Proc. Indian Acad. Sci. (Math. Sci), Vol. 99, No. 1, April 1989, pp. 75-83.
© Printed in India.

A softer, stronger Lidskii theorem

RAJENDRA BHATIA and JOHN A R HOLBROOK*

Indian Statistical Institute, 7 SJS Sansanwal Marg, New Delhi 110016, India
*Mathematics and Statistics Department, University of Guelph, Guelph, Ontario N1G 2W1,
Canada

MS received 10 May 1988; revised 5 July 1988

Abstract. We provide a new approach to Lidskii’s theorem relating the eigenvalues of the
difference A — B of two self-adjoint matrices to the eigenvalues of 4 and B respectively.
This approach combines our earlier work on the spectral matching of matrices joined by a
normal path with some familiar techniques of functional analysis. It is based, therefore, on
general principles and has the additional advantage of extending Lidskii’s result to certain
pairs of normal matrices. We are also able to treat some related results on spectral variation
stemming from the work of Sunder, Halmos and Bouldin.
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1. Introduction

To discuss the classical Lidskii theorem we first recall the notion of majorization.
For real or complex vectors v, w (€C"), we define majorization (of v by w), written
v«<w, to mean that v is a convex combination of the permutations ow of w
{ow denotes the vector obtained from w by permuting the components according to
the permutation ¢ of {1,...,n}). For our purposes it will be convenient to define also
“soft” majorization (of v by w), written v «,w, to mean that v = £z, 6, w (finite sum)
where the o, w are permutations of w and the z, are complex numbers such that
Z|z,| < 1. Ttis clear that £ v; = £} w; when v « w; on the other hand if these quantities
are equal and non-zero then v « w follows from v «,w, because Xz, must be 1.

For any n-by-n matrix T, we write Eig T to indicate the n-vector of eigenvalues of
T, including multiplicity and ordered arbitrarily. In other contexts Eig T may stand
for the related diagonal matrix with eigenvalues of T on its diagonal. Lidskii’s theorem
(see, for example, Kato [13, §6.5 of chap. 2]) says that if A and B are self-adjoint,
a, denotes the version of Eig A with eigenvalues in decreasing order, and B, is the
same for B, then

a, — B, « Eig(4 — B). (1.1)

For the early history of this theorem see Bhatia [5, §9 and the notes and references
for chap. III]. Many of the earlier proofs require smoothness results on the eigenvalues
of the intermediate matrices (1 — )4 + tB; a recent proof due to Hiai and Nakamura
[12] is not encumbered in that way, but rests on a rather intricate interpolation
method.
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Our approach stresses the relation between (1.1) and norm inequalities. It has long
been recognized that (1.1) implies

u(diag(a,) — diag(8,)) < u(4 — B), ' (1.2)

for every strongly unitarily invariant (sui) norm u (as in [8], we say that a norm p
on the space of matrices is sui if it satisfies u(UTV) = u(T) for every matrix T and
unitary U and V). This implication is traditionally based on the well-known relation
between sui norms, symmetric gauge functions and majorization. In fact, however, a
comment of Ando (see [1, Theorem 7.1]) makes it clear that we may deduce (1.2)
directly for the more general weakly unitarily invariant (wui) norms. A wui norm t is
a norm on the space of matrices that satisfies t(U* TU) = 7(T) for every T and unitary
" U. Ando pointed out that if S and T are self-adjoint and Eig S « Eig T then there

are unitary U, such that S is a convex combination of the U? TU,. It follows that

t(diag(a, ) — diag(8,)) < 1(4 — B), » (L3

for every wui norm .

Our strategy will be to prove (1 3), and more, using our general “normal path
inequality” (see §2), then reverse the implications discussed in the last paragraph
(via “soft” functional analysis — see §4) to obtain (1.1), and more.

We shall use N(n) to denote the set of normal operators on complex n-space C".

2. The normal path inequality

Given any wui norm 7 and matrices T and S, we define the t-spectral distance between
T and S, denoted by 1(Eig T, Eig S), by setting

©(Eig T, Eig S) = min {z(Eig T — Eig 5)}, 2.1)

where the minimum is taken over all orderings of the diagonal matrix Eig S; because
7 is wui (and permutation matrices are unitary), t(Eig T — Eig S) depends only on the
‘relative ordering of the two diagonal matrices and the spectral distance is a
pseudometric.

In [8] we showed that the spectral distance between any two normal operators,
measured by a fixed wui norm 1, is bounded by the t-length of any normal path
joining the operators. For our present purposes it is important to observe that, for
a fixed path, the matching of eigenvalues may be determined by “following the path”

so that the matching can be the same for all wui norms 7. To see this we first recall
_ a key lemnra from [8].

" Lemma 1 (Proposition 5.2 of [8]). For fixed wui norm t, normal Ng, and &> 0,

1(Big N, Eig No) < (1 + &)t(N; — No) | 22)

whenever N, is normal and sufficiently close to N,,.

Remark. In [8] we discussed certain situations where ¢ =0 is appropriate in the
foregoing lemma, relating this phenomenon to some work of Halmos and Bouldin; in
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§7 below, we identify a broad class of norms exhibiting this behaviour.

In the following proposition 7(N(:)) denotes the arc-length of a curve N(¢) (¢ in
some parametric interval) measured via the metric induced by the (wui) norm . In
cases of interest this will be finite (i.e. the curve will be t-rectifiable). In view of the
proposition it is important to determine how short this arc-length can be made by a
suitable choice of normal path; in [7] there are results of this type.

PROPOSITION 2

If N(*) is a path defined on [0, 1] and with values in N(n) then there is a fixed ordering
. of Eig N(0) and Eig N(1) such that, for all wui norms t

(Eig N(1) — Eig N(0)) < t(N(")). 23)

Proof. Since N(t) varies continuously with ¢, standard results on spectral continuity

(see, for example, [13, §5.2 of chap. 2]) ensure that there are continuous functions

i (2) such that {u,(#),..., 4,(t)} is the spectrum (with multiplicity) of N(¢). We claim

that, for any such system of functions, (2.3) is satisfied when we choose u;(1),..., iy(1)

aEs_ tl}l\;:(g)rdering for the eigenvalues in Eig N(1) and y,(0),.. ., #,(0) as the ordering for
ig .

Fix a wui norm ¢ and ¢>0, and let G be the set of te[0,1] such that
©(D(t) — D(0)) < (1 + &)7(N[0,£]), where D(t) denotes the diagonal matrix with p,(t)
as the kth diagonal entry and N[s,t] denotes the part of the path N(-) defined on
[s,t]. By continuity it is clear that G includes its supremum (maximum) g. We wish
to show that g=1. If this is not the case. Lemma 1 ensures that for ¢ >g and
sufficiently close to g there is an ordering of Eig N(g') such that

1(D(9) — Eig N(g')) <(1 + &)r(N(g) — N(g")). - @9

Let ay,...,a, be the distinct eigenvalues of D(g). There is some permutation o such
that Eig N(g') = aD(g’) (or, more properly, the unitary similarity corresponding to &
applied to D(g’)). Since both sides of (2.4) tend to 0 as g’ approaches g, the continuity
of the functions y,(*) forces 7(Eig N(g') — D(g')) to be small relative to the minimum
distance between the a;, for ¢’ sufficiently close to g. Thus, if o(}) = j, both i and j
must index eigenvalues of D(g') close to the same &,; in other words, ¢D(g) = D(g)
(=071 D(g)). Since t is wui,

7 ©(D(g) - D(g')) =(c~* Dig)— D(g")) = t(D(g) — aD(g')), 25)
so that (2.4) yields /
7(D(g) — D(g")) < (1 + &)T(N(g) — N(g)). (2:6)

Combining this inequality with _
©(D(0) - D(9)) < (1 + &)r(N[0,4]), 2.7
we obtain

(D(0) - D(g)) <(1 +8)r(N[0,g']), 238)
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so that ¢'€G; this contradiction shows that g = 1. Since the inequality
o(D(0) — D(1)) < (1 + &)T(N(")) 29

holds for all ¢ >0 and all wui norms 7, our claim is established.
' ged. -

Remark. The significance of the fixed matching of eigenvalues in the result above
should perhaps be stressed. In general the matching that minimizes t(Eig T — Eig S)
depends on 7; examples of this phenomenon (where T is self-adjoint and S
skew-adjoint) are discussed in [2].

3. A Lidskii theorem for normal operators

We have already discussed in § 1 the general strategy for proving the following theorem;
the details of the proof may be found in §5 below.

Theorem 3. For any T,SeN(n) such that T — S is also normal, there is an orderirig of
Eig T and Eig S such that '

Eig T — Big S « Eig(T — 5). , G.D
The restrictions imposed by the hypotheses of this theorem are discussed in §6 below.

"COROLLARY 4 (Lidskii’s theorem)
If A and B are self-adjoint then

«, — B, «< Eig(4 — B), (32

where a,, is the version of Eig A with the eigenvalues arranged in decreasing order, and
B, has the same relationship to B.

Proof. The difference A — B is again self-adjoint, hence normal. It is a well-known
fact (see [15, chap. 6, § A]) about the partial ordering « that for any real vectors a
and f,a, — f, «a—§.

’ q.ed.

The following result was proved by Sunder [17] for the case of su: norms and by
a different, rather intricate, argument.

COROLLARY 5

If T,S, T — SeN(n) then for each wui norm t there is an ordering of Eig T and Eig$
(which may depend on 1) such that

(T - S) < t(Eig T — Eig S). (33)

Proof. Apply the theorem with T replaced by T — S and § by — S to get an ordering
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such that

[ 4

Eig(T — S) + Eig(S) = Zt, 0, (Eig T), (34)
where the o, are permutations and ¢t; >0 with ¢, = 1. Then
Eig(T — S) = Zt,(0,(Eig T) — Eig §) : (35

so that (T — S) < Zt,7(0,(Eig T) — Eig S) < max t(s, (Eig T) — Eig S).
k
q.ed.

Remark. For self-adjoint matrices the reasons for the inequality (3.3) may be identified
more precisely. If 4 and B are self-adjoint, a, is as in'Corollary 4, and f* puts EigB
in increasing order, then

Eig(4 — B)«<a, — B*, (39

as has been explicitly noted in [6]. By well-known propertles of sui norms 1, it follows
that

(4 - B) < (e, — B*); 3.7

actually, Ando’s observation (see § 1) shows directly that (3.7) holds more generally
for wui norms.

4. Software

PROPOSITION 6

For any operators X and Y on C", the statements_

1(X) < 1(Y) for every wui norm t @1
and
X =Zz, U YU, (finite sum) for some unitary operators U, and
complex z, with Z|z,| <1 4.2

are equivalent.

Proof. It is immediate from the definition of wui norms that (4.1) follows from (4.2).
For the converse, suppose that (4.2) fails, i.e. X is not in the set K consisting of all
finite sums of the type described in (4.2). Then for some ¢> 0 X is also outside the
set K, defined by K,=K+ {Z:||Z]]<¢}. Let t be the Minkowski functional
corresponding to K,; K, is convex, absorbing, bounded, circled, and invariant under
unitary similarities, so that 7 is a wui norm. By construction t(X) > 1 > 1(Y).

qed.

COROLLARY 7

For any operators X and Y on C" 1(X)=1(Y) for all wui norms t exactly when
X =exp(i0)U* YU for some unitary U and real 0.
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Proof. If 1(X)=1(Y) for all wui norms t, Proposition 6 ensures that X may be
expressed in the form (4.2). Collect together any linearly dependent summands
(dependent U} YU, and U} YU, would have to differ by a factor exp(ix)). Certain wui
~-norms are stnctly convex (c g. the Hilbert—Schmidt (or Frobenius) norm is sui and
induces an Euclidian metric on the space of matrices). For such a norm we cannot
have t(X) = 7(Y) unless there is only a single summand in the expression for X. Clearly
we must also have |z,|=1.

gqed.

Remark. This corollary makes it clear that wui norms can behave quite differently
from the more familiar sui norms. For example, ©(T*) may differ from (T) for a wui
norm z (even when T is normal). Let T be a unitary of dimension 3 or more.
The eigenvalues of T* are the complex conjugates of those for T so that one
spectrum cannot be obtained from the other by a rotation of the unit circle
{excluding certain very special geometries for the spectra). We cannot, therefore, have
T*=exp(if)U*TU as in the corollary, so there is some wui norm 7 with different

“values at T and T*. Another such phenomenon occurs with positive definite matrices.
If 7 is a sui norm it is not hard to see that t(4) > t(B) whenever A > B >0. This is
not the case for wui norms, in general; consider the wui norm t defined in terms of
the numerical radius w(T) and numerical range W(T) (both invariant under unitary
similarities) by ©(T) = w(T) + diam (W(T)). If the spectrum of B is more dispersed
than that of A it can certainly happen that t(B) exceeds 1(A4).

Remark. We have recently seen the preprint by Li and Tsing [14], who also developed
“software” similar to Proposition 6 and Corollary 7.

'PROPOSITION 8

For any N, MeN(n), the statements
©(N)< ™M) for every wui norm 1 @4.3)
EigN «,EigM ) 44)

are equivalent.

Proof.. Since N anc.l M are normal, they are unitarily equivalent to the matrices Eig N
and Eig M respectively. Thus Proposition 6 tells us that (4.3) is equivalent to

EigN = Zz, Uy Eig MU, (finite sum) for some unitary
operators U, and complex z, with Z|z,| < 1. L))

It is easy to check that the diagonal entries of U* diag (B)U, where § is any complex
n-vector and U is a unitary matrix [u;], are given by the vector D with D = [|u 12D

Since U is unitary, the corresponding D is doubly stochastxc Thus by equatmg
diagonals in (4.5) we obtain

EigN =Xz, D, Eig M (finite sum) for some doubly stochastic
matrices D, and complex z, with £}z,| < 1; 4.6)
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note that in (4.6) we regard Eig N and Eig M as vectors. By a well-known theorem
of Garrett Birkhoff (see, e.g. [1] or [15]) each doubly stochastic matrix is a convex
combination of permutation matrices so that (4.6) is equivalent to (4.4). On the other
hand, (4.4) directly implies (4.5) with permutation matrices as the U,. ‘
q.ed.

. 5. Proof (soft) of Theorem 3

It is easy to check that if T,S, T — SeN(n) then the direct path N()=T+¢S—T)
lies entirely in N(n). Applying Proposition 2 to this path we see that there is an
ordering for Eig T and EigS such that t(Eig T — Eig §) < o(T — S) (= ©(N(*))) for all
wui norms t. Applying Proposition 8 with N=FEigT—EigS and M=T-S§ we
conclude that Eig T — Eig § «,Eig (T — S). By wiggling (e.g. replacing T by T + & for
small &) we many assume that T and S have different traces. Then since the components
of the vectors Eig T — Eig$ and Eig(T — S) have the same non-zero sum, we must

have majorization rather than soft majorization.
q.ed.

6. The condition T — S normal; relation to the classical Lidskii theorem

It does not seem easy to clarify the domain of Theorem 3, i.c. to understand the
structure of those pairs T and S such that T, S, and T — SeN(n). Certainly they include
pairs of the form

T=®(@z A +w), S=@B+un) 6.1

where the space is decomposed into a finite sum of orthogonal subspaces Hy. The
operators A,, B, are self-adjoint on H, and z, w,, v, are complex scalars. Note that
it would be possible to obtain Theorem 3 for pairs of the form (6.1) by repeated
applications of the classical Lidskii theorem (for self-adjoints). In dimensions three
and up, examples show that Theorem 3 applies to a wider class of pairs, so that we
have a more substantial extension of Lidskii’s result as well as a new approach. In
the two-dimensional case, however, a calculation shows that T, S, and T—S§ are
normal only when a representation of the form (6.1) exists.

7. Spectral variation in Q-norms

Following the terminology in [3] we shall say that a sui norm z is a Q-norm if there
exists another sui norm 7’ such that for every A we have

tA)=[7(141>)]'7?, 7.1

where |A|*=A*A. A Schatten p-norm is a Q-norm iff p>2. The class of
Q-norms, however, includes other interesting norms as well. For instance, if s,(4) >
$3(A4) = -+ = 5,(A) is an enumeration of the singular values of an n-by-n matrix A4,



82 R Bhatia and John A R Holbrook

then for each k=1,2,...,n and 1 < p < oo the expression

k 1/p ‘
N All,,= LZI (sj(A))p] (1.2)
defines a sui norm on matrices (see, e.g. [16]). If p > 2, then for each k=1,2,...,n
the norm defined by (7.2) is a @-norm. To see this simply note that for such p we have

LAl = (1 AP ) (1.3)

so that the requirement (7.1) is satisfied. The Schatten p-norms are a special case of
(1.2)for k=n. ’

In some recent work it has been observed that in the derivation of several operator
inequalities the “quadratic character” (7.1) of Q-norms plays a special role. See [3],
[2] for material directly related to our present discussion and [9], [4] for other
operator inequalities involving Q-norms.

The purpose of this section is to point out the following; the result of Halmos [11]
on spectral approximants of normal operators, established by him for the operator
norm, was extended to the class of Schatten p-norms, p > 2, by Bouldin [10]; in [3]
this result has been extended further to the wider class of Q-norms. Our results in
[8, §4] made use of the above mentioned results of Halmos and Bouldin. So, by much
the same arguments, they can now be extended to the class of Q-norms. In particular,
we have the following result on spectral variation. :

PROPOSITION 9

Let A,BeN(n) and let al,..b.,oc,, and B,..., B, be the respective eigenvalues of A and
B. Suppose there is a permutation o such that

[o; = Bop| < lot; — Boip (74)
Jor all i, j. Then for every Q-norm |||, we have
ldiag(; — Boyllg < | 4 — Bllo- (7.5)

Proof. Follow the model in [8, §4].

As noted in [8, Proposition 4.2], if the normal matrices A and B are sufficiently
close their eigenvalues do meet the condition (7.4). Thus when 7 is a Q-norm, Lemma
1 in §2 can be strengthened; its conclusion is true even when & =0. The proof of
Proposition 2 can therefore be simplified somewhat in the case of a Q-norm.
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