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SUMMARY. For exploring the relationship between response and a number of design variablea
or factors, wo aro usually interostod in a small part of the factor space which may be tormed ‘operability
rogion’. Assuming the operability rogion to be spherical and & spherical weight donsity function with
positive woight donsity over the operability region and zoro outside, it is possible to construct
optimum dosigns which minimise weighted mean square bias due to inadequacy of the response function
fitted in representing tho true response, by using the results of Draper and Lawrenco (1967). In partioular,
optimum second order designs which minimise the weighted mean square bias due to the presence of third
order terms in tho true responso function have heen considered in this paper. Those designs aro nothing
but second order rotatable designs defined in the operability region with moments of order 5 all zero and &
specific value for A, depending on the particular weight density function assumed. In general situations
where design variables are subjoct to a linear constraint and particularly in mixture experiments, &
procedure is given for constructing optimum rotatable designs in & spherical operability region which
forms a subspace of the hyperplano dofined by the linear i Some optil P ies of the
response surface designs so for mixture i aro studied.

1. INTRODUCTION

1.0. Draper n.nd Lawrence (1967) have proved that rotatable designs may be
so selected as to mini the weighted mean square bias, besides ensuring the same
variance of estimated resp at equidistant points from the origin in the factor space,
privided a spherical density is assumed for weight function. The term ‘optimum
rotatable design’ has been used in this paper in precisely the same sense, i.e., in the
sense of a rotatable design having minimum weighted mean square bias for a particular
spherical weight density function assumed. The results of Draper and Lawrence
(1967) may be stated clearly as follows : Suppose as the resp function a polynomial
of degree d, is being fitted, while we want to guard it against a polynomial of degree
d,(d, > d;). The weighted mean square bias due to the inadequacy of the chosen
polynomial of degree d, in senting the true resp is minimum, provided the

moments of the design equal the moments of the weight density function upto and
including order dy+d,. Moreover, if the weight density is spherical this optimality
is achieved if the design is rotatable of order d, where (i) dy+d, = 2d or (ii) dy+dy
= 2d+1, and in case (ii) moments of order 2d+-1 should be all zero.

1.1. In practice we are never interested in the whole factor space. We want
to explore the nature of the response function in a certain region about a fixed point in
the factor space, usually chosen to be the origin. Moreover, the concept of weight
function brings along with it, as a natural consequence, the idea of a domain in the
factor space where the weight density is positive. This domain of the factor space
where the weight density is positive has been called ‘operability region’. The term
‘operability region’ has been used in similar sense by previous authors. This is actually
the region where the experiment is to be performed. ¥or a spherical weight density
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dofined in a bounded region, the same bounded region which is also the operability
region is spherical.  For any design to Lo optimum within this operability region, it
is required that (i) tho design points all Jio within this region and (ii) they give riso to
moments equal to the corresponding moments of the weight density function upto a
certain order.
2. SOME PARTICULAR SPIERICAL WEIGHT DENSITIES
2.0, Spherical weight function referred to in the provious section may be of
various types. In particular, wo may consider the following two simplo types,! viz.,
(A) Uniform distribution in @ finite spherical region :
Sy 2y wn @) =6 for D+.. 43R v (20.0)
=0, otherwiso
whero ¢, is o constant so adjusted that (2.0.1) is a donsity function.
(B) Truncated normal distribution in a finite spherical region :

Aedrerd o0 L el R .. (202)

(2 20 o0y T2) = Cg¢
=0, otherwise
whero ¢, is a constant so adjusted that (2.0.2) is a density function. In (2.0.1) same
weight is given to all tho points in tho region, whilo in (2.0.2) weight of & point dimi-
nishea with increase in distance from the origin.
2.1, First few moments of weight densities (2.0.1) and (2.0.2) :
(i) Weight density (2.0.1) :

R 3R
B = i B = riere)
R 5 %
and 'f‘ (@) = (T_}_—‘)(m); 6Li=12..,k . (210)

all other moments of order & b aro zero.
(i) Weight density (2.0.2) :

PRy
E@}) = -‘—;:—;Tpi—

3P, (R? o3
Bay=sg et =T ijmnnk L 1)

where P(R?) = P{x! < R, x! following x* distribution with n d.f. All other
moments of order < & aro zero.

¢ is to bo noted thut Draper and Lawrence (1067) too procecded on similar lines. Tho dosigns
givon by them woro all based on a woight density which was multivarinto normal and consequently in apito
of thuir stress on & finito region of intorent, tho operability region mpanned tho wholo factor space, But
minimisation of woighted mean squaro biaa over tho whole fictor space may not give a useful design.  More.
ovor, far oll tho design givon by thom A, = 1. But 2, should bo dewirably < 1 so that tho varianco of
tho ostimato of rosponso doos not difler markodly in tho neighbourhood of tho origin,
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3. OPTINUM SECOND ORDER ROTATABLE DESIGNS
3.0. Let us consider optimum designs for d, = 2 and dy = 3. Optimum
design will obviously depend on the weight density function assumed.  For any chosen
weight density function, optimum second order rotatablo design, besides satisfying the
general conditions of sccond order rotatability with moments of order 5 being zero should
E (z%)
have 2, equal to a specific valuo ‘[E;'ITI_!W given by the weight density assumed (of course
this valuo of A, must satisfy the usual non-singularity condition) and the design points
should be all distributed in the operability region ( “.‘.‘23 & R?) defined by positive weight
density. Let us now investigato the optimum designs for the weight donsitics (2.0.1)
and (2.0.2).
(i) Weight density (2.0.1): Moments (2.1.1) yicld
k42
A=y . (3.0.1)
This value of A, clearly satisfies non-singularity condition. With weight density (2.0.1),
optimum sccond order rotatable design should be second order rotatable with moments

.19 Ny
of order 6 equal tozero and /\.=li$;. Inany design so chosen with N points let y; = £

a1

23N foralli,i=1,2,.., k (N being the number of design points) define the second

order moment. Equating st to E(zf) in (2.1.1) we get R = (k+2)u,. So, operability
r 3

region is defined by I 2z} < (k42)sy. Or, for any given operability region £ 22 < B3,
i=1 i=1

the scalo factor, i.e., the factor by which the design points in any chosen optimum

design with g 88 the sccond moment of the design, are to be multiplied is given by

= —————. The only other very important condition to bo satisfied is that the
* = Viirn v ¥
design points in any optimum design so chosen must all lie in the operability region.
(ii) Weight density (2.0.2) : Moments (2.1.2) yield
= Py, (RB})P(R?)
A= W o (3.0.2)
k

By Cauchy Schwartz's inequality the value of A, in (3.0.2) is > e

The scale

factor for any predetermined operability region is

R SN v )
Vin Y Py
3.1. Optimality of central composite designs given by Box and IHunter (1957).
Tet us consider a central composite design defined by Box and Hunter (1957) with
ne = number of points from 2¥ factorial design so chosen as to retain all main
effects and interactions of order < 4 unconfounded.
n, = number of star points = 2k.

g = N—n¢—n, = number of centre points.
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For this central composito design

A (3.1.1)

_ N

From (3.1.1) it is obvious that A, for central composito designs may attain any prefixed
valuo (in particular the values given by (3.0.1) and (3.0.2)) at least approximately, by
selecting N and consequently ng suitably. The relation may be approximately satis-
fied, becauso N or mg has to be an integer always.

For the optimum central composite design with weight density (2.0.1) wo have

square of tho radius of tho operability region, R? = 7‘:'/::’:' 5(k+4). In order that all

dosign points lie within the operability region we must havo R* > k, which reduces
to the condition

"> - (312)

Tho inequality (3.1.2) is usually trivial. Similarly, for optimum contral composite
design with weight density (2.0.2) the condition is

Pryolk) *
ne> 4 [P.::(k)—l] . .. (3.13)

[Since 5’—*%&; & 1 always and is an increasing function in R].
k4al

3.2, A class of oplisnusn second order rolatable designs. With central composito
dosigns of Box and Hunter, any pre-assigned value of A, determined by the weight
density chosen can be attained only approximately in most of the cases. Moreover,
the number of design points and consequently the number of centro points to bo in-
cluded for such a design becomes fixed. This is a too rigid condition, particularly when
the experiment is performed sequentially. But by slightly modifying the central
composite design, i.e., by including two scts of star points, it is possible to choose N
arbitrarily and the design may bo made to satisfy any predetermined valuo of 3
exactly. This modified design is given by

(i) n, = 2** points of a 2' factorial design with no main effects or inter-
actions of order ¢ 4 confounded;

(ii) (5,0, ...0)x2 giving 2k points;
(iii) (¢, 0, ... 0)X 2 giving 2k points;
(iv) ng = N—n,—4k contro points.
Rotatability condition can be written as
bipet = ne. - (320)
8
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For the design to bo optimum, A, should equal somo pre-assigned valuo A determined
by tho weight density assumed i.o.
o melN
{ne+20 )t
L

net2AW4el) 1

ety VNne VA
or, Bct = ‘/‘\",:,;‘/:“M . (3.2.2)

From (3.2.1) and (3.2.2)

o o [t 2V ittt . 623)

Solving (3.2.2) and (3.2.3), {? and ¢? are obtained. For this design

ﬂ=+"(b’+c’) \[ e

= (3.2.4)

For any chosen N > n,44k we get the value of s, from (3.2.4) and sacale factor
a= \‘/):‘;V\/j‘(_k’) where f(R?) = E(z}) for the spherical weight density assumed,
c

4, OPTIMUM DESIONS WIIEN DESIGN VARIABLES ARE SUBJECT TO
A LINEAR CONSTBAINT

4.0. Inallthe designs in provious soctions, design variables have been assumed
to vary unconditionally. But it may be that the design variables can assume values
only under certain restriction imposed by practical iderations. If this restriction
can be expressed mathematically in the form of a linear equation, the part of tho factor
space admissiblo for the purpose of experimentation is the hyperplane defined by the
samo lincar equation. An operability region, if any, in this caso must lie wholly in
the hyperplane which is admissible. So, for theso designs under a linear constraint,
it is not possible to obtain an optimum rotatable design in all the & variables over an
operability region defined in the & dimensional space. But the existenco of an optimum
rotatablo design in (k—1) dimensions for an operability region which forms a part of
the admissible hyperplane is proved in tho following subsections.

4.1, Mixturedesign. This is & particular type of design described in the above
paragraph, where design variables refer to rolative proportions of quantities applied
with regard to different factors acting as inputs and responso is a function of theso
relativo proportions and not of absolute magnitudes of tho different factors, For
a mixture experiment with & fuctors, the admissible hyperplano is defined by

ntzge Fue=1 w30 F=12.., k. (4.1.1)
79



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Series B

The mixture designs known g0 fur are simplox lattice designs and simplex controid
designs (Scheffe, 1058; 1063), extremo vertices designs (Mclean and Anderson, 1966) and
optimum designs for k = 3 and 4 with uniform \i‘cight density defined over the whole
admissible simplex (Draper and Lawrence, 1965a; 1065b). These designs are all cons-
tructed on tho assumption that the whole admissible simplex defined by (4.1.1) is of
interost to us and is practically feasiblo for the purpose of experimentation. Morcover,
most of these designs suffer from an arbitrary and uneven distribution of points. But,
usually the purpose of experimentation is to obtain an optimum response if one such
exists and whether such a unique optimum exists or not to explore the nature of
response function in the near optimum region. So, in practice we are not interested
in the wholo admissible region. Either from practical considerations or guess work,

we know tentatively that the optimum response occurs near about the point
:
P = (py, pa ooer P1)s withl}llp‘ =1land p > 0,i=1, 2,...,k and we arcinterested in ex-

11-defi

ploring the resp function in & d operability region round about the point
P’.  Within this operability region, assumed to be circular or spherical (of courso the
region becomes just the segment of & straight lino when k = 2) which lies completely
within tho admissible simplex, an optimum rotatablo design for a particular choice
of a weight density function in (k—1) dimensions can be constructed. To satisfy the
essential condition that operability region forms a part of the admissiblo simplex,
tho operability region should be defined as

k
I (—-pP g
-1
3
with Sy=1 >0 fori=12 e ($1.2)
=
where rg \IL-TI min (py, «ees k).

The region (4.1.2) can be written in terms of transformed variables yy, ..., yx where
w=%—p, i=12.,kas

E
S with w>—p for i=12..,k
=1
k
Tyu=0
=1
E_ .
and rg \/m min (py, Pgs eer P1)-

Let us introduco an orthogonal transformation §=Cy whero £ = (fy ..., &)

a i Hogonal matrix with first row 8 (—z, —r=, oo =)
y' = (4, ... yx) and C is an orthogonal matrix with 70 Ve Vil

Then ¢, is identically zoro and admissiblo eimplox (4.1:1) is a (k—1) dimensional
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[ 3
hyperplane defined effectively by the variables £y, §s, ..., §r.  Morcover, ‘2 8=S 4
-t

=1

So, the operability region is now a hypersphere in (k—1) dimensions defined by

E \/ .
‘3 & < r* where r < T min (Pas oor PE). e ($1.3)

From the above rosults the following construction procedure! for mixture
designs can be given :

We can construct an optimum design in §,, ..., é in tho above operability
region, for a suitablo choice of the weight density function. To any design point
obtained for the factors &, &, ..., £ we can add §, = 0 and the corresponding design
point in variables ¥, ys, ..., Y& can be written with the help of the transformation

y=0¢
and tho corresponding design point in the original design variables zy, 2y, ..., 7, is given
by z' = (zy, X3 «es Tk) where ,
z=y+P =C¢+P. e (4.1.4)
When nothing is known about tho nature of responso in a mixture experiment so that
each design variable has to be given the same weight initially wo can choose I as the

centroid (—#,.T}—r) of the admissible simplox (4.1.1) i.c. where each design vari-
able is given the same value. In this case, operability region may have the maximum
area or content and r can be any quantity —\ﬁ Depending on the results of

this experimentation, we can revise P’ and explore a smaller operability region with
this point in the central position and in this way we can proceed. In all these cases,
howover small the chosen operability region may be, it can bo magnified for the purpose
of constructing a design and exploring the nature of responso.

The iq! in the rep tion of the resp function as pointed
out by Scheffo (1958, 1963) can bo overcomo by considering theresponse asa polynomial
in &, ..., £ and fitting it by method of least squaro. Tho apparent arbitrariness in the
form of the transformation matrix C is not & problem. Tho expectation and variance
of an estimated response does not depend on the form of C.3  Somo further properties
of the design so constructed which are considered important are enumerated here with
proof.

(I) Tho spherical weight distribution in y,, Y3, ..., y& defined over the hyper-

3
plane ‘S ¥ =0 remains unaltored by any choico of an orthogonal matrix C with
=1

1 1 )
first row ( ViVl
“Tho construction procodure deseribed horo has appoarcd in a recently published papor by William
0. Thompson and Raymond H. Maycrs (1068) without tho corresponding incquality restrictions on tho
oporability region given by (4.1.2) or (4.1.3), which aro deomed vory important in 80 far as tho construction
of an opti design in a well-deflned spherical ility region is tho objoctive of tho present paper.
This result has boen proved by Thompson and Maycrs (1008) and so is not included horo,

81
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Proof : Writing § = Cy, §, = 0, & spherical weight donsity is considered in
4. €3, -.s €2, 80 that the required probability, say, T' of

13 13
[Evicn Zu=0)
=1 =1
is the same as
13
P["_z:’ﬂ <B &= o} e (4.08)

where { is a constant.

If we consider another orthogonal transformation
£ =Cpy, with £ = (£ =0, §..6)
and the samo spherical weight density as earlicr for £ ... £ then,

L3 . .
T= P{':.‘.. gen &= o}. v (400
Relation between £ and £ is
M= O E = (; ;) ¢

where P is a (k—1)x(k—1) orthogonal matrix

& 67
& &
. = P
£ _6r_|

The weight density for (3, ..., £) boing samo as that for (€, ..., £+), the expressions
(4.1.6) and (4.1.6) aro idontical. This proves the statoment (I).

() Forany choico of the orthogonal matrix C with first row ( ﬁ, VI_L . .ﬁ)

the same minimum weighted moan squaro bias is obtained.

Proof : As the weight distribution and slso the expectation of cstimated
responso remain unaltered for any such choice of C, weighted meansquare bias defined

as 'I W(x) {Ex(z)—n(x))* dz will obviously remain the same, where 1/'(z) is the weight
donsity defined in tho operability region 0 within the (k—1) dimensional admissible

simplox (4.1.1), (x) is tho cstimated responso and y(z) tho truo response, x denoting
the voctor (z,, 2y, ..., 74).
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4.2. Qeneralised mizture experiments. The lincar constraint in mixture
experiments may be generalised as follows :
a,2,+a57q oo 01Tk = C - (420)
where a¢’s and ¢ are constant with
@>0,¢c>0,%>0,i=12,.

The point P’ = (p,, Py, -, P) should satisfy the relation

a,p,+0;P; ... +arpe =c.
With each p; > 0 wo can construct an optimum rotatable design with P’ as the
central point in a spherical oporability region of radius r in (k—1) dimensions defined
by (4.2.1)., The proceduro is exactly same as in ordinary mixturo experiments
described in Section 4.1 and

— J ]
r< VL .‘212.{ Vi-a } e (422)
where L=%a.
=

Of course, the orthogonal matrix C, transforming y's to £'s has tho first row as

A . S
(v v Vi )
4.3. Ezxperimenls where the linear constraint does mot involve all the design
variables. The linear constraint is writton as
a2, +a,7y ... +ax1E =C . (43)
with each aq>0c>0n20,i=12..k

We have p{ > 1) more design variables, Viz., Zk41, Zkyg oo Z4p, With no restriction
imposed on them.

By choosing suitable scales and origins for tho variables ey, Zk4g ... Zt4p) the
central point P’ is taken to be (py, Py, <oy P4» 0, «.., 0) Where aypy+-a5ps ... +arpr =c,
mp0fori=1,2,. Hero too, an optimum rotatable design can bo constructed
in the same manner as described in Scctions 4.1 and 4.2. r = radius of the spherical
operability region should be

) AR i
< VL. min {_—\/L——a}} . (432)
and the transformation matrix C will have the first row as
(_‘L bs. g
vL' VL' ' VL
A proof of the inequalitics in r given in (4.1.2), (4.2.2) and (4.3.2) is provided in
the appendix.

20, euey o).
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Appendix
Lot us dofine an admissible region by
a7y + g2yt + 0T = 0 o (@)
with ¢ > 0, a; > 0 and ¢ » 0 for all 4, i = 1,2, ..., k. Then the admissible region is a (k—1) dimensional
hyporplane dofined only for non-negativo value of the variables, with corner points given by

(f_ ou.o). (o.i,o, o,) (o. - ‘).

An edgs of tho admissible rogion is again & (k—2) dimensional hyporplane passing through (k—1) of tho
& corner points, defined only for non-negative valuos of the variablos. So, the equation of tho edgo passing
through all but i-th corner point is
@yZy ..o FGT BTy e FOTE=C
=0, >0, j#i, j=L2..k
Now, P’=(py,... ) is & point in tho admissiblo region. So, apy ...+ apr=0, end py >0, for
§=1,2...k Tho length of tho perpondicular from P’ on the odgo defined by (ii) is casily found to bo

)

—ep |t 3
{;g”, (mr.+...{-m..m.lta;;ml.;...+a.p.. of } whows L= § ot
i e

FL_ p !
pr] vLp \/ = e (i)
writing 0, = d ... = a = ¢ = 1, this longth of tho perpendicular is ‘/% i,

Oporability region is just a hypersphere with P’ as the contro and lying wholly within the admissiblo
rogion. For this reason, the radius of the hypersphore must be less than or oqual to the minimum of tho
perpendicular longths obtained in (iii).

If bosides tho k variables which must satisfy the relation (i), p( » 1) new variables aro introduced
with 1o restriction imposod on thom, tho situation remains unchanged excopting that the dimension of the
admissible region is increased by p.  The equations of the edges given by (ii) will still hold good and the length
of the perpendicular from P’ = (p1, ..., prs 0, ..., 0) on tho edgo (ii) is given by tho samo expression (iii).
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