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Introduction

In regional analysis, often we have to identify and evaluate varying regional
configurations of activities or other characteristics and factors of growth and also their
inter-relationships. In identifying a simple regional configuration related to a single
characteristic, a simple measure like the location factor or location quotient is in use.
However, for a full-fledged regional analysis, the identification ot a simple regional
configuration or even a bunch of such simple configurations may be necessary but is
never sufficient. The identification and evaluation of a composite regional configuration,
based on many interrelated variables, become essential. Even a simple regional con-
figuration may be the result of interactions of several other causal variables, in which
case an analysis and evaluation with many interrelated variables should foliow for making
rational regional planning decisions. A complex or composite regional configuration is
usually identified by mapping inter-related variables by the geographic technique of
superposing. This technique has been found to be quite useful in evaluating the regional
patterns and local peculiarities for a composite characteristic involving only two inter-
related variables. But the superposition technique is not of much help when the
composite characteristic is to be evaluated on the basis of many spatial variables, since,
in that case, the combinations of different classes of all such variables become numerous.
Again it is possible to identify the areas of different ranks in terms of a single variable,
implicit in a simple regional configuration, But the composite ranking of areas with
respect to a vector of several variables that are superimposed together to identify a
composite regional configuration is very difficult. In view of these problems, the identi-
fication and evaluation of multivariate composite regional configuration has been dealt
with the formulation of composite’index ( or indices ) which is used in the depiction of
general spatial trend, pattern or asscciation and also the local peculiarities. For the
formulation of a particular composite index, various methods of combining the constituent
variables are in use. At the moment, we have no unified procedure of assessing the
relative merits of the composite indices formuiated from the same set of variables by
various statistical and non-statistical methods. Question is : how a composite index,
whatever be its method of construction, represents its different constituent variables
specifically and aggregatively.
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The statistically constructed composite spatial indices usually take into
consideration, explicitly or implicitly, this aspect of representativeness. Thus Kendalil's
formulation [1939] is based on the aggregate representation maximising principle and called
an optimal formularion, while Pal’s formulation [ 1963 1971 ] is based on the Specific
representations equafising principle and called an equity formulation. Here, by specific
representation of any constituent variable, we mean its linear correlation coefficient
with the corresponding composite index. The squared aggregate representation is the
arithmetic mean of squared specific representations of all constituent variables.
However, as the specific representations are measured by the linear correlation
coefficients, it is necessary to examine for the similarity of statistical distributions of the
variables and make suitable mathematical transformation so that the intrinsic relation
between a variable and the index could be depicted by the linear correlation coeificient.

The statistical formulations can however be compared on the basis of specific and
aggregate representativeness [ ref. to Pal and Chattopadhyay, 1972-73]. But, at the
moment, different non-statistical formulations with the same set of variables do not
permit any comparison on their relative merits in respect of representativeness.
For example, Kendall’s regional illustration {19397 is an optimal index formutation, which
can be called an agricultural land productivity index with yield rates of different crops as
its constituent spatial variables. The same land productivity index could also be
constructed from the same set of spatial variables, with, say, some price weights under
economic consideration or with some physical weights like relative acreages under
other non-statistical consideration. A purpose of this paper is to bring under one
generalised fold the different statistical and non-statistical formulations so that they
could be compared and contrasted for representativeness.

The ratio of specific representation to aggregate representation would be called
here as the representativeness multiplier, or simply the multiplier, for any constituent
variable. The vector of all multipliers for a composite index formulation would be
designated by m. By a direct computation of the specific and the aggregate represen-
tations, the vector m can be estimated for any existing formulation, whether statistical or
non-statistical. The vector m becomes the sum vector S ( with any of its elements equal
to unity ) for the equity formulation and that for the optimal formulation is designated
by M. There can be various modes of generating the vector m, say, for example, by a
convex combination of M and S, or by a power transformation on M, when M == S, The
vector M depicts a kind of ordering of constituent variables, showing the relative
importance of variables as derived from the empirical optimality consideration. The
vector S treats all constituent variables as equally important Any convex combination
of M and S depicts the same order of importance of constituent variables as depicted by
M, but the diverggnce of importance falls in between those depicted by M and S.

[ 12 |
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A power transformed formulation can also be so designed as to achieve a reduced
representativeness divergence compared with those of the optimal formulation. Again,
by some other considerations of real world situation, the relative order and magnitudes
of importance can be ascertained a priori, which may be different from that depicted by
either M or S or their convex combinations. Thus there are possibilities of generalised
formulation with different multiplier vector m, matching particular situations of multi-
variate regional analysis.

With any known, derived or pre-assigned multiplier vector m, the mathematical
details of any generalised formulation, determining the aggregate representation and the
vector of combining weights for the constituent variables, have been established in this
paper. The different existing formulations are aiso shown as special cases of the
generalised formulation. The mathematical formula for estimating the relationship
between any two modes of generalised formulation has also been shown here so that
one can readily examine how close a particular formulation is, say, to the optimal or any
other formulation. Finally, it is emphasized here that by bringing all existing formulations
under the common fold of generalised formulation through the vector m, it has been
possible to get an unified procedure of assessing their relative merits statistically with
the parameters estimated within the generalised framework. Before attempting for the
generalised formulation, a brief review on the computation procedure is given below for
the two fundamental statistical formulations.

The Optimal and the Equity Formulations : Brief Review

Suppose n spatial variables, each varying over N spatial units of observations, are
related to a composite characteristic. These variables, after appropriate mathematical
transtormations, ale designated by x,, x,, . X, The standardized variable for x; is
designated by Z, where Z,=( x,--%, )/o;, With X; denoting the mean value and o the
standard deviation. The optimal formulation : Kendall’s composite index [ 1939 ], denoted
by I, can be written algebraically as follows for the jth spatial unit of observation ;
j=1,2, . N.

li = (8, Xy + oo 48, Xy)/( 8 + o + 82 ), - (1)

In this formulation, we have a, = r;/o; , where the specific representations r;’s and the
corresponding aggregate representation p, are solvable from the matrix equation :

Rr = np%r, - (2

where R = (( ";{)) = the known correlation matrix of the variables, r = the column
vector of specific representations, n p? = r'.r, with r’ denoting the transposed vector
of r. For solving the matrix equation (2), an iterative procedure of computation after
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Hotelling [ 1933 ] is used. In this iterative procedure at the ith stage of iteration with
the estimates of ith weight vector W, we go for the calculation of the next weight vector
as follows :

RW, =2,

and Wiy = Zi1/Higy s . (3)
where H, ., is the highest element in the calculated vector 2,1~ Combining the above
computational steps, we can write

RW, — H,.W

i+1° 7 V41 b (4)
The initial vector W, can be any arbitrary vector. However one can preferably take
W, = ZH,_,

where ¥, is the vector formed by the row sums of the elements of R and H, the highest

element in Z,. The iteration stops when we get the stable weight vector W, with the
condition that

We, = W, .. (5

Any subsequent iteration will not change the weight vector further. From the above
relation we can deduce

RW, = H.W,, - (6)

which is comparable to relation (2) in structural form. As such vector r can be taken as
proportional to the vector W,, and we get :

Hi =np% =r'r .- (7)
and r= W, VH /W' W, - (8)

The equity formulation: Pal’'s equity index [ 1963, 19711, designated by |, can be
written algebraically as follows for the jth spatial unit of observation :

Iy = (by X + oo 4 bX, )/(by + .. 4 by) «(9)

In this formulation, we have b, — w,/o, , where the aggregating weight vector w with

elements w;’s and also the common specitic representation p, are solvable from the
matrix equations :

S'w =1
and Rw = p2.S, - (10)

where S is the sum vector { column vector with each of its elements equal to unity ) and
S’ is the transpose of vector S.

( 14 )
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The central critical value of a location factor ( or its power transforms) is always
unity. The two formulations (1) and (9) are presented here in a form that suits the uses
of location factors ( or their power transforms ) as the constituent variables x,, ... , x,.
In any of these two formulations, the central critical value is again unity, likewise the
constituent location factors. The generalised formulation to be deduced later will
however be given in the standardized form, from which the above-mentioned form can
easily be arrived at by a simple linear transformation.

The two formulations are however coincident in the two variable space, i.e., when
n=2. Thus the question of preference between the optimal and the equity formulations
does not arise when n=2. For this reason, at times final composite index can be
formuiated by a sequentiai application of the common formulation through a number of
intermediate stages with the consideration of only a pair of variables or sub-indices at
each stage. Such a final composite index is then neither the optimal index nor the equity
index constructed at a single stage with all the variables together, but stands some
where in between the two. In the higher variable spaces ( n > 2), the two formulations
are different. In such cases the specific represetation r,'s are generally different in the
optimal formulation. As stated already. r,'s are same always in the equity fomulation.
Itis clear from the very mode of optimal formulation that p, > p,. The virtue of the
equity formulation-lies in the similarity of representativeness of all variables in the
composite index, which cannot be expected for an optimal formulation with n > 2.
For some of the constituent variables, the specific representations of the optimal
formulation may have undesirably low values, much below p,.

Each of the composite indices formulated above can serve as a depicter of general
Spatial trend or pattern and the local peculiarities of any constituent variable, not
conforming the general pattern, can be identified by marking the significant departures
from the regression of the spatial variable on the composite index. This provides a very
useful aid to the cartographic methods for a formal regional analysis. In this approach
of multivariate analysis, the unexplained variation of the variable-space is really
considered for the local peculiarity analysis. It should be noted that if the divergence of
specific representations is too great in an optimal index, the local peculiarity analysis by
the above procedure becomes difficult for variables with low specific representations.
In the equity formulation, the local peculiarity analysis can be tackled without any bias
towards any constituent variable, for reasons of similarity of representations in it. Thus,
even though the optimality criterion appears to be more alluring generally, the equity
criterion is held more useful for spatial trend and peculiarity analysis, particularly when
the loss in the aggregate representativeness of the equity index is not significantly
different from that of the optimal index [ Pal and Chattopadhyay 1972-73 .

[ 15 ]
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As stated already the muitiplier vector for the equity fomulation is the sum vector §
and that for the optimal formulation is designated by M. The multiptier vector m for a
convex combination of the two formulations can be written as

m=8M+(1-58)S,

with varying values of §, 0 < 8 < 1. This shows particular generalisation possibilities
in between the two formulations. For any arbitrary multiplier vector m, we have
m’.m = n, since r'r = n p®. This means that the average of all m2 of vector m ( and
hence of M? ) is unity. So diftferent m%’'s are in general above and below unity.
The values of my's can be both positive and negative. However, through a proper
transformation of the initial variables, all m,’s can be made non-negative in most of the
situations.

Development of the Generalised Formulation
The Mathematical Framework :

For developing the mathematical details of the proposed generalised formulation,
we start with the representativeness multiplier vector m ( a column vector with elements
m,’s ), subject to the condition

m'.m =n (11
(i.e., the arithmetic mean of all m? adjusted to unity) for the n constituent spatial
variables Z,, Z,, ... , Z, in standardized form ( corresponding to unstandardized variable
X, X, X, ). As stated already, the vector m is known or derived or preassigned from
some external condition. From the empirical data on N spatial units of observation for
the variables, the correlation matrix R can be determined, denoted by

R = (ry) withry = r;, r;, =1, and
r;; denoting the correlation coefficient between Z, and 2;.

Here R is a positive d. finite matrix. Let us designate by Z  the generalised composite
index to be constructed by a weighted aggregation of variables Z,, Z,, » Z,, with the
relative representativeness as depicted by the vector m. We have to solve for the
aggregating weight vector, designated by w (a column vector with elements w,’s ) and
also the aggregate representation p. Once p is solved, we know the specific represen-
tations vector r = p m ( a column vector with elements r/'s ). By definition of specific
representation, we have r; = r(;i = the correlation coefficient between Z,and Z, for
i=1,2, , . '

We shall denote the extended correlation matrix of variables Z, Z,, ... , Z, by R*,
so that we can write .

1p.m’ 1
R*:(p.mR )= (r R)
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Further, the weight vector w is extended to w* with the incorporation of — p as its
first element along with the elements of w.

ie. W*=<_\f:)

Clearly we have to solve for the elements of w*,

Next consider the matrix equation :

R*.W* == 0 e (12)
This equation implies that
mw =1, ie, 2 mw, = 1 .. (13)
i
and Rw = pm, ie, 2 ryw=pm;i=12..n . (14)

!
Eliminating m from the system of equations (13) and (14), we get
wWRw = p? -.(19)
Then, if we take
Z, = 2w /lp)Z;, ---(16)
}

we have the expectationE(2Z,) =0,
and the variance V (Z;) = E (Z;2)
= 2ZZwwry,/p
ij
=W Rw/p? ‘
= 1, using relation (15)
Again =ty =E(Z,Z)
= Zr,w/p
I
= p m,, using relation (14)
Thus Z, can be taken as the standardized weighted aggregation of the given variables
Z,, ... , Z,, so that R* can truely be taken to stand for the correlation matrix of Zy, Z, .,
Z,. Clearly, if there exists a solution to the matrix equation (12) for w*, we arein a
position to get the generalised formulation (16} ( in standardized form ) and also estimate
the related statistical parameters. Note that the following linear transformation of Z,
gives the generalised index formulation |, in the form comparable to those given in
formulation (1) and (9) for any jth spatial unit of observation; j = 1,2, ... N.

oy = (p Zy, +;"ci§i),(_zci)'
| i
where ¢, = W, | o,

(17 ]
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Then we have

loy = (€1 Xy + we € Xy} [ (€ + oo + €,) o (17)
which is in the form comparable with formulations (1) and (9). The index |, retains the
magnitudes ot all specific and aggregate representations same as those established for
the standardized index Z,.

The existence of a non-trivial solution vector w* for equation (12) will now be
established in the form of theorems given below.

Theorems on the Development of Generalised Formuiation
Theorem 1 : The solution vector w* always exists for the equation

R* w*¥ = 0
Proof : For existence of non-trivial solution, we have simply to prove that R*is a
singular matrix. Since R* is a correlations matrix of the variables of which one is a
linearly dependent variable of all others, it can be easily proved to be a singular matrix.

Analytically, if R,.;,.. , is the multiple correlation coefficient with Z, as the regressor
and Z,, .. , Z, as regressants, then we must have

R20'12
by the construction of Z,. Further, we have [ ref to Johnston, 1972 ]
1 — R%., o= det R* ;detR.
Since R is non-singular, it follows that

= 1,

n

det R* == 0
That is, R* is a singular matrix. Hence the solution vector w* exists.
Theorem 2: Given m’.m = n and R* singular, we must have
m R1lm =1
and P=1/({m Rtm)
Proof : Since R* is singular
0 =detR* — p2. det y 1/p* m
(n" ")
and by Cauchy’s expansion [ Aitken, 1942 |, we have
0 = detR — p? _Z'_mi m; R, o {18
i. :
where R, is the cofact]or of r, in R.
From relation (18), we get
1/p*= X m mR, [detR
B
= ml’ R-1 m,
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where R-! is the inverse matrix, which exist because R is positive definite,
Hence p? = 1/(m' R m), r(19)

This proves the second part of the theorem.
Again by Cauchy’s expansion

det /Om'\ = - Zm m R,
m R ih)

Hence relation (18) can be rewritten as

0 = det R -+ p? det 0 m
mR },

and using relation (19) we get

' -1 . ¢
m R-'m = - det /om)/detR
\mR

By applying Schweinsian expansion [ Aitken, 1942 ] on the ratio of symmetric determi-
nants on the right, we get

n
m R-1m=m?2 4+ I |{det R (km)}?/; det R (k - 1) det R (k};], ...(20)
k=2

where R (k) is the leading principal minor matrix of kth order of R; k=2, ,n, and
R ( k, m) is the matrix obtained by replacing the last column of R (k) by the first k
elements of the column vector m. Clearly the right hand side of (20) gives the sum of

all positive terms and hence we can write
m Rtm>=m?

Now, since m'm = n, the average of all m;? is unity and values of m;? are above and
below unity. So, without any loss of generality, we can rearrange the suffixes of the
variables in such a way that m;?'s are in decreasing order. Then we have m;> > 1, and
hence m' R-' m = 1. Hence the proof is complete.

Note that the first part of the theorem proves the essential property of the aggregate
representation that : p* < 1.

Cor. 1 : p2can as well be expressed as follows :

p2 = det R/ 2 m, Ry . i21)
k

[ 19 ]
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where R, is the determinant of matrix R with its kth column replaced by the colums
vector m.

This readily follows, since we have

mRim =22 m m Ry,/detR
ki
=Xm ZmR,/detR
k i

= 2 m, Rym/detR,
k

Theorem 3 : Any element w, of the weight vector w is given by

W = R.(m)/ {(I' my, Rk‘.m)'

Proof : From the matrix equation R* w* —= 0,
mw=t1and Rw = pm
w=p*R1m
Using relation (21), we get
w= (detR). Rl m/ z",(' m, By
{
or w = %
k
where ( R,, ) is the matrix of cofactors Ry,

. W= 2m, Ry f My Rygm)
i

or wj = R](::)’/ i m, F{k(m) > . (22)

Cor. 2: The solution vector w* for the matrix equation R* w* = 0 is given dy the’
relations (21) and (22). T

This completes the determination ot the generalised formulation in any of the forms

(16) and (17). Formula to measure the relationship between any two arbitrary genera-
lised formulations is established in the next sub-section.

{ 20 1}
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Correlation Between Any Two Generalised Formulations

Theorem 4 : The correlation coefficient between any two generalised formulations,
designated with symbols « and 8, is given by any of the following relations :

rzaﬁ = {m’ (a)w (B) } { M (B).W (a)},
or raﬁ = I' (B).W (e)/ P,

or r

Ba

Proof : Following the generalised formulation as shown in (16), the standardized
composite indices can be written as

r' (a).w (8)/ Py -

Zy (a) = Z W (a) Zj/Pa
]

and 7, (f) = 2w (B) Zi/Pﬁ
i

Then the correlation between Z, (a) and Z, (8) :

raﬁ =E{ Zo (a).Zo (B) }

i

‘?Zj"wj (a).w; (B) ry/ {Pa g }
)

- @, }/ g

ie. raﬂ =, m’ (a).w (ﬁ)/p'9

We can alternatively deduce :
raB = PB m’ (8).w (a)/Pa
From these two relations, we get
'203 ={m@w{B}im (8w ()},

or raﬁ = I (@)W (ﬂ)/pﬂ ' - 29)

]

or =" @w@l, .

(21 ]
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Cor. 3: |f P, < Pg » then we have

M ()W (a) < Ty < M ()W (B).

Some Special Cases of the Generalised Formulation

Equity Formulation : In the equity index referred to in section 2, we have

e, m=my,... =m, =1
Hence we can conclude :

Cor. 4: The generalised formulation reduces to the equity formulation when the
multiplier vector coincides with the sum vector 3. The equity formulation will be

designated hereafter words with the symbol e. Then it readily follows from relations
(19), (21) and (22) that

Cor. 5: The aggregate or any specific representation of the equity formulation p, is
given by

p.l = 1/(5' R 8) = det R/f Ry » - (28
and the elements aggregating weight vector w (e) are given by

w; (€) = Ry / f Ris)» =1 - .n - (29)

Theorem 5 : The generalised matrix equation R* w* = 0 reduces to (R*—p%, J) w (e)

= 0 with S'w (e) = X w, () = 1, in the equity formulation, where J is the
i

nth order matrix containing the sum vector in each of its columns.
Further, p 2 can as well be expressed as follows :

pl = detR/{det(R + J) — detR},
Proof : In the equity formulation, R* w* — 0 reduces to
S'w(e) 1and R.w (e) = p.2S
Then
R.w(e)=p.2. S'Yv(e) =p.l. S" ‘w(e)

S'w(e) s'



Indian Journal of Regional Sclence Vol. XXIl, No. 1, 1990

or R.w(e) = p2.J.w(e),

or, (R—p2J).w(e) = 0,
(R—p (e) . (26)
with  S'w(e) = 1
Again if XA is any scalar, we can prove
det (R +2AJ) =detR - XX Rys,
k
Putting A = 1, we have det (R + J) = det R + Z Ry »
k
So we can write
det(R+AJ)=detR 4+ A{det(R 4+ J)— detR}, - (27)
Now for the existence of non-trivial solution of equation (26), we must have
det(R - p%J) =0
Using relation (27), we get
detR — p? {det(R 4+ J) — detR} = 0.
Hence,
p. =detR/{det (R + J) - detR}, .- (28)

Theorem 6 : p?. decreases with the increase in the number ot constituent variables n.

Proof : This follows readily from the relation (20) shown in Theorem 2 with the
replacement of vector m by vector S.

Note : This result shows that for large n, it is better to orient the multivariate
regional and cartographic analysis in two ( or more ) stages by dividing the set of
variables related to a composite characteristic into suitable disjoint subsets of
variables reflecting two ( or more ) sub-characteristics of the composite character-
istic, particularly when p, is not high enough for large n, The sub-equity indices
can be formed from these subsets at the initial stage and finally the equity index
can be constituted, combining the sub-equity indices. The corresponding regional
and cartographic analysis is thus oriented in two { or more ) stages.

Lemma 1 : To prove that, for any general formulation m? = ( X m,/n ) cannot exceed

unity, and the maximum value of unity is attained only in the equity formula-
tion.

[ 23]
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Proof : For the maximum value of m? subject to £ m?2 + n, we put
S+ (2Zmpe/nt - L (Zm2—n)
where y is a Lagrange multiplier.

By the first order condition of maximisation

o9 .
0=1-—= 2 _ M = seey
T 5m, Zmfn pmi =1, n
or umy=m/n, forallj=1, ..,n.

Summing over j equating, we get
M = 4 ,n_
So for the maximum value, we have

m,=m, forallj=1,.,n

As Zm? =n,wehave I m? =n, i.e, m = 1.
j

So m2_,, = 1, which is attained when all m's are equal. Thus, in general, we have
m?* < 1and m,, = 1onlywhenm = S..

Note © m2 < timplies — 1 < m < 1. But by our choice and suitable mathematical
transformations of variables, all m/s can be expected to. be positive. Thus we can
usually get 0 <« m < 1 for a general index formulation, while the arithmetic
mean of all m? must be unity. So for a preassigned multiplier vector these
conditions must be met.

Optimal Formulation

Theorem 7 : The generalised formulation reduces to the optimal formulation, if

W:=m/n=r/(np)
Proof : From relation (19), we have

_21 = m Rlm
P
=2 XmmR,;/detR,
i
subject to constraint m'm = X m? = n.
Putting

¢=22m‘mjﬂi“[detR—”(Zmiz_n)'
i i

[ 24 ]
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where p, is a Lagrange multiplier, and using the first order condition for maximisation of p?
( i.e., minimisation of 1 / p? ) under the constraint, we get

09
O:%amk=2j]'ijk,/detR_,umk
or Rym/detR = pm ; k=1, ..,n, +2:(29)

and also X’ m,2 = n.

From these relations, we can deduce

P m, Rk(m)/ detR = 1 kaz
k k

=N ’,L
Dividing relation (29), by this relation, we get

Rimy /fmk Rimy = My /n; j=1,..,n

Using relation (22), we get

w;=m/n
Hence w = m/n,

and as mp=r,wehavew =r1r/(np)

Thus, using the symbol h for optimal formulation, the condition for this formulation
- can be written as

n p, Wh) = r (h)
...{30)
or nw(h) =M ] .

Note that the vector M is not predetermined, but to be solved with the use of
this condition.

Cor. 6 : In the optimal formulation, the generalised equation,
R* w* = 0, reduces to
(R—np2l)rh) =0
with the constraint r'(h).r(h) = n p,?

where | represents the nth order indentity matrix,

[ 25 ]
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Proof : In the optimal formulation R* w* = 0 reduces to
M'.w(h) = 1 and Rw(h) = p,2M
Now by use of condition (30), it follows readily that
R.r(h) = n p2r(h)

i.e. (R~ npl).h) =0

.. (3
and r'(h).r (h) = np? e

These equations correspond to the estimation procedure already reviewed in section (2).

Cor.7 : Obviously, p* < p?,
and, in particular, we have p.2 < p 2
Theorem 8 : The equity formulation becomes indentical with the optimal formulation, if
Zry=C>0,forall i =1, ,n ‘
j
where C is a constant quantity. ( i.e., if R is a symmetric circulant matrix [ Aitken, 1942 ]
with a positive sum C of its n independent elements ).
Proof : Let us suppose that the two formulations are identical. For optimal formula-
tion we have w = m [ n.
As the two formulations are identical, their multiplier vectors must be same
and thus we have w = S/ n.

For any general formuiation, we have

Rw = p’m
R.S/n = p&S
or RS =np8
i.e. 2.','rﬂ =np*=C, say, for alli=1, ,n

J
Hence R is a symmetric circulant matrix, Here the common aggregate representation
is given by p = ,/C/n.

Conversely, let Xryy = C > 0, forall i=1, , n.
ie. RS =CS or SR = C8’ .. (32)
S =CR"S
or §'S = CS'R-IS
or n = C/p%,
or C=np2, . (33)

[ 26 ]
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Now for optimal formulation, we have

R.r(h) = n p2.r(h) ..-(34)
or S'R.r(h) = n p,2.8r(h)
Using relation (32), we have
C 8'.r(h) = n p,2.8'r(h)
C =np?
From relation (33), we have
po? = %= Pu? «-(35)
Again from relation (32), we get
RS =CS or RS =np?2S
and comparing this equation with equation (34', we infer that
r(h) is proportional to S
M = 8.
Hence the formulations are identical.
Cor, 8 : Ifr; = a(constant) for all i,j; i#j in R, then the optimal and the equity
formulations coincide and the common solution is given by
w = S/n = M/n
and  p =4/{T+(n-T)a}/n =r=p
provided a>o0.
Note : |Itis possible to accommodate a negative r, for n=2. In such a case, one

of the variables, say, Z, can be changed to — Z;, so ‘that, again, we have
a > 0. So, without any loss of generality, we shall assume a > 0 for n = 2

in Cor. 8.

Cor.9 : The equity formulation is always coincident with the optimal formulation

forn = 2.

= = 1
In such a case w; = w, =}

and p2 = p2 = (1+r,,)/2 withr, > 0.
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Cor.10 : If R=1 (ie, all variables are mutually independent ), then the specific
representations of n variables in the common equity or optimal index are all
equal to 1/ \/ n.

Cor. 11 : Correlation coetlicient r,, between the optimal and the equity formulations is
given by any of the following relations :
e = peM/p, where M = XM, /[n,
or 1, = {M.we)}{S.wh)}={Mwe}. M
Proof : The relation readily follows from theorem 4 and also from the fact that
M= ZM/n = Zw(h) = S".wh)
i I

Cor. 12 : We have M .w(e) = p>2 M [p2 S .wh) = M and aiso we have the value
intervals :
M.w(e) < r. < S'w(h)
and Me < M <1

Proof : The results readily follow from corollaries (3), (7) and (11}

A Generalised Formulation by a Convex Combination

If R is not a symmetric circulant matrix ( implying the existence of distinct optimai
and equity formulations ), then for a preassigned valueof §; 0 < § < 1. a generalised
formulation can be generated by a convex combination ( designated by the symboic)
of the optimal and the equity formulations. The estimates for its aggregating weight
vector and the aggregate representation are deduced in the following theorem.

Theorem 9 : Given the distinct optimal and equity formulations with solution weight
vectors w*(h) and w¥*(e), the solution weight vector w*(c) for a convex
combination given by

me)y=8M+(1-8)8; 0=8<1,

is obtained from the following relations :

1 & (1-8 ) 25(1 -8 M
y Sl e ey

o’ P p? pl

2 —532 _
- 62 +(1 2‘8) + 28 (1 3)rhe’

Pn Pe Py Pe

and w(e) == p [8__‘1(2)‘ L+ 0= 52) W(e):l _
Pn Pe”

[ 28 )
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Proof : We have
Rwh) /p2=M; Mwh) =1,
Rw(e)[p2=5; Swe) =1,
and aiso Rw(c)/p2 = m(c); m'(c) = 1.
From theorem 2, we have
1/ p.2 = m'(c).R-L.m(c)
—[SM +(1—8)S][8R'M & (1 - 8)R'S]
—[SM 4 (1—58)S ][8wh) [p®+ (1 —8)we)/p?]
= 32 M .w(h)/p? + (1 — §)28".w(e) [ p®
h e
+3(1-3) IS'-W(h)/p: + M'w(e) | p* )
e 1/ =8 pl 4 (1—8) /s +28(1=8)M[p,
( using cor. 12), .. (36a)
or 1/p2 =28 p*+ (1 —-8) [ p*425(1=-3Tr /(phpe).
( using cor. 11) .. (36b)
Again w(c) / p? = R-Im(c) = SRIM + (1 — 5)RLS '

or  w(©) = p*[ Sw(h)/p® + (1~ 8) w(e)/p®] - (37)
c h e
Cor. 13 : The aggregate representation p, for the combination lies in between
pe and p,.
Proof : By definition of optimal formulation,

p. < pyand also p, < p,

Again since, 1/ p,* < 1/ p,2 and M < 1, it follows from theorem 9 that
1/p2=8/p% + (1 —8)y/p2+25(1—=38)p’
ie, 1/ p2 <1/ pet

Hence p2 < p? ie., p. < p,

Thus, we have p, < p, < py ...(38)

[ 2971



Note

Cor. 14 :

Proof

A Generalised Fo mulation cf Multivariate Spatial Indices

If p, is preassigned in the interval { p,, p, ). the estimate § for the convex
combination can be deduced from the relation ( 36a ) or ( 36b).

The correlation coefficients between a convex formulation and any of the
optimal and the equity formulations are given by

e = Pe [ 8/py + (1 —8)r../pe], and
e« = Pc[OMye!pn + (1 —8)pe .

ec

Using theorems (4) and (9), we have
e = pn M'.W(C) | p,
= pnp [SM.W(h) [p2 4+ (1 - 8)Mw(e)/[p?]
=pup [8]p%+ (1 - 8)M/p2] by Cor. 12,
=pe[8/py -+ (1 - 8)M/pn]

ety = p. [8/pn+ (1 = 8)ru/ pel by Cor. 11, . (39)

Again we can deduce

ie.,

Note

Cor. 15 :

Proof

Fee = pe S’W(C) ! pe
pepe [ 8S'Wh) [ p% + (1 —8)[S'w(e)/pt]

=pepe [&M ] p% + (1 = 8)/ p2], by Cor. 12,
Tee = Pe [ e | pun + (1 = &)/ pe 1, by Cor. 11 ....(40)

If r,. is preassigned, then § and p, can be determined by use of relations (39)
and (36) and hence the particular convex formulalation can be ascertained.
The value of r, . should obviously be very near to unity, if the particular convex
formulation is to be chosen very close to the optimal formulation. The
closeress of this covex formulation to the equity formulation can be estimated
from relation (40). So the different convex formulations can be selected by
the degree of closeness to the optimal formulation r,, (or alternatively by r.)-

The convex formulation which is equally related to both equity and optimal
formulations is given by :

8 = pn/{(pn + pe)
For such convex formulation, we have

rhe = r'et:'

Now using relations (39) and (40) and equating, we get

8 =py/{pn+ pe) . (41)
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Another Generalised Formulation by a Power Transformation

The representativeness divergence as present in the optimal index can be reduced
in a generalised formulation by a power transformation on the multiplier vector M. Such
a generalised formulation will be designated with symbol d. If the optimal formuiation
is distinct from the equity formulation, the values of M,'s are above and below unity.
If we have a power function of M,’s with a fractional power A, 0 < A < 1, then the
relative importance depicted by multiplier vector m (d;, with

m,(d).ch/\; j=12 n

shows reduced divergence of the ralative importance of constituent variables. Then
from the condition

m’ (d).m (d) = n,

m, (d) = m,)‘ / ‘/{JM:”‘ /n
i

Clearly, for different choices of A, we can generate different multiplier vectors m(d) and
thus generate different representativeness divergence reducing generalised formulations.
However we propose to determine A from a preassigned value of r,, , the correlation
coefficient between the optimal and the proposed formuiations. The relation between
A and r,, is deduced in the following theorem, so that when one of them is preassigned,
the other can be estimated.

we can write

Theorem 10 : The muliplier vector m(d) of a power transformed formulation having

been defined as:

m, (d) = M, / \/zl' M2 /0

j=12..n and 0 <2 <1,

the correlation coefficient r,, between this and the optimal formuiations
is given by :
2

A :
det R {2,- M, 1, (h) }
i

rhd - A A
n® pyt { S M My Ry
i

[ 31 1]
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Proof : By theorem 4, we get
Mya = 1'(d) w(h) / p, = p, m'(d).r(h) / (N p,®)
or, N p?ry = py{ M(d) r(h) |
or, n® pfy 13, = p% { m'(d).rch) P
_ {m'd)r(h) 2

T (@) R-Lm(a)

by use of relation (19)

det R { z Mj)\ .rl(h)}z
i

A
M, M,’\ R,,

(8]

by use of the defining relation of m(d)

| det R (2 M . rh) %
. j :
Hence a P, = - ) . , .. (42)
: n? 4 { 2 M MRy}
ij

Note that when r,, is given, A is determinable from the relation (42) and vice versa.
If ry, is preassigned, A can be solved by use of this relation by iterative numerical
methods.

Concluding Remarks

We are now in a position not only to generate various new types of generalised
formulations, but also to recast any old types of formulations, derived from the same set
of constituent variables, whether differently transformed or untransformed, into the
common generalisation framework as designed here. As a result, we have now the
tools for making comparisons on the relative merites between any two formulations in
terms of the statistical parameters involved. The illustrative examples as worked out
in this connection are not presented here for the sake of brevity. This paper is concluded
with the claim that the approach oifered in handling any generalised formulation through
the extended correlation matrix R* is quite elegant—so much so that even the estimating
relation (31) for the special case of optimal formulation couid be derived much more
readily in this, compared with what followed by Kendall [1939] himself.

[ 32 ]
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