Proc. Indian Acad. Sci. (Math. Sci.), Vol. 102, No. 3, December 1992, pp. 217-224. © Printed in India.

C(K, X) as an M-ideal in WC(K, X)

TSSRK RAO

Indian Statistical Institute, R. V. College Post, Bangalore 560059, India

MS received 12 May 1992; revised 4 November 1992

Abstract. In this paper we study the classes of Banach spaces X for which the space of continuous X-valued functions forms an M-ideal in the space of weakly continuous functions. We also study a lifting problem for weakly continuous functions.

Keywords. M-ideals; weakly continuous functions; Schur property.

1. Introduction

For an infinite dimensional Banach space X and an infinite compact Hausdroff space K let C(K,X) denote the Banach space of X-valued continuous functions on K equipped with the supremum norm and let WC(K,X) denote the space of functions that are continuous when X has the weak topology, equipped with the supremum norm. In a recent work Diestel et al [4] show that any element of WC(K,X) is Bochner μ -integrable w.r.t. each regular Borel probability measure μ on K and thus identify $C(K,X)^*$ as a subspace of $WC(K,X)^*$ and obtain the decomposition

$$WC(K,X)^* = C(K,X)^* \oplus C(K,X)^{\perp}$$

via the restriction map

The question raised by them is "when is the sum above an l_1 sum?"

Let us recall that a subspace $J \subset X$ is said to be an M-deal if $J^{\perp} \oplus_{1} N = X^{*}(l_{1} - \text{sum})$ for some closed subspace N. Also if $J \subset X$ is such that J^{\perp} is the kernel of a norm one projection P in X^{*} and if J is an M-ideal then N = Range P. Hence, in terms of M-structure theory (see [1] for all relevant definitions) an equivalent formulation is that "When is C(K, X) an M-ideal in WC(K, X)?"

In this paper we look at this question and obtain some positive and negative results. Our first theorem disposes off the trivial situation and more.

Theorem 1. The following statements are equivalent.

- 1. X has the Schur property
- 2. C(K, X) = WC(K, X) for any K
- 3. For any K, every element of WC(K, X) attains its norm on K
- 4. For some K, every element of WC(K, X) attains its norm

Proof. $1 \Rightarrow 2$: Let $f \in WC(K, X)$. Since X has the Schur property, f(K) is a norm compact subset of X and hence on f(K) weak and norm topologies coincide. Therefore f is norm continuous.

 $2 \Rightarrow 3 \Rightarrow 4$ are clear.

4⇒1: Suppose X fails the Schur property. Assume w.l.o.g∃ $a y_n \in X$, $||y_n|| = 1$ and $y_n \to 0$ weakly.

Fix any $\alpha \in l^{\infty}$ with

$$\sup_{n} |\alpha(n)| = 1 > |\alpha(n)| \forall n$$

Let $x_n = \alpha(n)y_n$ then $x_n \to 0$ weakly. Fix a distinct sequence $k_n \in K$ and a pairwise disjoint sequence of open sets U_n with $k_n \in U_n$. Choose $f_n \in C(K)$, $0 \le f_n \le 1$ and $f_n(k_n) = 1$, $f_n = 0$ on $K \setminus U_n$.

Define $g: K \to X$ by $g(k) = \sum f_n(k)x_n$. Clearly g is well defined and ||g|| = 1. To see that g is weakly continuous, note that for any $x^* \in X^*$, $x^* \circ g = \sum x^*(x_n)f_n$ and since $x^*(x_n) \to 0$ the RHS is a continuous function. To obtain the required contradiction we now show that g fails to attain its norm on K. Suppose for some k_0 , $||g(k_0)|| = 1$. Let n_0 be such that $k_0 \in U_{n_0}$, then $g(k_0) = f_{n_0}(k_0)x_{n_0} = f_{n_0}(k_0)\alpha_{n_0}y_{n_0}$. Since $||y_{n_0}|| = 1$ and $f_{n_0}(k_0) \le 1$, $||\alpha_{n_0}|| < 1$, we get a contradiction. Therefore X has the Schur property.

In spite of the decomposition of $WC(K, X)^*$ the precise nature of its elements is far from being clear, hence the following corollary is of some interest. Let ∂eX_1^* denote the extreme points of the dual unit ball and for any $k \in K$, let $\delta(k)$ denote the Dirac measure at k. It is well known that

$$\partial eC(K,X)_1^* = \{\delta(k) \oplus x^* : k \in K, \ x^* \in \partial eX_1^*\}.$$

Note that for any function $f: K \to X$,

$$(\delta(k) \oplus x^*)(f) = x^*(f(k)).$$

COROLLARY.

X has the Schur property iff

$$\partial eWC(K,X)_1^*=\big\{\delta(k)\oplus x^*: k\in K,\; x^*\in \partial eX_1^*\big\}.$$

Proof. Suppose X fails the Schur property and

$$\partial eWC(K,X)_1^* = \{\delta(k) \oplus x^* : k \in K, x^* \in \partial eX_1^*\}.$$

Let g be the function constructed during the proof of $4 \Rightarrow 1$ above. By the Hahn-Banach theorem,

$$\dot{1} = ||g|| = \Lambda(g)$$
 for some $\Lambda \in \partial eWC(K, X)_1^*$.

By our assumption, $\Lambda = \delta(k) \oplus x^*$ for some $k \in K$ and $x^* \in \partial eX_1^*$.

Now $1 = \Lambda(g) = x^*(g(k)) \le ||g(k)|| \le 1$. Hence ||g(k)|| = 1 contradicting the fact that g fails to attain its norm.

From now on we assume that C(K, X) is a proper subspace of WC(K, X). For Banach spaces X, Y let us denote by $\mathcal{K}(X, Y) =$ space of compact operators, $\mathcal{F}(X, Y) =$ space of weakly compact operators and $\mathcal{L}(X, Y) =$ space of bounded operators.

For any index set Γ , let $\bigoplus_{i=0}^{\Gamma} X_i$ denote X-valued functions defined on Γ and

vanishing at ∞ and let $\bigoplus_{\infty}^{\Gamma} X$ denote the space of X-valued bounded functions defined on Γ . Both these spaces are equipped with the supremum norm.

It is well-known that

$$\bigoplus_{0}^{\Gamma} X$$
 is an M-ideal in $\bigoplus_{\infty}^{\Gamma} X$

for any Banach space X and index set Γ . Our first result is based on the following easy observation about M-ideals.

Observation. For Banach spaces X, Y, Z with $Z \subset Y \subset X$, if Z is an M-ideal in X then Z is an M-ideal in Y.

PROPOSITION 1.

For any discrete set Γ , and for any compact K,

$$C(K, c_0(\Gamma))$$
 is an M-ideal in $WC(K, c_0(\Gamma))$.

Proof. Let us note the canonical identification

$$C(K, c_0(\Gamma)) = \bigoplus_{i=0}^{\Gamma} C(K)$$

and

$$WC(K, c_0(\Gamma)) \subset \bigoplus_{\infty}^{\Gamma} C(K)$$

via evaluation at elements of Γ . Since $\bigoplus_{0}^{\Gamma}C(K)$ is an M-ideal in $\bigoplus_{\infty}^{\Gamma}C(K)$, using the observations mentioned above we get that $C(K, c_0(\Gamma))$ is an M-ideal in $WC(K, c_0(\Gamma))$.

In [10] the authors study a class of Banach spaces Y (the so called M_{∞} -spaces) with the property, $\mathcal{K}(X,Y)$ is an M-ideal in $\mathcal{L}(X,Y)$ for any Banach spaces X, our next result involves subspaces of such a space Y.

Theorem 2. Let K be any compact extremally disconnected space and let X be a closed subspace of an M_{∞} -space then C(K,X) is an M-ideal in WC(K,X).

Proof. Case i: Suppose K is the Stone-Čech compactification $\beta(\Gamma)$ of some discrete space Γ . It is easy to identify $C(\beta(\Gamma), X)$ as $\mathscr{K}(l^1(\Gamma), X)$ by restricting the functions to Γ and the same mapping allows one to identify $WC(\beta(\Gamma), X)$ as a closed subspace of $\mathscr{L}(l^1(\Gamma), X)$. In view of our observation, the result is proved once we note that $\mathscr{K}(l^1(\Gamma), X)$ is an M-ideal in $\mathscr{L}(l^1(\Gamma), X)$. That this is indeed the case can be proved by using arguments identical to the ones given in the proof of Proposition 2.9 in [8].

Case ii: Let K be any compact extremally disconnected space. By well known results in topology (see [6]), there exist a discrete set Γ , an into homeomorphism $\psi: K \to \beta(\Gamma)$ and a continuous onto map $\phi: \beta(\Gamma) \to K$ such that $\phi \circ \psi = \text{identity on } K$. Let Φ denote the canonical isometry $f \to f \circ \phi$ taking function spaces on K isometrically into function spaces on $\beta(\Gamma)$ and let P denote the norm one projection $g \to \Phi(g \circ \phi)$ on the appropriate spaces.

By Case (i) $C(\beta(\Gamma), X)$ is an M-ideal in $WC(\beta(\Gamma), X)$. We shall verify the restricted 3 ball property for $C(K, X) \subset WC(K, X)$ to conclude that it is an M-ideal (see [1]). Let $f_i \in C(K, X)_1$, $1 \le i \le 3$, $g \in WC(K, X)_1$ and $\varepsilon > 0$. Since $C(\beta(\Gamma), X)$ is an M-ideal in $WC(\beta(\Gamma), X)$, applying the restricted 3 ball property to $\Phi(f_i)$, $\Phi(g)$ we get a

 $h' \in C(\beta(\Gamma), X)$ such that $\|\Phi(g) + \Phi(f_i) - h'\| \le 1 + \varepsilon \forall i$. Since P is a projection of norm one

$$\|\Phi(g) + \Phi(f_i) - P(h')\| \le 1 + \varepsilon$$
i.e. $\|\Phi(g) + \Phi(f_i) - \Phi(h' \circ \psi)\| \le 1 + \varepsilon$ or $\|g + f_i - h' \circ \psi\| \le 1 + \varepsilon \forall i$

Now $h' \circ \psi \in C(K, X)$. Hence C(K, X) is an M-ideal in WC(K, X).

Remark. Whether the above theorem is valid for any compact space K is not known. The properties of M_{∞} -spaces and their subspaces seem to indicate that this should be so.

Related to the above ideas is a question of lifting weakly compact sets. We are interested in the following two situations.

- (a) X is a Banach space, $Y \subset X$ is a closed subspace and $\pi: X \to X/Y$ is the quotient map. Given a weakly compact set K in X/Y and $\varepsilon > 0$ there is a weakly compact set K in X such that $\pi(K) = K$ and $\sup_{K} \| \| \le (1 + \varepsilon) \sup_{K} \| \|$.
- (b) For a compact K and $f \in WC(K, X/Y)$, $\varepsilon > 0$ there is a $g \in WC(K, X)$ such that $\pi \circ g = f$ and $||g|| \le (1 + \varepsilon)||f||$.

Let us note that this is trivial when X/Y has the Schur property and a quotient map from a $l^1(\Gamma)$ onto a Banach space X does the lifting in (a) only when X has the Schur property (ie in general there is no weakly continuous cross-section map for π).

Examples

- 1) The authours of [13] show that if Y is a reflexive subspace of a Banach space X, π has lifting as in (a).
- 2) Let T denote the unit circle and H_0^1 the Hardy space in $L^1(T)$, then a classical theorem in analysis (see [11]) says that π has lifting as in (a). Note that the norm-restrictions are valid since \tilde{K} is the weak closure of image of K under the nearest point cross-section map in this case.
- 3) X a Banach space, $Y \subset X$ be an L^1 -predual. Consider $\pi: X^* \to X^*/Y^\perp$.

Let K be any compact set and let $f \in WC(K, Y^*)$. Define $T: Y \to C(K)$ by T(y)(k) = f(k)(y). It is well known that T is a weakly compact operator and ||T|| = ||f||. Since $Y \subset X$ and Y is an L^1 -predual by Theorem 6.1 of [9], \exists a weakly compact operator $\tilde{T}: X \to C(K)$, extending T and such that $||\tilde{T}|| = ||T|| = ||f||$. Now $g = (\tilde{T})^* \circ \delta$ (where $\delta: K \to C(K)^*$ the Dirac map) is the necessary weakly continuous lifting.

PROPOSITION 2.

Let X be a Banach space and let $Y \subset X$ be a closed subspace. $B \Rightarrow A$, and $A \Rightarrow B$ for compact extremally disconnected spaces. When B holds and if C(K,X) is an M-ideal in WC(K,X) then the same is true of C(K,X/Y) in WC(K,X/Y).

Proof. $B \Rightarrow A$ is clear.

Let K be compact, extremally disconnected. As in the proof of case [ii] of Theorem 2, get a discrete set Γ and mappings $\psi: K \to \beta(\Gamma)$, $\phi: \beta(\Gamma) \to K$ with $\phi \circ \psi =$ identity.

Given $f \in WC(K, X/Y)$, $\varepsilon > 0$ since $f \circ \phi \in WC(\beta(\Gamma), X/Y)$ by property (A) $(f \circ \phi)(\beta(\Gamma))$ can be lifted and hence we can define a $g' \in WC(\beta(\Gamma), X) \ni ||g'|| \le (1 + \varepsilon)||f||$ and $\pi \circ g' = f \circ \phi$.

Put $g = g' \circ \psi$, $g \in WC(K, X)$,

$$||g|| \leq (1+\varepsilon)||f||$$

and for $k \in K$,

$$\pi(g(k)) = \pi(g'(\psi(k)))$$
$$= f(\phi(\psi(k))) = f(k)$$

so that $\pi \circ g = f$.

Proof of the rest of the proposition can be completed as in Theorem 2 using the "restricted 3-ball" characterization of M-ideals.

Problem. Does $A \Rightarrow B$?

Even though we do not have a complete description of situations when C(K, X) is an M-ideal in WC(K, X), our last proposition shows that they exhibit properties similar to c_0 -spaces.

PROPOSITION 3.

If C(K, X) is an M-ideal in WC(K, X) then $0 \in \overline{\partial eX_1^*}$ (Closure taken in the w^* -topology).

Proof. Let us observe that

$$WC(K, X)_1^* = \overline{CO}(\delta(k) \oplus x^* : k \in K, x^* \in \partial eX_1^*)$$

(w*-closed convex hull), since the functionals on the RHS determine the norm. If $WC(K,X)^* = C(K,X)^* \oplus_1 C(K,X)^\perp$ then choose

$$\Lambda \in C(K, X)^{\perp} \cap \partial eWC(K, X)^*$$
.

By Milman's converse to the Krein-Milman theorem ([3]) $\Lambda \in \{\delta(k) \oplus x^*: k \in K, x^* \in \partial e X_1^*\}^{-w^*}$.

Let

$$\Lambda = \lim_{\alpha} \delta(k_{\alpha}) \oplus x_{\alpha}^{*}, k_{\alpha} \in K, x_{\alpha}^{*} \in \partial eX_{1}^{*}.$$

For any $x \in X$ considered as constant function in C(K, X)

$$0 = \Lambda(x) = \lim_{\alpha} x_{\alpha}^{*}(x)$$

Therefore $0 \in \overline{\partial eX_1^*}$

Negative results.

As before these observations are based on the corresponding facts known for operator spaces. An observation due to Saatkamp [12] in operator theory says that when $\mathcal{K}(X,Y) \neq \mathcal{L}(X,Y)$, $\mathcal{K}(X,Y)$ is not an M-summand in $\mathcal{L}(X,Y)$. Similar argument

works to show that C(K, X) is not an M-summand in WC(K, X). Hence, a standard procedure now to show that C(K, X) is not an M-ideal is to notice when C(K, X) has the intersection property (I.P, See [2], [5]) and then appeal to Theorem 4.3 of [2] to conclude that C(K, X) is not an M-ideal in WC(K, X).

It has been observed in [5] that when X has the I.P, C(K, X) has the I.P and examples of Banach spaces X with I.P include C(K) spaces, reflexive Banach spaces and more generally spaces with the Radon-Nikodým property, spaces with a non-trivial l^p -summand for $p < \infty$ (see [2]). In all these situations C(K, X) is not an M-ideal in WC(K, X).

For a dual space X^* , identifying

$$C(K, X^*) = \mathcal{K}(X, C(K)), WC(K, X^*) = \mathcal{F}(X, C(K))$$

when X^* fails the I.P, since X^* has a copy of c_0 (see [2]), arguments given during the Proof of Proposition 2.2 [8] work to show that if $\mathcal{K}(X, C(K))$ is an M-ideal in $\mathcal{F}(X, C(K))$ then $\mathcal{K}(l^1, C(K))$ is an M-ideal in $\mathcal{F}(l^1, C(K))$. But as we have noted before $\mathcal{K}(l^1, C(K)) = C(\beta(N), C(K))$ and $\mathcal{F}(l^1, C(K)) = WC(\beta(N), C(K))$ and since C(K) has the I.P this cannot happen. So for no dual space X^* , $C(K, X^*)$ can be an M-ideal in $WC(K, X^*)$.

Acknowledgement

Part of this work was done during 1991 at the Freie Universität Berlin under a bursary from the Commission of the European Communities.

References

- [1] Behrends E, M-structure and the Banach-Stone Theorem, Lecture Notes in Math-736, Berlin-Heidelberg-New York: Springer (1979)
- [2] Behrends E and Harmand P, Banach spaces which are proper M-ideals, Studia Math., 81 (1985) 159-169
- [3] Diestel J, Sequences and series in Banach spaces, Berlin-Heidelberg-New York: Springer) (1984)
- [4] de Reyna J A, Diestel J, Lomonosov V and Rodriguez L Piazza (Preprint) (1991)
- [5] Harmand P and Rao T S S R K, An intersection property of balls and relations with M-ideals, Math. Z. 197 (1988) 277-290
- [6] Lacey H E, The isometric theory of classical Banach spaces (Berlin-Heidelberg-New York: Springer) (1974)
- [7] Lima Å, Intersection properties of balls and subspaces in Banach spaces, Trans. Am. Math. Soc. 227 (1977) 1-62
- [8] Lima Å, Rao T S S R K and Werner D, Geometry of operator spaces, Preprint Nr A 92-18, Fachbereich Mathematik, Freie Universität Berlin
- [9] Lindenstrauss J, Extension of compact operators, Mem. Am. Math. Soc. 48 (1964) 1-112
- [10] Payá R and Werner W, An approximation property related to M-ideals of compact operators, Proc. Am. Math. Soc. 111 (1991) 993-1001
- [11] Pelczyński A, Banach spaces of analytic functions and absolutely summing operators, CBMS 30 (1977) 1-91
- [12] Saatkamp K, Best approximation in the space of bounded operators and its applications, Math. Ann. 250 (1980) 35-54
- [13] Schlüchtermann G and Wheeler R F, On strongly WCG Banach spaces, Math. Z. 199 (1988) 387-398
- [14] de Reyna J A, Diestel J, Lomonosov V and Rodriguez L Piazza: Some observations about the space of weakly continuous functions, *Questiones Mathematicae* (to appear)

- [15] Cambern M, Jarosz K and Wodinski G, Almost L^p-projections and L^p-isomorphisms, Proc. R. Soc. Edinburgh, 113A (1989) 13-25
- [16] Harmand P, Werner D and Werner W, M-ideals in Banach spaces and Banach algebras (Monograph in preparation).
 [17] Warner D. Contributions to the theory of Mideals in Banach spaces (Unbilitation unbiff. Engineering).
- [17] Werner D, Contributions to the theory of M-ideals in Banach spaces (Habilitationsschrift, Freie Universität Berlin) (1991)
- [18] Domanski P and Drewnowski L, The uncomplementability of the space of continuous functions in the space of weakly continuous functions, (to appear).

Note

After submitting this paper for publication, I have received an expanded version of [4] from Professor J. Diestel. The authors of [14] now have also some answers to the M-ideal question. Their approach is different from the M-structure theoretic approach that I have taken. The purpose of this note is to illustrate this point. The following characterization of the class M_{∞} appears in [16]. $X \in M_{\infty}$ iff there is a net K_{α} in the unit ball of $\mathcal{X}(X)$ such that

$$K_{\alpha}x \rightarrow x \forall x \in X \text{ and } K_{\alpha}^*x^* \rightarrow x^* \forall x^* \in X^*$$

and for any $\varepsilon > 0$ there is an $\alpha_0 \ni \forall \alpha > \alpha_0$.

$$||K_{\alpha}x + (I - K_{\alpha})y|| \le (1 + \varepsilon)\max\{||x||, ||y||\}$$
 for all $x, y \in X(\dagger)$.

Note that if a K_{α} satisfying (†) is a projection then one has

$$||x|| \leq (1+\varepsilon)\max\{||K_{\alpha}x||, ||x-K_{\alpha}x||\}$$

and

$$||K_{\alpha}|| \leq 1 + \varepsilon$$

and

$$||I - K_{\alpha}|| \leq 1 + \varepsilon.$$

Projections satisfying these conditions are called almost L^{∞} -projections (see [15]).

Now let us recall from [14] the definition of Schur approximation property. A Banach space X has the Schur approximation property (SAP for shor) if for any compact set $K \subset X$ and $\varepsilon > 0$ there is a projection P with range (P) having the Schur property such that

$$||x - Px|| < \varepsilon \forall x \in K$$

 $||P|| \le 1 + \varepsilon, ||I - P|| \le 1 + \varepsilon$

and

$$||x|| \le (1+\varepsilon)\max\{||Px||, ||x-Px||\}.$$

PROPOSITION 4.

Let K be a compact Hausdorff space and let $X \in M_{\infty}$. C(K, X) is an M-ideal in WC(K, X).

Proof. As before we shall verify the restricted 3-ball property.

Let $f \in WC(K, X)$, $f_i \in C(K, X)$ be in their respective unit balls and let $\varepsilon > 0$. Put

 $K^{\sim} = \bigcup_{i=1}^{3} f_i(K)$ and use (†) to get a compact operator K_a such that

$$||K_{\alpha}x + (I - K_{\alpha})y|| \le (1 + \varepsilon)\max\{||x|||y||\}\forall x, y \in X$$

and

$$||K_{\alpha}x - x|| < \varepsilon \forall x \in K^{\sim}$$
.

Put $g = K_{\alpha} \circ f$. Clearly $g \in C(K, X)$. For any $k \in K$

$$||f_i(k) + f(k) - g(k)|| \le ||(I - K_\alpha)(f(k)) + K_\alpha(f_i(k))|| + ||f_i(k) - K_\alpha(f_i(k))||$$

$$\le (1 + \varepsilon) \max\{||f(k)||, ||f_i(k)||\} + \varepsilon \le 1 + 2\varepsilon \forall i$$

Remark 1. It follows from the results in Chapter VI of [16] that for any $Y \in M_{\infty}$ of infinite dimension, every infinite dimensional subspace has an isomorphic copy of c_0 . Consequently only finite dimensional subspaces here have the Schur property. So for a $X \subset Y$, $Y \in M_{\infty}$ the SAP for X already implies the bounded approximation property. However in Theorem 2 above we have made no assumptions about approximation property and such spaces X without the bounded approximation property are known to exist.

Remark 2. An argument similar to the one above gives an M-structure theoretic proof of "C(K, X) is an M-ideal in WC(K, X) when X has the SAP," which is Theorem 7 of [14].

PROPOSITION 5.

If a Banach space X has the Schur property then every M-ideal in X is an M-summand and there are only finitely many M-summands.

Proof. Key fact is that X and none of its subspaces have an isomorphic copy of c_0 . So if $M \subset X$ is an M-ideal and infinite dimensional then since M has no copy of c_0 , M must be an M-summand see [2]. Of course when M is finite dimensional it is already an M-summand, see [1].

An example of a space with the SAP mention in [4] is a c_0 direct sum of spaces with the Schur property. We now show

PROPOSITION 6.

If X has the SAP with M-projections then X is isometric to a c_0 direct sum of spaces with the Schur property.

Proof. Here we consider the maximal function module representation of X([1]). Then the base spaces have the Schur property and in view of Proposition 5 M-projections correspond to multiplication operator by indicator functions of finite sets, one concludes that X is isometric to a c_0 direct sum of spaces with the Schur property.

Remark. The above formulation and proof are inspired by Proposition 6.5 and its proof in [17].