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Abstract — We consider the problem of supervision errors in training samples in two-group discriminant
analysis based on normal distributions. Using a model for training sample misclassification, we derive
Efron’s Asymptotic Relative Efficiency (ARE) of the discriminant function estimated under this model,
relative to the case when classification is perfect. We tabulate this ARE for certain values of the Mahalanobis
distance between the groups and for various levels of supervision errors, We show that training samples are
useful even if prone to a certain amount of misclassification. Our formulae and tables give, for a training
sample prone to a certain amount of error, sample size equivalent to that of one error-free training sample
as well as that of an unsupervised sample, the equivalence being in terms of estimation efficiency.

Normal discrimination Supervision error

1. INTRODUCTION

In many applications of pattern recognition, classify-
ing a training sample is expensive and difficult and is
subject to error; some examples of this situation are
remote sensing™>* and medical diagnosis.”*'? In a
problem of remote sensing of crop patterns, the
training samples may be visually classified and hence
may be prone to error; in a medical diagnosis problem,
the training samples may be classified by experts on the
basis of the same vector variable x as the one used for
learning and hence may be prone to error. In the first
case, the errors in supervision may be presumed to be
independent of the observable x and in the second
dependent on x. These two situations are called
respectively random and nonrandom misclassifica-
tiont"®

Studies have been made on the effect of supervision
errors on the estimates of the Bayes discriminant
function for the special case of two multivariate
normal populations with a common covariance
matrix. Lachenbruch™ started these studies using a
random misclassification model studying the means
and variances of conditional error rates. He used a
combination of theoretical and Monte Carlo studies.
McLachlan®” studied conditional error rates using
their asymptotic expansions for the case where one
group does not get misclassified. Lachenbruch®
studied by Monte Carlo methods the conditional error
rates under two types of nonrandom misclassification
models where the probability of misclassification
depended on the vector variable x through the
distance of x from its group mean. Chhikara and
McKeon" used models more general than those of
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Asymptotic relative efficiency

Lachenbruch®™® and derived the asymptotic

distribution of the discriminant boundary and the
asymptotic means and variances of conditional error
rates and of the average error rate; they pointed out the
adverse effects of misclassification on the boundary
and on these error rates. Michalek and Tripathi"®
used Efron’s Asymptotic Relative Efficiency (ARE)
and studied the effect on the estimate of the
discriminant function. All these authors are concerned
with the effect of supervision errors when the
discriminant function and other parameters are
estimated using methods suitable for the perfectly
supervised case. The general conclusion is that under
nonrandom misclassification, the true error rates are
only slightly affected and apparent error rates
considerably affected and give an optimistic picture.
Under random misclassification, the estimates of the
discriminant function and the true error rates are
biased and maximum likelihood estimates converge to
false values and the efficiency of the discriminant
function estimates decreases.

Chittinenj*¥ considers random misclassification
and compares misclassified and correctly classified
situations for the general case using Bayes and nearest
neighbour classifiers. He also develops nonparametric
learning techniques and methods for correction of
supervision errors.

Thus, if training sample misclassification occurs in
such a way that observations falling in the “doubtful”
region are more prone to misclassification, then
ignoring supervision errors does not lead to much
harm. However, if training sample misclassification
occurs at random, then ignoring supervision errors
does distort the learning process. Thus it is clear that,
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especially in the case of random misclassification, it
would be helpful to have methods of estimating the
discriminant function taking such misclassification
into account. This is quite a different objective from
thnce of most of the papers discussed above.

In Katre and Krishnan® we have discussed the
problem of maximum likelihood estimation under a
random misclassification model and have developed
the EM algorithm,” for the case of two multinormal
populations with a common dispersion matrix. In this
paper, our object is to examine, for the same case, the
extent to which a training sample subject to
misclassification with constant probability a, is useful
in learning the parameters. This extent of usefulness
will also depend on other parameters, the Mahalanobis
distance A between the two populations and the prior
probabilities of the two groups. Values of a from 0 to 4
will cover a range of situations; a = 0 implies perfect
supervision (the usual supervised learning) and o« = 1
implies no supervision at all (the usual unsupervised
case). In other words, we examine the relative sample
sizes required under these types of supervision, to
achieve the same error rate for the discriminant
function when maximum likelihood estimates are
used.

We consider the case of two p-variate normal
populations with a common covariance matrix N,
(¢0, Z)and N, (11, Z) occurring in proportions 770 (=17)
andn, (1 — n) respectively. The Bayes rule here isto use

Bo+ PBx (1.1)
where
Bo = log(n1lno) — 4 (uy 7" sy — o 7" pao)
ﬂ=z_l(#1—ﬂo)- (12

The Bayes rule is the one with the least error rate. The
Asymptotic Error Rate (AER) of a procedure based on
o Bo
B

. a,
estimates a

i of vector from a sample of size

additional error rate of Z"

n is defined to be the limiting value (as n — o) of the
3 over the Bayes error.

This AER will naturally depend on the nature of the
procedure and the parameters. For supervised and
unsupervised procedures it will be different and for the
same parameters, the unsupervised procedure will
have a larger AER. The ratio of the AER of two
procedures gives the Asymptotic Relative Efficiency of
one procedure with respect to the other. When several
procedures less efficient than the supervised one are
considered, such as unsupervised, combined super-
vised and unsupervised or error-prone supervised, the
supervised procedure may be used as the basis of
comparison. This leads to Efron’s® Asymptotic
Relative Efficiency (ARE). These ideas are defined
precisely in the next section.

O'Neill'" adopts this approach in studying the
efficiency of a procedure where the training sample has
a proportion y of unsupervised samples and (1 — y) of
(correctly) supervised samples. Thus our work can be
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regarded as an extension of O’Neill’s work. We derive
a formula for ARE of the error-prone supervision
relative to a correctly supervised scheme similar to
O’Neill's'? formula (3.1). In fact, we use similar
techniques too; these techniques require the computa-
tion of the information matrix of the logistic regression
estimators of B, B while computing the ARE of
maximum likelihood estimators.

2. ASYMPTOTIC RELATIVE EFFICIENCY

Since error rates of discriminant rules based on S, f
or its estimates are invariant under linear transforma-
tion on x, we assume the canonical form for (g, ) and

(4, T)to be (%el, Il,) and ( — %e,, I,,)where Ais the

Mabhalanobis distance between the two groups, e, is
the vector (1,0,...,0)and I, is the p x pidentity matrix;
this canonical form can be obtained by a linear
transformation on x. Let (a, a), denote the estimate of
By, B) based on a sample of »n by a certain procedure
and let ER(qy, a), denote the error rate on using (ay, a),
for (B, B) in (L.1). Let 4 = log (m | 7).
Efron® shows that if

Val (2)=(5) |2 e

then 7
n[ER (g, ), — ER (B, f)] >

m (A /1)[2 (21)

—_— —_——— 26— — ZoZ1 +

2A¢<2 AL \a/™
(i)zéz+z§+...+z{|
A) ! ’

where L, means convergence in law (distribution),
2 = (24, Zp5- .-, 2,) ~ N, ,1(0, M), ¢ is standard normal
density function, and 0 the (p + 1)-null vector. The
Asymptotic Error Rate of a procedure with estimates
(ay, a), is then defined to be the expectation of the limit
above, which is equal to

Ay

2A A A
m“+m22+...+mpp

when ((m;)) = M. This is denoted for convenience by
AER(ay, a). Then the Asymptotic Relative Efficiency
(ARE) of a procedure with (c,, c), with respect to a
procedure yielding estimate (b, b), is

Eff, = AER (by, b)/AER (cy, ¢). Q.1

In order to compute this efficiency for error-prone
initial samples relative to a supervised sample we need
the matrices M for these cases for the maximum
likelihood estimates. This is done by computing the
information matrix of o, § and inverting it; Efron has
already computed this for the supervised case as
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H 0
1. = [non] [0 (1 +Anony) =, ]

where

woef

3. EFFICIENCY OF ERROR-PRONE SCHEME

1+ AY4 —(no

- ’71)A/2
(o — N1) A2 ] @2

1+ 2191, A

We denote by

x: p-dimensional observation vector:
z: the group (0 or 1) to which the observed unit is
allotted.

The observation thus has the form (x, z). In our
formulation z is a random variable. Let

y: actual class to which an observation belongs
(unknown or unobserved).

Letw:1—2z(wislor —laszisOor1).
Thus z may not be the same as y and
Pz#ylyy=ua

according to our model; further z and x are
independent given y, by our model. In our model, the
probability of misclassification of group 1 into group 2
is the same as that of misclassifying group 2 into group
1.

We have n observations (x;, z), j=1, 2,...,n
Denoting by f,(x), the multivariate normat density N,
(u, %), i = 0, 1, we write the density of (x;, z)) in the two
groups 0 and 1 as

folx, 2)
filx, 2)

=)ot =o'~
fl x) 1 __a)z 1- -z

We assume that random sampling was done from the
mixture

Nofo(%: 2) + mfilx, 2).

To compute the information matrix, we need full,
various marginal and conditional likelihoods. We use
I'to denote log-likelihood; the arguments of ! and the
conditioning symbol | indicate which likelihood is
being considered.

I(x, 2, y) = log {[m fi(x, )1 [Mefo(x, 21"~}
I(x, y) = log { [, fi(x)1* [ yo()]' ~*}
l(x, 2) = log [, /i(x, 2) + nafo(x, 2)]

I(x) = log [, /i(x) + o fo()]

I(y|x,2) = log{[m(x,2)1" [no(x, 2]' 7}

where ny(x,z) = 1 —n,(x, 2)
’70fo(x, Z) — 1

 nofo%2) F mfil%z) Lm0 —af ol
o) 1 —a)

PR 21:2-H

" where & =

185

_ 1
(L—af o'~ soupe
z(l—d)l z

= 1/[1+exp(Bo + f'x + ow)]

log[/(1 — a)].

log {[m(x)1’ [no(x)1~*},
1/[1+exp(Bo+ Fx)] = 1= ny(x).

Maximum likelihood estimation of the parameters
under the given observational structure involves
maximising

Finally I(y|x) =

where #y(x) =

i I(x;, z).
i=1

This situation can be regarded as similar to estimation
under an unclassified observational structure, but with
the addition of one more dimension z. Thus the
likelihoods I(x, z) and I(x) are analogues both referring
to unsupervised initial samples. Just like O’Neill's"?
study of efficiency of unsupervised initial samples
compared to supervised initial samples, required the
likelihoods I(x, y) and I(y|x), in our study also we need
the analogous likelihoods I(x, z, y) and I( y|x, z). Note
that when y is actually known z does not provide any
information about the parameters g, uo, i;, Z but only
about o.

Asin O’Neill'?, we denote the information matrices
based on a single observation for the parameters §,
by I with suffixes C, UC and LR to denote Classified,
Unclassified and Logistic Regression log-likelihoods.
Further, we use I with superfix * if the observation
used is (x, z) and without if x. From the log-likelihoods
I(x, y, z)and I(x, z) it is immediately seen that Ic = Ic*.
Further, I,c* corresponds to the case of error-prone
initial samples.

We reparametrise 7,, 1, Ho, Z, o as follows:

u=n -+ Mot
R = Z + o (s — pol(ps — 4o’
By, B and 6.

Let A, B, C denote information matrices of (1, R, B, B,
d) based on I(x, y, z), I(x, 2) and I(y|x, z) respectively.
Then since
Ix, y, 2) = I(x, 2) + 1(y]x, 2)
and A, B, C are expection matrices
A=B+C.

These are different from Ic*, Iyc* and I} z* which are
information matrices for By, B only. In the Appendix,
we derive a formula for I;c* as follows:

@«

Let 4;(n;, A j

-0

—A2/8 l¢ (x)dx

2 4 poe 2 i=0,1,2
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¢(x): standard normal density.

ao = no(1 — &) + 15 @, = noax + 1, (1 — o)

Po = mo/ag py = m(1 — a)/a,

F;=[A{po A)/ag] + [Alp;, A)/a;], i=0,1,2
B; = [A{po A)/as] — [ALp1, A)/a;],i =0, 1.

discriminate effectively and not too much to make
formal discriminant analysis unnecessary.

The interpretation of our table is as follows: for
instance, if the misclassification rate is 5, r; = 0.5,
A = 2.5, the asymptotic relative efficiency of an initial
sample is 0.756. From O’Neill’s formula, for x, = 0.5,
A = 2.5, such an efficiency is attained when the initial

D=a(l - oz)|: Fo+ [mnoBY(1 — nimoFo1Fy + [n:10BeBy/(1 — ’11’70F0)]:|
Fy + [nnoBoBi(1 — nynoF )1Fz + [minoB(1 — ninoFo)] |

Thus Iyc* = Ic — mneD,
where I.* = I is given in (2.2).

Forthe case a = §, we have ay =a, =4, py = py = 14
and the F;’s are exactly Efron’s 4;; B,=0fori=0, 1.
This makes the D matrix the same as the information
matrix for fy, B under logistic regression yielding the
result that

IUC* = IC* —ILig=1Ic—1Ix

which when compared to O’Neill’s"! Lemma 3 that
Iyc = I — Iz shows that this case is like a completely
unsupervised scheme and the z-values are totally
useless; this indeed, is evident, since in such a case, the
initial samples are merely classified with equal
probability in each group.

Substituting these in the formula (2.1), we can write
the ARE as

Eff, (4, A, o) =

q(4, A, ) Efl; (4,A,a) + (p — Y Ef, (4,A,0)
qAA ) +p—1

where
g A, @)= (1, —4/A) (H - D)~' (1, —4/A)
(1 — a(l — ) Fo(1l + nynoAD))/L1 + minoA7].
For p = 1 and p — oo, Eff, becomes
Eff, (A, A,0) = (1, —1/A)

H™'(1, = A/AY 1, — YA H — D)‘1< 1,:A—A)I

Eff,(1,A,0) = 1 —a(t —a)Fo(L +ny10A%

which are called Intercept (B;) and Angle (f)
Efficiencies respectively by Efron.

4. VALUES OF EFFICIENCY AND DISCUSSION

Table 1 gives Eff; and Eff, for n, = 0.5, 0.667, 0.9,
A =20(0.5)4.0 and a = 0.01,0.05,0.20, 0.35,0.50. We
also give values of y, the proportion of unclassified
observations at which the same efficiency is obtained
by O'Neill's formula. This gives an idea of the
usefulness of error-prone supervision. Values of A from
2 to 4 were considered by Efron®™ and O'Neill*" as
statistically most interesting in the sense that enough
separation exists between the populations to be able to

sample of the same size contains y = 0.31 proportion
of unsupervised observations. Thus for these
parameter values if we have an initial sample of 100
units, subject to a misclassification rate of 0.05, it is like
having a correctly supervised sample of 76 or an initial
sample of 100 consisting of a mixture of 69 correctly
classified units and 31 unclassified units.

Thus our formula and table put into perspective the
relative amount of information contained in super-
vised, unsupervised, mixed and error-prone super-
vision schemes. If in a situation, the costs of
unclassified, error-prone, and correctly classified
schemes are known, and are say 0.25, 0.5 and 1
respectively, then the unit cost efficiency are respec-
tively 0.84, 1.5 and 1 for the three schemes for these
parameter values, and the error-prone scheme is to be
preferred. ‘

As the groups are better separated, the efficiency of
error-prone observations increase. As 1y goes away
from %, the efficiency decreases. As the distance
between the groups increases, the equivalent y
generally increases but only slightly. Indeed as «
increases, the efficiency decreases and the equivalent y
increases to 100 at « = 0.5. Values of y are affected only
a little by values of A and 17;, more by A than by 1.

Clearly, if« = 0.5, then the supervision is useless and
it is ARE-equivalent to y = 1, which is precisely what
happens with our formula.

For a misclassification rate of 109, the ARE ranges
from 0.93 to 0.96 and the equivalent y between 7 and
12.

The corresponding figures for 5%, misclassification
rate are 74-90% and 30-45%; 20% misclassification
rate are 35-80% and 74-79%,; 35%, misclassification
rate are 18-70% and 94-95%; and 509, misclassifica-
tion rate are 13—-75% and 100%,.

SUMMARY

Discriminant analysis is usually carried out assum-
ing that the training samples are classified
deterministically and correctly. Recently, there has
been interest in discriminant analysis with incorrectly
classified training samples, motivated by examples
from remote sensing and medical diagnosis. In this
paper, we consider the case of supervision errors
occurring at random with a constant probability in a
two-group discriminant problem with normal
distributions. We compute Efron’s Asymptotic
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Table 1. Asymptotic relative efficiency of normal discrimination based on an initial sample with misclassification probability
o and equivalent proportion y of unclassified observations

m A «  EFF, EQUIy EFF, EQUIy m A «  EFF, EQUIy EFF, EQUIy
0.5 20 001 0933 007 0933 007 35 001 0942 011 0944 012
005 0744 028 0744 028 005 0825 035 0836 035
020 0347 073 0347 073 020 0616 076 0644 076
035 0159 094 0159 094 035 0523 094 0559 094
050 0109 100 0109 100 050 0495 100 0533 100
25 001 0930 009 0930 009 40 001 0955 013 0958 013
005 075 031 0756 031 005 0871 036 0880 0.36
020 0417 074 0417 074 020 0726 077 0748 077
035 0262 094 0262 094 035 0662 095 0690 095
050 0214 100 0214 100 050 0642 100 0672 100
30 001 093 010 093 010 09 20 001 0944 007 0845 0.19
005 0787 033 0787 033 005 0765 028 0666 042
020 0518 075 0518 075 020 0342 075 0370 079
035 039 094 039 094 035 0127 095 0239 095
050 035 100 0359 100 050 0059 100 0199 100
35 001 0943 012 0943 012 25 001 0927 009 08% 0.6
005 0830 035 0830 035 005 0740 032 0746 038
020 0630 076 0630 076 020 0364 076 0488 077
035 0541 094 0541 094 035 0189 095 0374 095
050 0514 100 0514 100 050 0136 100 0340 100
40 001 095 013 095 013 30 001 0921 011 0927 013
005 0876 036 0876 036 005 0751 034 0809 037
020 0737 077 0737 077 020 0438 076 0606 077
035 0676 095 0676 095 035 0300 095 0516 095
050 0657 100 0657 100 050 0254 100 0489 100
0667 20 001 0935 007 0910 010 35 001 0928 012 0948 012
005 0745 028 0728 031 005 0789 036 0861 037
020 0339 072 0353 074 020 0544 077 0714 077
035 0145 093 0176 094 035 0435 095 0649 095
050 0085 100 0.121 100 050 0402 100 0630 100
25 001 0930 009 0923 0.10 40 001 0942 0.3 0964 0.14
005 0753 031 0755 032 005 0838 037 0905 038
020 0404 074 0431 075 020 0660 077 0805 078
035 0243 094 0283 094 035 0582 095 0761 095
050 0193 100 0238 100 050 0558 100 0749 100

30 001 0933 010 0932 011

005 0782 033 0792 034

020 0502 075 0533 076

035 0376 094 0417 094

050 0338 100 0382 100

Relative Efficiency (ARE) of the estimator of the linear
discriminant function in this case relative to the
correctly supervised case. This ARE gives an idea of
the amount of information contained in an error-
prone training sample relative to an error-free training
sample. We present formulae for ARE and values of
ARE for certain ranges of the parameters. It is found
that moderately error-prone training samples are still
fairly useful and efficient and should be used under
appropriate models to estimate the discriminant
function.
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APPENDIX
FORMULA FOR EFFICIENCY OF ERROR-PRONE
INITIAL SAMPLES
Let the matrix A be partitioned corresponding to (, R), (B, )
and J as
Ay A, Ay
A=Ay Ay Ay
n An Ay
and similarly B and C. It is easily checked that
A, A, © 00 O
A=} A, Ap O . C=10 Cp Cy
0 A 0 Cp Cy

Further, as already observed 4 = B + C.

We partition the inverses of 4, B, C in a similar manner and
denote the blocks by A'!, 42 etc. From above

A 11 AlZ 0
B=| Ay Ap-Cp Cy
32 A33—C33

Further, I{x, y, z) breaks up into two factors one involving &,

z and y only and another y, x and parameters other than g,
yielding easily

2
A= E< - "L;"ayz’—z))a(l —a).

Now, Ic* = I = (49!

= Ap— ApAj' A, = By + Cy — By By By,
But Iyc* = (87!

B B -'{B
= By;; — (B, By) [ B;: B‘:;‘] ( B?z

B, 0 |7'(B
= Bzz - (le Cz}) [0 u B33] ( C‘;)

=By — By By' By — C3B3'Cy,
=By— leBﬁ‘Blz — Culofl — o) — C;g]_‘ Cy.

Hence I¢ = Iyc* + Cnp+ Cule(l — ) — C3)7'Cy. (AD)

Following Efron®, we make a linear transformation on the
x-vzriable to make N, (uo, Zs and N, (u,, ) respectively

N —%el,l and N, %e,,l wheree, = (1,0,...,0)and A

4

the Mahalanobis distance between the two groups based on

x. Then f, = A, B’ = Ae,. The matrix I-* = I; was computed

by Efron™ as (2.2). Thus to compute I;c* from (A.1)for use in

(2.1) for AER we need to compute matrix C. For this, we
follow the technique of Efron'® for his Lemma 3 (pp.
895-896), which makes essential use of the exponential family
form of I(y|x, z). Here it is convenient to use w rather than z;
then the parametrisation turns out directly in terms of 6. Then
from the theory of exponential families

1
C= llm—CovmpT

n—~on

a i1
where T= Y < x; >,
=t w,

and C is given by

1
J ) {x}(l X' W), (x, w)olx, w) dF (x, w)
RPW=~L+1] w

where dF is the mixture density ngfo(x,2z) + 1, £i(x,2). This

now yields a formula analogous to (3.16) of Efron® We thus
obtain

F, F, 0 ... 0 ' B,
F, F, 0 ... 0 B
0 0 A 0
C C (1] 1
[c” Cn]=mnoa(l—a) .
2 &n 0 0 0 ... Fu0
(B, B, 0 ... 0'F

giving Cy + Cyfa(l —a) — C;3]7'Cy, as D defined earlis
Thus Iyc* = I — nneD.
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