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Abstract—Thinning, i.e. skeletonization and connectivity preservation, is an important operation being 
performed during low-level segmentation. Various template matching thinning algorithms have been 
proposed so far. No attempt has yet been made to conduct the average case analysis of these algorithms 
in order to measure their performance. In this paper a probabilistic model of average case analysis of 
template matching thinning algorithms is proposed. Using the proposed model of analysis a bound on 
the number of iterations required is computed and also the requirement of average time to complete 
the process of thinning of a uniformly distributed binary image in sequential as well as a parallel 
environment. Also a mathematical function is proposed to compute the number of cycles involved in 
the thinning process originated by a given algorithm.

Thinning Binary image Template

1. INTRODUCTION

In computer vision, thinning, i.e. skeletonization and 
connectivity preservation, is an important task to 
be performed during low-level segmentation. We 
consider here template matching thinning algorithms 
in which criteria for skeletonization and connectivity 
preservation are realized in the form of templates. 
Hence the method of skeletonization and con­
nectivity preservation is reduced to the template 
matching method. A set of templates is applied on 
an edge image to check whether the desired matching 
criteria are fulfilled.

A series of template matching thinning algorithms 
have been proposed in the last two decades. Some 
recent thinning algorithms, parallel and sequential 
with one-pass and multi-pass have been discussed 
in references (1-8). Zhang and Suen(1) proposed a 
parallel thinning algorithm with two sub-iterations of 
which one aimed at deleting the south-east boundary 
points and north-west corner points while the other 
aimed at deleting the north-west boundary points 
and the south-east corner points. In their algorithm, 
connectivity of pixels is preserved and each pattern 
is thinned down to a skeleton of unity thickness. 
During formulation of the algorithm they considered 
the number of Is of its 8-neighbour ( 3 x 3  window) 
in the binary pattern would be between 2 and 6. Lu 
and Wang® observed that the number of Is of its 8- 
neighbour in the binary pattern was between 3 and
6, and also highlighted few disadvantages, namely, 
(i) preservation of noise propagating pixels, (ii) dis­
tortion of shape and (iii) total disappearance of some 
digital patterns. Up to now this algorithm is better

with respect to the other currently available 2-pass 
thinning algorithms. Holt etalP* improved the above 
algorithm01 with respect to the time complexity and 
the number of passes. In this algorithm,<3) a vertical 
stroke of width 2 is guarded by keeping one of its 
edges and also maintaining the west-ward bias of the 
original algorithm. An element on a west edge is 
preserved if it is not on a corner and its east neighbour 
is on an edge, i.e. edge(East) and value(North) and 
value(South) must be true. Similarly, the north edge 
of a horizontal stroke of width 2 is preserved if 
edge(South) and value(East) and value(West) are 
true. Also the removal of each element of a 2 x 2 
square can be prevented by checking the east, south 
and south-east neighbours, i.e. edge(East) and 
edge(South-East) and edge(South) are true and also 
they included the condition for at least one absent 
neighbour. This algorithm does not always preserve 
the skeleton of the binary pattern according to the 
shape but it ensures the connectedness. In this paral­
lel, one-pass algorithm they actually considered a 
4 x 4  window. Another one-pass thinning algorithm 
by Chain et al.(i) who considered a different set of 
templates, mainly (i) eight thinning templates of 
3 x 3  windows, (ii) two restoring templates of size 
4 x 4  window and (iii) eight trimming templates of 
3 x 3  window. The main disadvantage of this algor­
ithm is distortion of the skeleton of the binary output 
pattern.

All the thinning algorithms, mentioned previously, 
are basically template matching procedures based on 
which deletable edge points can be removed.

Though worst-case analysis of thinning algorithms 
has been conducted13 8* but no attempt has ever been
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(a) (b)
Fig. 1. Uniformly distributed random binary image: (a) 

original; (b) thinned.

made to conduct an average case analysis of the 
same. In this paper, we have attempted to formulate 
the average case analysis of the problem. This for­
mulation of average case analysis is based on an 
observation that the pattern-matching problem is 
analogous to the urn model problem with multiple 
colour balls but without replacement. As the tem­
plate matching thinning operation is a local operation 
being performed in the absence of a priori knowledge 
regarding the shape of the boundary to be thinned, 
it is not guided by any specific distribution of 0-ls. 
Hence, for the sake of simplicity it may be assumed 
that during average-case analysis of the thinning 
algorithm 0-ls are uniformly distributed.

However, since a uniformly distributed random 
image may not always contain 4- or 8-connected 
components (Fig. 1) during skeletonization, it would 
be difficult to obtain skeletons in that image. In order 
to avoid this situation we have considered here only 
those uniformly distributed random binary images 
which contain 4-connected simple objects (com­
ponents). The random images with 4-connected 
simple objects have been generated in such a manner 
that for each non-zero point P in the image there 
exists at least one non-zero point Q such that P and

Q are connected in a non-empty subset S of the 
image. This simple criterion of connectivity between 
two points P and Q has been considered by assuming 
the existence of a 4-path P = P0, Pi, . . . ,  Pm = Q 
from P to Q, where P, is 4-adjacent to P,_b 1 < f s  n. 
Figure 2 illustrates a few random images with 4- 
connected simple objects.

1. AVERAGE CASE ANALYSIS

2.1. A probabilistic formulation (an urn model 
problem)

The probabilistic analysis of a thinning algorithm 
can be viewed as an urn model problem/910* The 
formulation is as follows.

We may use a colour to denote each decision 
template for deletion of the central element. Each 
element of the binary image can be considered to be 
a ball and its colour is computed from the com­
binations of patterns of its neighbours of size of 
the given templates. Let us consider the following 
notations:

u x v = size of the window of the template (Fig. 3) 
used for thinning
w = u x v = number of elements in the template 
2W = number of different patterns of the window (all 
possible templates) produced or 
2W = number of different colours which exist in this 
process.

Now we can divide these 2W colours into two basic 
classes because the given pattern is a binary pattern. 
The colour of one class as the central element of the 
templates produced from the given window is zero, 
defined as 0-colour class. Similarly the colour of the 
other class as the central element of the templates 
produced from the given window is one, defined as 
1-colour class (Fig. 4). The central element of the

(c)
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U -co lour c l a s s

(d)
0 -  colour d o s s m -  colour c la s s

T 7-colour c l a s sFig. 2. Uniformly distributed random binary images con- ■ ...... ..........
taining 4-connected objects: (a), (c) original; (b), (d) Fig. 4. Colour classes generated from the templates of an 

thinned. algorithm.
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U rn  A Urn B

Fig. 5. Thinning process viewed as an urn model problem.

thinning templates is considered as 1 in all the dis­
cussed thinning algorithms and also the object of a 
thinning algorithm is to replace 1 by 0 as discussed 
earlier. Each element of a binary pattern is con­
sidered as a central element of a template. If the 
central element matches with a given set of thinning 
templates then this element is converted to 0 from 1. 
This converted value is to be used in the subsequent 
iteration, and this process is continued (see Fig. 5).

Let us consider, for an iteration, each element of a 
binary image is a ball which has a colour as computed 
above:

2(“,_1) = number of colours in 0- and 1-colour class 
produced by the templates of a given window size 
n0 = number of colours in 0-colour class produced 
by the templates of a given window size =

Again the 1-colour class can be divided into two sub­
classes of which one sub-class is the match-colour 
(m-colour) class and the other is the unmatch-colour 
(u-colour) class (see Fig. 4).

Let us assume the following:

«„, = number of colours in the m-colour class, i.e. 
number of templates used for thinning 
/!„ = number of colours in the u-colour class, i.e. 
number of generated templates whose centre is 1 but 
not used for thinning = -  nm.

As the colours in each class or sub-class are equally 
likely and independent, we can consider the fol­
lowing probabilities:

pQ = probability of a colour belongs to 0-colour 
class = 2 ^ / 2 ” = 1/2
Pi = probability of a colour belongs to 1-colour 
class = 2(w~l)/2w = 1/2
pm = probability of a colour belongs to m-colour 
class = nm/2w
p„ = probability of a colour belongs to u-colour 
class = 1/2 -  p m

p'm = probability of a colour belongs to m-colour 
class under the condition that it also belongs to 1- 
colour class = nm/2(H'_1)
p'a = probability of a colour belongs to u-colour class 
under the condition that it also belongs to 1-colour 
class = 1 -  p'm.

We can write: (1) p 0 + Pl = 1, (2) p0 +  p m + p a = 1,
and (3) p'm + p'u = l.

Consider a binary image of size n x m  which is 
to be thinned by using a given one-pass thinning 
algorithm. The number of elements in the image is 
N = n x m.

Theorem 1 (urn model). There are N  balls kept in 
an Urn A. Each ball has one of the three colours, 
namely, 0-colour, m-colour or u-colour. The process 
starts as follows. A ball is drawn randomly from Urn 
A and if it is m-colour then the ball is marked and 
placed into another Urn B. If the ball is not of m- 
colour then it is simply placed into Urn B without 
marking. This process continues until the cycle is 
completed. A cycle is completed when all the balls 
of Urn A have been transferred to Urn B. At the 
end of a cycle the balls of Urn B are passed through 
a black box (Fig. 5). Each ball is coloured anew there 
and then transferred into Urn A. The above process 
is repeated in the subsequent cycles. The whole 
process is terminated when no m-colour ball is found

f t  I t e r a t i o n s

Fig. 6. Distribution of matched elements.

Fig. 7. Distribution of matched elements.
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in a complete cycle. If the number of cycles in the 
above process is k, under the assumptions:

Assumption I
(a) all the m-colour balls converted to 0-colour 

balls and
(b) some of the remaining 1-colour balls converted 

to m-colo\ir and u-colour balls depend upon the 
probability distribution, the bounds of k are

1 <  k <  log (2/(Npm»/log (1 - p 'J .

Assumption II
(a) all the m-colour balls converted to 0-colour 

balls and
(b) some of the u-colour balls converted to m- 

colour balls depend upon the probability distri­
bution, the bounds of k  are

1 ss k  < log (2/AO/log (2p m) -  1.

2.2. Proof of Theorem 1

Case 1: proof under assumption I. Since the image 
is uniformly distributed over 0 and 1 we can consider 
the following. At the beginning of the first cycle Urn 
A contains:

total number of balls = N
total number of 0-colour balls =  A^0) = Np0 = N/2 
total number of 1-colour balls =  n \ )] = Npi = N/2 
total number of m-colour balls = A ^  = N f ’p ’̂  
total number of u-colour balls = /V[,n) = p „.

Therefore, N  = + N^> +

Lemma 1 (terminating criterion). At the end of 
thinning after the fcth iteration the number of m- 
colour balls will be less than one, i.e. N $  <  1 and 
N ^  + > N  — 1 where

N $  = number of m-colour balls after fcth iteration 
N\P = number of 0-colour balls after &th iteration 
Nbk) = number of u-colour balls after fcth iteration.

Proof. Since N $  is the number of m-colour balls 
after the fcth iteration and k  iterations are required 
for thinning an image, this implies that N $  = 0, i.e. 
N $  <  1 and > N  -  1. At the end of the
fcth iteration the number of m-colour balls will be 
less than or equal to one. Therefore, N $  s  1 and 
Aft) + Aft> z N - 1 .

Since the sample is uniformly distributed over the 
binary value (0,1) the thinning algorithm converts 
N $  m-colour balls into 0-colour balls. So at the end 
of the first cycle the number of 0-colour balls will be 
Nhl) = M 0) + and the number of 1-colour balls 
will be N\V = Art0). The effect of conversion from m- 
colour to 0-colour is that some of the /V(UQ) unmatched 
balls will be converted to m-colour as 
M'Vfn and Aft* = N[l)p'a. But the total number of 
balls will remain unchanged at the end of the first 
iteration, i.e. when N =  Aft> + Aft> + Aft*.

Lemma 2. N  ~  Aft) +  Aft) + Aft) where 

Aft> = AW_1) + = N -  N(p'a)k/2
N [ k )  =  A f t ' D

M P = N P p ^ = N ( j> 'u)*p'm/2
and

N W =  N [k)p ’u = N(p'u)k+>/2.

Proof. Any m-colour element (ball) affects its non­
zero 8-neighbours because it is converted into a 0- 
colour element. Furthermore, each m-colour ball 
will contribute 1 to neighbouring u-colour balls 
resulting in the same transformation of u-colour into 
m-colour balls. Therefore, at the end of the first 
iteration

Aft> = Aft> + N ®  = N/2 + Np'm/2 
~ N { \+ p 'm)l2 = N - N ( p W / 2  

N[» = Aft» = N p ’u/2 
NW = M 1}P» = N i p t f p ' J l  

=  N[»p'u = N(p'a)2/2.

The total number of balls does not change, so

N  = Aft) +  Aft> + Aft).

Again, at the end of the second iteration

+ Aft> = N( 1 + p ^ + (p i)V m)/2 

= N-N{p'u)2/2 

Af> = Aft> = N(p'u) 2/2 

N $ = = N(p'u)2p J  2 

M2) = NFP'* = W p ' j y  2.
By the conservation rule (the total number of balls 
does not change)

n  =  Aft) + n $  + Aft>.

So by mathematical induction we can get at the end 
of the fcth iteration
Nff) = + N (k-i) =  N q  + p ,m

+ K p : y  + (P i)2 + ---  + (pL)k- l]pL)/2
= N - N ( p 'a) k/2 

Aft> = A f t '1)

= N(P:)kp ' j 2

and
N W = N P p i  =  N(p'u)k+l/2.

Again, by the conservation rule

N  = Aft> + +  Aft*.

By lemma 1 and lemma 2, we can write 

^ ( / ’u)*Pm/2<l or N[2 — (p'v) k]/2 + N(p'u)k+l /2  

> N - 1

^ ( p ' u)k <2/(Np'm) ^ k < l o g  (2/{Np'm))/\og (p'J.
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Therefore, the average number of cycles (iterations)
is

k  = log {2/(Np'm))/\og{\ - p ' m).

Hence, the bounds of k  are

1 < k  <  log (2/(AfPm))/log (1 - p ’m).

Case II: proof under assumption II. Since the 
image is uniformly distributed over 0 and 1 we can 
consider the following. At the beginning of the first 
cycle Urn A contains:

total number of balls = N
total number of balls = = Np0 = N/2
total number of m-colour balls = N $  = Npm =
Nnm/2" = Np'm/2
total number of u-colour balls = N ^  = N p u =
Np’u/2-

Therefore, N  = A f  > + + Af>.

Since the sample is uniformly distributed over the 
binary value (0,1) the thinning algorithm converts 

m-colour balls into 0-colour balls. So at the end 
of the first cycle the number of 0-colour balls will be 
iVf)1-* = Ntf) +A'™). The effects of conversion from tri­
colour to 0-colour is that some of the N(uU) unmatched 
balls will be converted to m-colour. But the total 
number of balls will remain unchanged at the end of 
the first iteration, i.e. when N  = Ar(l1) + N $  +

Lemma 3. N  = N^k) + N ^ '  + N ^  where

Af> + A ^ _1)

NW = (Nlk- V - N t t - " )  + N «-»p 'u

Proof. Any m-colour element (ball) affects its 
non-zero 8-neighbours because it is converted into a 
0-colour element. Furthermore, each m-colour ball 
will contribute 1 to neighbouring u-colour balls 
resulting in the same transformation of u-colour into 
m-colour balls. Therefore, at the end of the first 
iteration 

Nji) = A f) +

Ml* = N®p'a =  N ^ ( p 'm) 1

NW = (AfW -  N$>) +  M n V  = W<0) -  N<g>p'm.

The total number of balls does not change, so

n  =  + MS’ + MP-

Again, at the end of the second iteration

N(m2) = N $ p 'm = N ^ ( p 'm)2

iVP) = (NW -  JVg>) +  N g y u =  M f) -  A f t K -

By the conservation rule (the total number of balls 
does not change)

Ar=Ng> + N $  +N™.

So by mathematical induction we can get at the end 
of the fcth iteration

ATf,*’ = ATj,*-1* +

w<m*> = A ^ ’p ;  = A ^ P ln )*
N P  = ( M * - ‘) -Ng-Vy + NX-npi 

= Nik- " ~ N « - V p 'm.
Again, by the conservation rule N  = + N $  +
N P .

Lemma 4. Ntf* + N (uk> = N {2 -  (p'm)k+1}/2 and
M P = N (p ’m)k+1/2.

Proof. From the above results we get

M°> = N/2  

N<£> = NPJ 2  

NW  = N p ’j 2

for k  = 1

N ^  = N ^  + N ^  = N{\ + p'm)/2

= M!?P« = N p ’mp ' j 2  =  N(p'm)2/ 2 

A<» = JV(f) -  N<ffp'm = N p 'j2  -  (Np'j2)p 'm 

= N ( l - p 'm) /2 -{N p 'm/2)p'm

= Â [l —p'm ~ (/»m)2]/2

for k = 2

N p  = N ^  + M>> = N(1 + p 'J /2  + N(p'm)2/2 

= N{ 1 +p'm + {p'm)2)/2 

N®  = N W p ’m = Np'm( p ' J 2/2 = N(p'm)>/2 

M 2) = Nt» -  N ^ P n

= N (l - p ' m -  (P’mf ) l 2  -  (N(p'm)2)/2p'm 

= N( 1 - p ' m ~  (pm)2 -  (Pm)3)/2-

Therefore, by mathematical induction, we can write

N ^  = N( 1 +p'm +  (p 'm)2 +  • • • +  (Pm )*)/2 
= N{p'm)k+1 f2

N P  = N(1 -  p'm ~ (p'm)2 -  ( p ' J 3 -------

-  (Pm)*+1)/2

and

N\P + = N(2 -  (p'm)k+1)/2.

By lemma 1 and lemma 4, we can write

N(p'n,)k+1/ 2 < 1  and N(2 -  (p'm)k+l) /2 >  N  -  I

^ ( p ' m)k+1< 2 /N

di>k + 1 <  [log (2/N)]/[\ogp'm\.
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Therefore, the average number of cycles (iterations) 
is

k = [log(2/N)]/[logp’m] - l .

Hence, the bounds of k are

1 < fc <  log (2/N)/\og (2pm) — 1.

2.3. Average time complexity

As shown in the previous sections that the pro­
posed urn model formulation can be used to compute 
the average number of iterations required in the case 
of a given thinning algorithm and in each iteration 
the average number of elements to be converted 
from non-zero (1) to zero elements. Now these 
results will be used to compute the average time 
requirement of the given algorithm. Let us assume 
the following:

b =  unit of time taken for a boolean operation, 
assignment or if-then-else
s = unit of time taken to match or mismatch the 
thinning templates of the thinning algorithm.

2.3.1. Sequential. We consider here that the par­
allel template matching thinning algorithms will be 
executed sequentially.

Case I. Using assumption I of Theorem 1 the time 
required for the first iteration is computed as follows:

T, = bN/2 + sN/2 = bNtf> + sN[°\

Similarly, for the next /cth iterations we can write

Tk = bNtf-V +sN[k~» = b (N -N (p 'u)k- l/2)

+ sN(p'u)k- l/2 = Nb + (s -b )N (p 'u)k~l/2.

Therefore, the total time after the /cth iteration is

T = T 1 + T2 + T3 + -- - + Tk

= kNb + N ( s - b ) - Z lsisk ( p i ) '” 1/ 2

= kNb + N(s -  6)[1 -  (p'a)k)K2p'm) = 0(Nk).

Case II. Using assumption II of Theorem 1 the 
time required for the first iteration is computed as 
follows:

7, = WVg» + s(tfg> + N  g») = bN/2 + sN/2.

Similarly, for the next fcth iterations we can write 
Ti = bNbk~'> + s(N$~V + N (uk~1'1). Therefore, the 
total time after the fcth iteration is

T  = Ti + T2 + T3 + ■ • • + Tk

= b 2 lsi*kN t l) + sZ lsisk( N V ) + N$~")

=  N(1 +p'm +  ( p ’J 2 +  • • • +  (p'a ) ' ) /2

= N ( l - ( p ^ y +l) / [ 2 ( l - p M

So

= 2 1s,<a.N(1 — (Pm)‘+1)/[2(1 -p 'm))

= N[k -  (p ^ ) fc) /( l  ~Pm)}]/[2(l -P 'J]

JV« + N $  = M 2 -{ 1  - ( p ^ ) i+1}/(l ~p'm)V2
and

= N[2k -  { k - p 'm{ 1

- ( p ’m)kW - p ’M - p ' m)}/2.
Therefore, total time 

T = b N [ k ( l - p 'm) - p ' m( l - { p ' n )*)]/

[2(1 - p ' my ]  + sN[2k(\ -  p ’m)2 -  k{ 1 - p 'm)

+ P'mV  ~ (P'm)k)\/[2(l ~ p'm)2}

= N [ { k ( l - p ’m) - p ’m( l - { p ' m)k)}b 

+ { k ( l - p 'm) { \ - 2 p 'm)

+ P ' M - ( p ' m)k)}sV[2(l-p 'm)2)

= N [ k ( \ - p ’m) ( b - ( l - 2 p ' m)s)

+ p ’m( l - ( p ’m) k) ( s - b ) y { 2 ( l - p ^ }

= 0(Nk).

2.3.2. Parallel. In the case of parallel execution, 
let us consider the following:

N  = r x  c = number of binary elements in the given 
image
r = number of rows of the binary image 
c = number of columns of the binary image 
p  = number of processors used for thinning.

Case I. Using assumption I of Theorem 1 the 
average time taken for c elements after the fcth 
iteration is computed as follows: Tt =  c[kb + 
( s - b ) { l - ( p ' u) k}/(2p'J\, for i = l ,  2, . . .  ,r. 
Therefore, the total time taken in the parallel com­
putation is T  = [1 + (/■ — l)/p j [Maxlsisrr,]. There­
fore, the total average time taken is T  =  [1 + (r -  1)/ 
p\ *c[kb + (5 -  fc){l -  ( p ’u)k}/(2p'm)} =  0(Nk/p).

Case 11. Using assumption II of Theorem 4.1 the 
average time taken for c elements after the fcth 
iteration is computed as follows:

Ti = c [ k { \ -p 'm){b + { \ - 2 p ' m)s)

+ p ' M - { p ' m)k) { s - b ) ) / l 2 { l - p 'm) \

for / = 1,2, .  .. J-
Therefore, the total time taken after the fcth iteration 
by the parallel computation is

T =  l l  + ( r - l ) /p J [ M a x ls ,s r 7’,.].

Therefore, the total average time taken

T=  |.l + (/--l)/>Jc[fc(l - p 'm)(b + { l - 2 p 'm)s)

+ P 'M  ~ ( P ' M  ~ b)]/[2(l - p ’J 2]

= 0(Nk/p).
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Table 1. Parameters of fit) for different thinning algorithms

Algorithms p x 100
Constants

b c d w

Zhang and Suen [1] 6.64 6.64 -0.085 -0.010 3
Chain et al. [4] 9.37 9.37 x 2'-' 0.180 -0.020 3
Holt et al. [3] 7.36 7.36 -0.001 -0.070 4
Pal and Bhattacharyya [8] 7.78 7.78 0.002 -0.060 5

3. APPROXIMATED BEHAVIOUR

The experimental results under the proposed aver­
age case analysis model are shown in Table 8. 
Observing the experimental results a negative 
exponential function/(t) can be proposed to find the 
possible number of matching at the rth iteration. The 
following form of f( t )  is obtained:

/(f)  =  b exp ( — Vwf + d( 1 + f)2 + c)

where b is a constant in the case of the algorithms 
due to Zhang and Suen,(1) and Holt et a lP ' and the 
modified algorithm of Holt.(8) b is a function of t in 
the case of Chain et al.’s (4) algorithm, c and d are 
constants for all the algorithms. The values of the 
constants b, c and d are shown in Table 1.

The above mathematical function has been used 
to compute the percentage (%) of matched elements 
occurring at different iterations. These results are 
shown in Table 9. It is interesting to note that the 
computed results (Table 9) are very close to the 
experimental results (Table 8).

4. RESULTS AND CONCLUSION

We are presenting here the results obtained by
evaluating the average performance experimentally

as well as the help of the proposed average case 
analysis model. The objective is to compare the 
experimental results with the calculated one.

It has been found experimentally that the number 
of iterations depends on the number of elements 
presented in the thinning templates used in the algor­
ithm. In our experiments we have considered four 
algorithms, namely, those due to Zhang and Suen,(1) 
Chain et al,,(4) Holt et alS3] and the modified Holt 
algorithm.*8*

Table 2 illustrates the number of templates used 
and the probability of template matching in the case 
of the above four algorithms.

The average number of iterations required for 
images with different sizes are shown in Table 3. The 
average number of iterations has been calculated 
using our proposed formulation for average case 
analysis. The formulation under assumption I (Case
I) has been used in this case.

The proposed formulation under assumption II 
(Case II) has been used to compute the average 
number of iterations required for thinning. These 
results are shown in Table 4.

As shown in Table 5 the average numbers of 
iterations required for thinning have been obtained 
experimentally for images of different sizes.

Tables 6 and 7 display the percentage (%) of

Table 2. The number of templates and probability of matching

Algorithm
used

Number of 
elements in a 

template, 
w

Number of 
templates 

used,

Probability 
of template 
matching, 

Pm — ^m/2

Zhang and Suen 9 34 0.06640625
Chain et al. 9 48 0.09375000
Holt et al. 16 4823 0.07359314
Pal and Bhattacharyya 25 2,608,640 0.07774353

Table 3. Average number of iterations required for images with different sizes (calculated
Case I)

Zhang Chain Holt Pal and
andSuen et al. et al. Bhattacharyya

32 x 32 29.61 21.98
64 x 64 39.34 28.66

100 x100 45.60 32.96
150 x150 51.29 36.86

27.15 26.97
35.85 35.60
41.46 41.16
46.55 46.22
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Table 4. Average number of iterations required for images with different sizes (calculated
Case II)

Image size
Zhang 

and Suen
Chain 
et al.

Holt 
et al.

Pal and 
Bhattacharyya

32 x 32 2.09 2.73 2.26 2.35
64 x 64 2.78 3.55 2.98 3.10

100x100 3.22 4.09 3.44 3.58
150x150 3.62 4.57 3.87 4.01

Table 5. Average number of iterations required for images with different sizes
(experimental)

Zhang Chain Holt Pal and
Image size and Suen et al. et al. Bhattacharyya

32 x 32 2.0 4.30 2.7 2.60
64 x 64 2.1 7.20 3.0 3.30

100 X100 2.3 7.50 3.4 3.80
150 X150 2.6 8.40 4.2 4.10

Table 6. Average percentage of matched elements in the cycles (calculated Case I)

Algorithm 1 2 3
Cycle

4 5 6 7

Zhang and Suen 6.64 5.76 4.9938 4.330 3.7554 3.2567 2.8
Chain et al. 9.37 7.62 6.1889 5.028 4.0857 3.3196 2.7
Holt et al. 7.36 6.27 5.3523 4.564 3.8927 3.3198 2.8
Pal and Bhattacharyya 7.78 6.56 5.5447 4.682 3.9545 3.3396 2.8

Table 7. Average percentage of matched elements in the cycles (calculated Case II)

Algorithm 1 2 3
Cycle

4 5 6 7

Zhang and Suen 6.64 0.44 0.0293 0.002 0.00013 0.00000 0.00
Chain et al. 9.37 0.88 0.0824 0.008 0.00072 0.00007 0.00
Holt et al. 7.36 0.54 0.0398 0.003 0.00022 0.00002 0.00
Pal and Bhattacharyya 7.78 0.60 0.0470 0.004 0.00028 0.00002 0.00

Table 8. Average percentage of matched elements in the cycles (experimental)

Cycle
Algorithm 1 2 3 4 5 6 7

Zhang and Suen 6.09198 1.16533 0.17116 0.03494 0.00641 0.00083 0.00000
Chain et al. 5.50592 1.58898 0.53514 0.19480 0.06985 0.02488 0.00922
Holt et al. 6.79578 0.67540 0.07249 0.00883 0.00058 0.00011 0.00000
Pal and Bhattacharyya 7.30087 0.61790 0.07217 0.00924 0.00022 0.00000 0.00000

matched elements encountered at different 
iterations. The results have been computed by using 
both formulations, namely, Cases I and II.

The percentage of matched elements present in 
different iterations under different algorithms has

also been obtained experimentally. These are 
reported in Table 8.

According to Tables 3-8 it is apparent that the 
experimental results shown in Tables 5 and 8 are 
close to the computed results shown in Tables 4 and
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Table 9. Average percentage of matched elements in the cycles (behavioural)

Algorithm 1 2 3
Cycle

4 5 6 7

Zhang and Suen 6.03824 1.03672 0.17447 0.02878 0.00465 0.00074 0.0001
Chain et al. 5.49790 1.83210 0.58658 0.18044 0.05333 0.01514 0.0041
Holt et al. 6.85555 0.75206 0.07172 0.00595 0.00043 0.00003 0.0000
Pal and Bhattacharyya 7.34160 0.65540 0.05189 0.00364 0.00023 0.00001 0.0000

7, respectively. It is apparent that the experimental 
results (Tables 5 and 8) are deviating from the com­
puted results (Tables 3 and 6) obtained under 
assumption I (Case I) whereas the computed results 
(Tables 4 and 7) obtained under assumption II (Case
II) are close to the experimental results.

While conducting the experiment it has been 
observed that the distribution pattern of matching 
templates is a decaying process represented by a near 
exponential distribution (Section 3 and Table 9) with 
the image size and the template size being the par­
ameters and constants depending upon the algor­
ithms chosen as shown in Figs 6 and 7. Work is 
also in progress to obtain a generalized probabilistic 
model for average case analysis of the thinning algor­
ithm.
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