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On the CoHEN-SACKROWITZ Estimator of a Common Mean

C. G. BHATTACHARYA
Indian Statistical Institute

Summary. The paper reconsiders certain estimators proposed by CoHEN and SACKROWITZ
[ Ann. Statist. (1974) 2, 1274—-1282, correction: Ann. Statist. 4, 1294] for the common mean
of two normal distributions on the basis of independent samples of equal size from the
two populations. It derives the necessary and sufficient condition for improvement over
the first sample mean, under squared error loss, for any member of a class containing
these. It shows that the estimator proposed by them for simultaneous improvement over
both sample means has the desired property if and only if the common size of the samples
is at least nine. The requirement is milder than that for any other estimator at the present
state of knowledge and may be contrasted with their result which implies the desired
property of the estimator only if the common size of the samples is at least fifteen. Upper
bounds for variances if the estimators derived by them are also improved.
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1. Introduetion

ConEx and SACKROWITZ [1974; correction (1976)] proposed some estimators for
the common mean of two normal distributions when the samples available from
the two populations are of equal size. They claimed the interesting result that
under squared error loss, one of these would offer simultaneous improvement over
both sample means when the common size of the samples is at least ten. This is
in contrast to certain estimators belonging to a class proposed by KHATRI and
SHaH (1974), including the GrAYBILL-DEAL estimator [GrAYBILL and DrawL
(1959)], which have such a property if and only if the common size of the samples
is at least eleven and the fact that no other estimator is known to have such a
property. Unfortunately, an error in their paper corrected in CoHEN and SACK-
ROWITZ (1976) vitiated this result and it turned out that the desired property of
their estimator could be established only if the common size of the samples is at
least fifteen. .

However, the technique employed by them did not yield exact condition on the
common size of the samples for which their estimator has the property in question
and hence the true potentialities of the estimator remained an open problem for
further study. As such, we consider here a class of estimators containing the esti-
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mator discussed above and obtain the necessary and sufficient condition for
improvement over the first sample mean for any member of the class. This class is
implicit in the work of CoHEN and SAckROWITZ and contains another estimator
which they proposed for the less stringent problem of improvement over the
first sample mean. We show that improvement over the first sample mean by
some members of the class would be possible if and only if the common size of the
samples is at least six. This is in contrast to the fact that the particular member
of the class proposed by Conex and Sackrowrtz for this purpose has the desired
property if and only if the common size of the samples is at least seven and not
‘at least six’ as stated by them. We show furthermore, that the estimator propos-
ed by them for simultaneous improvement over both sample means has the
desired property if and only if the common size of the samples is at least nine.
Lastly, we improve the upper bounds for the variances of the estimators derived
by them. Section 2 gives notations and results which are basic but not explicit.
The intricate problem of obtaining explicit results are tackled in Section 3.

2. Preliminaries

To begin with we list below some well known properties of the hypergeometric
function [see e.g. LEBEDEV (1972)], in the real case, which we shall use :

2F1(x, B; 4; ) =2F1(B, «; 4; @) (2.1)
2F1(0, B; 4; 2)=1 (2.2)
oF1 (a—1, 8+1; 4; 2) —2F1{a, B; 4; ) (2.3)
=A1(a—f—1) x2F1 (o, f+1;A41;2)
1
hia)m e LH - i-p— —a
2Fifa, B3 45 2) = i F(l—ﬁ)ofﬂ L (1)1 (1 —tz)-e dt (2.4)

Ai=f=0, |r|<t
Let X, X3, 81, Ss be independent random variables such that
X~ N, mi), Sifni~ye, mi=0, i=1,2 (2.5)

where g, 71, 72 are unknown. Consider the problem of estimating u under squared
error loss, on the basis of (X3, X5, 81, 8z). The setting includes as a special case that
for estimating the common mean of two normal distributions on the basis of
independent samples of the same size from each after reduction to minimal
sufficient statistics with the following correspondence: X, X» correspond to
sample means; 8, Sy correspond to sample variances not corrected for bias;
n=m+1 corresponds to the common size of the samples; #1, 52 correspond to the
variances of the sample means. Let

Z=8:[81; y=m/lm+n2) (2.6)
and note that y lies in the open interval (0,1).
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The CorEN-SACKROWITZ estimator under consideration is given by
ta=X1+a (Xo—X0) W ‘ (2.7)

where W stands for the unique unbiased estimator of y based on (83, Ss) and ‘a’ is
a constant to be suitably chosen. From ConEN and SAckrowirz (1974), who
write G (2) for our W, we have (with slight modification to ensure unambiguity)

W=ol) (1,1—m/2;m/2;Z) if 0=Z<1 (2.8)
=1/2 if Z=1
=(m—=2)m1Z1F;1 (1,2—m/2;1+m/2,Z7Y) if Z=>1.
A close look at (2.8) shows that it is valid for m=2 but not so far m=1. We
suspect that the stipulated W does not exist for m= 1. Hence, the reader should
note from the beginning that in all our discussions m is subject to the natural

restriction that the stipulated W exists, although this may not be stated expli-
citly. It can be easily seen that j, is unbiased for y and that

V(ia)=m [1—E (2aW —a2W2/y)]. (2.9)
Let

We=W/y, Yy)=EW] (2.10)
Note that since W is unbiased for y, we have,

EW,.=1 V¥ye(0,1). (2.11)
Then (2.9) can be written as _ k

V(da)=m [1—ya{2—a¥(y)}]. (2.12)
Let,

r=Sup {¥(y): 0<y=<1}; A=2/». (2.13)

Note that variance of W is positive for every y<(0, 1) and hence using (2.10) and
(2.11), we have

P(y)=EWL=(EW,2=1 Vy€(0,1). (2.14)
Next observe that Z can be expressed as
Z=V (1—y)ly (2.15)
where
V = (8S2/m2)/(S1/m1) ~ Fn,m (2.16)

and that for m =2, W as a function of Z is (i) bounded above in absolute value by
1 (ii) continuous every where except on the null event [Z= 1] and (iii) satisfies :
W (0+)=1. Hence, using LEBESGUE Dominated Convergence Theorem, note also
that ¥(y)is continuous for every y € (0, 1) and satisfies : ¥ (1 —)=1. It then follows
that for m =2, we have.

Y(y)=v C(2.17)
with strict inequality for every y € (yo, 1) for some € (0, 1). Hence (2.12) implies
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Theorem 2.1. A necessary condition for i, to be belter than X is that a€ (0, A].
The same condition is both necessary and sufficient, provided m =2. Furthermore,

V(i) =m [1—ya (2 —an)] .
It is easy to see that for m =2, W as a function of Z satisfies the equation:
W(ZYW=1-W(Z) VYZ=0. (2.18)

In view of this, theorem 2.1 implies:

Theorem 2.2. A necessary condition for (1 to be simultaneously better than both
Xi and X is that A =1. The same condition is both necessary and sufficient, provid-
ed m=2. Furthermore

V(g)=Min {m [1—y 2—-9)], e [T = (1 =) (2—»)]}

Remark 2.1. It will be seen in the next section that the necessary conditions
of Theorem 2.1-2.2 fail to hold unless m = 5. Since these conditions are also suffi-
cient for m =2, these are, in fact both necessary and sufficient for any m.

3. Optimality properties of the proposed estimators

In view of Theorems 2.1—2.2 and Remark 2.1, the problem of investigating the
desired optimality properties of the proposed estimators reduces to that of evalu-
ation of ». This turns out to be a very intricate job except when m =4. Lemmas
3.2—3.3 which we shall shortly prove, would be our main tools. We first prove an
inequality which we shall need for proving Lemma 3.2.

Lemma 3.1. For z€(0, 1), let
Fia)=sF1 (1, B+i; A+is2), i=0,1, (3.1)
Assume that

f<0; i=1. (3.2)
Then
(A—1}A<Fo(@)/Fi(x)<1 VYxc(0,1) (3.3)
Proof. Let T be a random variable such that
T ~Beta (1, 1—1). (3.4)
Let,
f(8)=(1—tz)8; go(t)=(1—8)/(1—tx); h(t)=1—t. (3.5)

Then in view of (2.1), (2.4) and the assumption on 4 in (3.2), we can rewrite
(3.3) as

V<Efo(T)/E[fo(T) g=(T)] < L/EMT) Vz€(0, 1). (3.6)
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Note that, we have

0<folt)=oo; h(t)<gat)<1. V(x,8)€(0,1)X(0,1). (3.7)
Hence,

E[fz ]<E[fz ]<Efx (3‘8)

Note also that, in view of the assumption on ﬂ in (3.2), (&) and f(2), x€(0, 1),
are all strictly monotonic decreasing functions of ¢ for £€(0, 1). Hence using a
well-known inequality [see e.g. Remark 2.1 on page 131 in BHATTACHARYA (1984)],
we have

E[/(T) R(T)]=Ef=(T) ER(T) vax€(0,1). (3.9)

(3.8)and (3.9) 1mp1y (3.6), which is equivalent to (3.3).
We now prove the two main Lemmas:

Lemma 3.2, Assume that m=5. Let

WiZ)=(a; +bZ)1; 1=1,2 (3.10)
where

m=1; as=m (m—4)(m2—4); b=m/(m-2) (3.11)
Then

WUZ)<W(Z)<WaZ) VYZ=0. (3.12)

Proof. Let
flZ)y=(a; +6Z) W(Z) -1, i=1,2 (3.13)

From (3.11), note that a3, s, b are all positive and finite in view of the assump-
tion on m. Hence, (3.12) is equivalent to

W(Z)=0 VYZ=>0; [o(Z)<0 VZ>0 (3.14)

From (2.8), (3.11) and (3.13) it is easily seen that (3.14) holds for Z=1.
For Z¢(0,1), define
TiZ)=2F1 (1, —m/2 —1+i;m/2—2+i;Z), i=1,2,3,4 (3.15)
Then from (2. ) we have
W(Z)=ToZ) if 0<Z~<1 (3.16)
=(Y/b) T5(Y) if Z=1

where Y =1/Z. Note that in view of (2.2) and (2.3) T';s satisfy:

TUZ)Y+bZTAZ)=1 VYZe(0,1) (3.17)

T3(Y)+ (ae/b) YT Y)=1 VZ=>1. (3.18)
Using (3.16), (3.17) and (3.18), we can rewrite (3.13) as

flZ)="TZ) [a;i— T1(Z)/Tx(Z)] if 0<Z<1 (3.19)

=Ty(Y) ( Ya;/b) [(Ts(V)/To(Y)—as/a;] if Z=>1
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Note that in view of lemma 3.1, we have

(m—4)/(m—2)<=TZ)YTs(Z)<1 VZe(0,1) (3.20)

m/m+2)<Ts(Y)/ T Y)<1 ¥vZ=>1 (3.21)
Note also that, in view of (2.1) and (2.4), we have

Ty Z)=0 VvZe(0,1); Ty(Y)=0 vZ=1 : (3.22)

Then (3.14) .follows from (3.19) in view of (3.11) and (3.20) — (3.22).

Lemma 3.3. Assume that m=2, then ¥ (1 —y)<¥(y)V¥Vy€(0,1/2).

Proof. Let W, =g(V, y) be the expression of W, in terms of V and y. From
(2.10) and (2.15) note that

gV, =WV A —p)y)ly ¥y, 1) (3.23)
where W(.) represent W as a function of Z as defined in (2.8); furthermore,

Eg2(V,y)=¥(y) vye(0.1) (3.24)
Using (2.15) and (3.23) we see that

W(Z)/(A—y)=g(V1,1-y) (3.25)

From (2.16) note that V and V-1 have identical distribution which does not depend
on y. Hence, (3.24) and (3.25) imply

EW2Z-1)/(1 —y2=¥ (1—7) (3.26)
Squaring both sides of (2.18), then taking expectation and using (3.26) along
with (2.10) and (2.11), we get ‘

A=y ¥V (—p)=pP@)-2y+1 7dye(0.1) (8.27)
The desired result follows easily from (2.14) and (3.27).
Let

d=sup {¥(y): 0<y<1/2} (3.28)

Then lemma 3.3 implies
=0 . (3.29)

We now begin to evaluate ». We first prove

Lemma 3.4. y=o if m=4.

Proof: Observe that (81, S2) can be regarded as a complete sufficient statistic
for (m1, n2) arising from 2 m observations S;;, i=1, 2, j=1, ..., m such that Sy;/5;
are i.i.d. chi-square variables with 1 degree of freedom. Then, using RAo-BLAcCk-
WELL theorem, it is easy to see that ¥(y) is non-increasing in m. Hence, it suffices
to prove the lemma for m =4 only. From (2.10), (2.8) and (2.15) it is easy to see that

lim Wo=(m—2) m V-1 as. : . (3.30)
v—0+

(
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From (2.16) note that EV-2=oco if m=4. Hence using FATAU’s Lemma the desired
result is obvious for m=4.

Lemma 3.4 implies that A =0 when m =4. In view of theorem 2.1 we have thus

proved.

Theorem 3.1. None in the family of estimators {{ia} is better than Xy when m =4.

In view of theorem 3.1, we now assume that m = 5. Let W;(¢=1, 2) be as defined
in (3.10). Let Wy, ¥:i(.), v, &; be related to W, (i=1, 2) in the same way as W,
¥(.), » and & are related to W [vide (2.10), (2.13) and (3.28)]. Then using Lemma

'

3.2, we have
A =0y (3.31)

n=v,

Combining (3.28) and (3.31) we get

vlévéég. (332)
In view of (2.10) and (2.15), (3.10) gives ‘ ‘
Wi =[yai+(1—y) bVI2, »€(0,1), i=1,2, (3.33)

where a1, az, b are as given in (3.11). It is easy to see that these are convex func-
tions of y. Tt then follows that ¥y(.) (i=1, 2) are convex. Hence,

v =Max {¥1(0), Pa(1)}; S2=Max{¥:(0), Pa(1/2)} (3.34)
From (3.11) and (2.16) note that

EV-1=b; EV-2=b2ap; 1/uz>1 (3.35)
(3.33) and (3.35) readily give

Pi(1)=1; Y(0)=Ws(0)=b2EV2=1/a2>1 (3.36)
Using arithmetic-geometric mean inequality, (3.33) implies

W2 = 1/(ashV) when p=1/2 | , S (3.37)
(3.37) and (3.35) then yield, | \ ‘ ‘4

Wo(1/2) =z b 1EV-1=1/ag - : ' (3.38)
From (3.34), (3.36) and (3.38) it follows that

n=0s=1/uy (3.39)
Recalling the value of a, from (3.11), (3.32) and (3.39) imply

v=1/ug=(m2—4)/[m (m—4)]. (3.40)
Therefore, ,

A=2m (m—4)/(m?—4) . (3.41)

' In view of Theorem 2.1 we have thus proved

Theorem 3.2. Assume that m=5. Then [ is better than X1 iff a€(0,2 m (m —4)/ ‘
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{m2—4)]. Furthermore,

V(da)=m[1—ya{2—a (m2—-4)m-1 (m—4)1}]. (3.42)

Remark 3.1. The estimator fig with ‘a’ given by

a=(n—>52/(n—1)2 for n odd i.e. {m —4)2/m? for m even
=n—4)(n—6)/[n(n—2)] for n even i.e. (m—3)(m—>5)/(m2—1)
for m odd

was proposed by CoHEN and SackrowriTz for improvement over X;. An applica-
tion of our theorem 3.2 shows that the estimator has the desired property if and
only if m=6 ie.n=7. This follows from the ComeN-SackrowiTz result also
noting that they are obviously mistaken in their claim that the estimator has
the desired property for n=6 i.e. m=>5. The upper bound for the variance of this
estimator as derived by them is : 71 (1 —ya). It is easily seen that for the particular
value of ‘e’ under consideration the expression within curly brackets in (3.42)
exceeds 1 and hence (3.42) constitutes an improvement over the COHEN-SACK-
rOWwITZ bound.

From (3.41) we see that 4 =1 if and only if m =8. In view of theorem 2.2 we
have thus proved

Theorem 3.3. (i is simultaneously better than both X1 and Xs iff m =8. Further-
more,

V(1) =Min {m [1 —y (m2—8m +4) m~1 (m —4)1], (3.43)
N2 [1—(1—y) (m2—8m+4) m= (m—4)1]}

Remark 3.2. Theorem 3.3 may be contrasted with the COHEN-SACKROWITZ
result which implies the property of f; in question only when n=15 i.e. m=14.
It may also be contrasted with other estimators known to have such a property.
All of these have the general form: fiy,=X1+(X2— X1)/(1+cZ) where ¢ is a

constant to be suitably chosen and all require m =10 [see KHATRI and SHAH
(1974)].
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