due
to the reverse flow which is induced by the thermocapillary force through 2.
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Fig. 11. Variation of N, with respect to ¢ for different values of %, f and . For cooling (-—) with
x = 0.001, § =0.001 and £ = 0.5; (----) witha = 0.5, § =0.001 and 1 = 0.5 (------- } with 2 = 0.5,
f=25and 1 =0.5; (-O-0O-0O-) witha = 0.5, # = 2.5 and r = 3.0.

Fig. 12. Variation of N with respect to ¢ for different values of o, # and t. For heating (—) with
a = 0.001, § = 0.001 and t = 0.5; (----) witha =05, § =0.001 and t = 0.5, (------- ) with o« = 0.5,
B=25and 1 =0.5; (-O-0-0-O-) with« = 0.5, f# = 2.5 and © = 3.0.
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Fig. 13. Variation of R, with respect to ¢ for different values of «, § and 1. For cooling (—) with
2= 0.001, § =0.001 and t = 0.5; (----) with a = 0.5, § = 0.001 and 7 = 0.5, (------- ) with o = 0.5,
B=25and 1 = 0.5; (-O-0O-0-0-) with « = 0.5, f = 2.5 and © = 3.0.

Figures 9 and 11 (Figs 10 and 12) show that M; < 0 and N, > Oforall ¢ # H irrespective of
cooling (heating). Thus, the sign of the heat flux T at a point depends on the position in the
R-{ plane. Therefore, it is always possible to draw in this plane the locus of 7, = 0, which
separates the zones of heat flow directions, i.e. from the disk to the film and from the film to
the disk. It is to be noted that for cooling (see Fig. 13) heat flows from the disk to the filmor
from the film to the disk depending, respectively, on whether one is in zone R < R_ or in the
zone R > R, where R = R, represents the locus of 7. = 0. Figure 14 depicts the heat flow
zones for the case of heating. From equation (40) one can see that the direction of heat flov
for heating is exactly the reverse of that in the case of cooling, i.e. heat flows out from the
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Fig. 14. Variation of R, with respect to ¢ for different values of «, f and 1. For heating (—) with
1=0001, =000l and 1 = 0.5, (----- )y with 2 = 0.5, § = 0.001 and 7 = 0.5;(------- Jwith & = 0.5,
f=25and 1 =05 (-0-0-0-0-) with x = 0.5, § = 0.001 and © = 3.0.

flm to the disk for R < R, and from the disk to the film for R > R_. Moreover, heat will also
fow from the free surface to the curve T, = 0. It should be pointed out here that the curve

IS

I:= O touches the free surface in the case of cooling whereas there is always a gap between
the free surface and the curve 7. = 0 depending on 4, in the case of heating. This gap is due
o the reverse flow which is induced by the thermocapillary force through .
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