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Abstract: The paper presents an algorithm for testing the probabilistically s-diagnosability of a system
represented by a weighted digraph. In the second part of the paper, the design of a probabilistically
t-diagnosable system (when the probability of failure of each subsystem is known) is described.

1 Introduction

In recent years, the problem of diagnosis of faults in a
system (represented by a collection of interconnected
components of the system) has achieved considerable
importance. Some works available in the literature [1-5]
concern themselves mainly with systems whose components
have equal probability of failure. In general, all the
components in a large system are not equally reliable. A
more general model of diagnosability takes into account the
fact that each of the components is associated with a
definite probability of failure. Some necessary and sufficient
conditions for diagnosability of such systems were given by
Maheshwari et al [6] and Fujiwara et al [7]. In this paper
we present an algorithm to test the diagnosability of such
systems, where the probability of failure of each individual
component is known beforehand. We also describe an
algorithm for designing the interconnection between the
components of a system such that it may be diagnosable.

2 P-t-diagnosable system in graph-theoretical mode!

A system is composed of several units or components and
these units are able to test other units singly or in combi-
nation. The testing unit evaluates the tested unit as either
fault-free or faulty. The test outcome is reliable only if the
testing unit itself is fault-free, otherwise the test outcome is
unreliable. As proposed by Preparata [1] a system § is
represented by a digraph G = (V, £') where each unit corre-
sponds to a node in V and there is a directed edge from the
ith node to the jth node in G if the ith unit u; tests the jth
unit ;. The result of testing is represented by labelling the
corresponding edge. Let a;; be the label associated with the
edge from node u; to node u;. The value of a; will be as
follows:

Il

a; 1 if u; is fault-free and ; is faulty

0 if both u; and u; are fault-free

—" if u; is faulty and irrespective of the status of
u;, since the testing unit u; is itself faulty, the test
outcome is unreliable and hence can have value
either 0 or 1 without conveying any information
about the tested unit.

]

For any subset Q C V, if k is the total number of outgoing
edges from the nodes in Q, then there are a maximum of
2" possible ways of labelling the edges of G, when all nodes
in Q are the only faulty nodes. Let us denote the set of
these test results as R(Q). Two sets Q, and Q, of faulty
units are distinguishable if and only if R(Q,;) N R(Q,) = ¢,
i.e. if the test result uniquely identifies the set of faulty
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units, then @y and Q, are distinguishable. When the dif-
ferent units of a system have different probabilities of
failure, its representation is given by a weighted digraph,
each node representing each unit of the system, the edges
representing the testing capabilities as discussed above and
some weight is assigned to each node, which gives the
probability of failure of that unit.

Let p; be the weight of the ith node, i.e. p; is the proba-
bility of failure of the ith unit. A set @ of nodes of G can
fail simultaneously, if the joint probability of failure of all
the nodes in Q is greater than or equal to some preset value
t. Thus, Q will be a possible set of faulty nodes, if

Ime 11 (-p)=>t

i J
ie Ui€Q u;€Q

1 a-p 01 lf' >t
uj é v uj é Q ( p')
denoting log p;/(1 —p;)=W; and ? log(1—p)=K, a
constant for all Q, we find Q will be a possible set of faulty
nodesif X W;=logt—K
ui é Q
This can be rewritten as

Y Wi=f(t) where f(t) =

1
u;EQ

logt—K

A system will be said to be p-t-diagnosable (probabilistically

t-diagnosable) if for every pair @, 0, C ¥,and W(Q, Y=1(@)

and W(Q,) = f(¢r) {where W(Q) = E Wi Q, and Q, are
u,EQ

distinguishable}.

The different aspects of p-t-diagnosability or simply
t-diagnosability (in the case when p; is a constant for all i)
have been discussed by several authors. In this paper we
present an algorithm to test whether a system given as a
weighted digraph is p-t-diagnosable. The design of a p-#-
diagnosable system has also been discussed, i.e. given the
set of nodes and the weight of each node, the problem is to
find the edge connections so that the system is p-t-
diagnosable for some given ¢. In general for practical situ-
ations, p; <0.5 and hence throughout our discussion we
shall assume W; to be negative for all i.

3 Definitions and notations

We shall denote the set of nodes testing the ith node u; of
G by C(u;). Any subset Q of V will be denoted by a Boolean
team T(Q). If u; € Q, u; will appear as uncomplemented in
the term, otherwise complemented. Conversely, any Boolean
term containing the u;s as literals (primed or unprimed)
represents a set of subsets of V. The set will contain a single
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subset of V if all the ;s appear as literals in the term. If u;
appears in the term in the primed form, then the set gives
all the subsets of ¥ in which u; does not appear and similarly
if u; appears in the unprimed form, the set gives all the
subsets of ¥ in which u; does appear. If T is a Boolean term
involving the nodes of G, then W(T) will denote the value
of W(Q) where Q is the smallest subset in the set of subsets
represented by 7. If T, and T, are two Boolean terms
involving the nodes of G, then W(T,T,) will denote the
value of W(Q, U Q,) where Q,, Q, are, respectively, the
smallest subsets in the sets of subsets represented by 7 and
T,.

A Boolean term T involving the nodes of G will be called
an admissible term if W(T) = f(f). Two admissible terms
T,,T,, involving the nodes of G, will be called pairwise
admissible if W(T', T,) = 2f(¢).1fQ,,0, C V,thenQ, ® 0,
will denote the set of nodes belonging to Q, or ¢, but not
both.

4 Testing for p-t-diagnosability

With the above definitions and notations, we now proceed
to formulate a few necessary conditions for p-t-diagnosa-
bility and then our method for testing p-z-diagnosability.

Theorem 1[6]:
G may be p-t-diagnosable only if

W{u; U Cu))}<f(t) foralli

Theorem 2:

If Q, is a subset of V with W(Q,) = f(¢) and there is no
QCV with W(Q,)>W(Q)=f() then G may be p-t-
diagnosable only if W(V) <2W(Q,).

Proof:

If W(V)=2W(Q,), form O, =Qy and @, = V— Q,, then
W(Q,) = W(Q,) = f(¢t). Since Q, and Q, give two block
partition on ¥ and both of them are valid sets of faulty
nodes, G is not p-t-diagnosable.

Theorem 3:

Two sets of faulty nodes Q,, Q, are distinguishable if and
only if there is an edge from at least one node in V' —
(0, U Q;) to at least one node in @, & Q5.

Proof:

Let us define, V, =(V—=0)NV—Q,), V2 =0, N
V=0Q2), Va=(V—Q)NQy, Va=0Q1NQ,. Then
if the condition does not hold, there is no edge from
any node in ¥, to any node in ¥V, U V3. Then label the
edges of G as follows. Any edge from a node in ¥, U V,
(or ¥, U V3)toanodein V; U ¥, (or V, U V3) is labelled
as 0 and that to a node in V3 UV, (or V, U V,) as L.
Assign any labelling to the edges coming from any node in
V4. It can be seen that, for this labelling, @, , Q, are indis-
tinguishable.

If the condition holds, there is an edge from a node in
V, to anodein V, U V5. If the nodes in Q, are faulty, the
labelling of this edge is O (or 1) if the tested nodeisin V3
(or V). If the nodes in Q, are faulty, the labelling of this
edge is 0 (or 1) if the tested node is in V, (or V3). Thus,
R(Q))NR(Q,) =¢,i.e. Qy, O, are distinguishable.

We shall be using theorem 3 for testing the p-r-
diagnosability of G after the necessary conditions given by
theorems 1 and 2 are found to hold good. If there exist two
faulty sets of nodes Q, and Q, which are not distinguish-
able, then there must exist at least one node u; which
belongs to @, but not to Q,. Let us find the pair of faulty
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sets of nodes, one containing u; and other not. Thus they
will belong to the sets given by T, and T,, respectively,
where T; = u; and T, = ;. If more literals are added to
these two terms 7, and T,, the sets given by them will be
refined and to have this refinement, we shall be using
theorem 3.

In order that the sets of subsets of V given by T, and T,
may contain pairwise-indistinguishable sets of faulty nodes,
addition of literals to 7, and T, must be done obeying the
following conditions:

(a) All the nodes testing u; should be added to T and
T, : but no node should appear in the primed form in both
T, and T, — this follows directly from theorem 3 (other-
wise all the subsets given by modified 7', will be dis-
tinguishable from those given by modified 7).

(b) All the nodes testing u; must not be added to T, in
the unprimed form; because then the modified 7', will no
longer remain an admissible term as we have already
assumed theorem 1 to hold good.

(c) Nodes should be added to 7, and T, in a way to
keep both the modified terms admissible, otherwise it
cannot represent a faulty set of nodes as an element of the
represented set.

(d) Nodes should be added to T, and T, in a way to
have the modified terms as an admissible pair; the justifi-
cation of this requirement is given by the following
theorem.

Theorem 4.
If Q,, Q, are two faulty sets of nodes, then W(Q, U Q,) =
2f(0).

Proof:
With V,, V,, ... etc. as defined in the proof of theorem 3,
0, =V,UV, and Q, = V53U V,. Thus W(Q, UQ,)=
W)+ W(Vs) + W(V,). Hence, wQ, VQ,)=
WQi)+W(Q,)—W(Vs). As  W(Q))=f() and
W(Q,) = f(¢), the result follows as all the Ws are negative.
Taking consideration of the above conditions, literals
should be added to the terms T, and T, so as to refine the
sets of subsets of ¥ which are pairwise indistinguishable.
Suppose u; is tested by the nodes u;y, u;,, . . ., uy,. Com-
bining the conditions (@) and (b) we find that among these
k nodes, there will be at least one node, say u;,, which is
to be added to T, as primed and to T, as unprimed. In
fact, there will be, in general, a number of ways of adding
these k nodes to T, and T, so as to satisfy the above con-
ditions. For example, suppose u; is being tested by u, and
u3 and their Ws are such that sum of the Ws of any two of
them is greater than or equal to f(¢). Then, if we choose
Ty=u, and T, =u,, all the possible refined forms of
T, and T, (called T,, and T,,, respectively), after the
nodes testing u, have been added to T, and T, as literals,
are as follows:

Ty = wuity Ty = wyilaus Ty = wyilyils

Ty = Uyupus Ty = iyupus Ty = Wyuyus

Ty = wuaity Ty = uyilaus

Ty = W itqus Ty = U uyils

Since wu;, appears as primed in one refined form and
unprimed in another, each of these pairs can be further
refined taking into consideration the nodes which are
testing u;, and excluding those which have already appeared
in the refined forms. As in theorem 3, if any node appears
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in Ty, and T,;, both in unprimed form, no refinement
using this node is possible. As we have found from T,, T, ,a
number of refined pairs of terms T,; and T,, has been
formed, repeating the same process on every pair T, and
T,,, we will get a number of T\, and T,,, the second
refinement on 7, and T, and so on. The process will
terminate either when refining 7';; and T,; to T(;.q) and
Ty(i+1) no new nodes can be included, which shows that
there exists at least one pair of indistinguishable sets of
faulty nodes; hence G is not diagnosable, or, when any of
the above four conditions no longer holds, indicating indis-
tinguishable pairs of sets of faulty nodes (one containing u;
and another not) G does not exist.

For example if, in the above example, u3 is tested by u,
and ug4, then after the second refinement of the first 7y,
and T,, we will have

Ty, = ujustizug

Ty = W Ususily

This is only the second refined pair of the first Ty, and T,
to satisfy the conditions (2) and (b) above. Now, it is to be
checked whether this Ty, and Ty, satisfy conditions (¢) and
(@). If they do, in the third refinement we will have to
consider the nodes testing u,, as u, appears as primed in
T,, and unprimed in Ty, and so on.

As discussed earlier, the process will terminate under
two conditions. If the first condition holds, G is not p--
diagnosable and if the second condition holds, all pairs of
faulty sets, one containing u; and other not, are distinguish-
able. In the second case, select another node with which we
have not as yet started and form the T, and T,. Then
repeat the same process as above to have the jth refinement,
j=1,2,....If for some j, one pair of Ty; and T5; contain
u; as primed in one of T ; and T, ; and as unprimed in the
other, no further refinement of that pair is obviously
needed. When all the nodes of G have been used as the
starting node and, in each case, the process of refinement
terminated according to the second condition, G is p-t-
diagnosable; on the other hand, if the process terminated
according to the first condition in any of the cases, G is not
diagnosable.

Example 1:

Let us consider a system consisting of 5 units. V=
{uy,uy,us,uq,us ). Let the probability of failure of the
units be as follows:

p(ur) =14, pua) =4, p(us) =4, p(us) =%, p(us) =% and
t =#.1Then we have W(u;)=—1log3, W(u,)=—log2,
W(us)=—log 4, W(u,) = —log 3, W(us) = —log2 and f(¢)

=logt— log {1 “p(“i)}

=—1log 50 + lof 5

=—log 10

Let the digraph G corresponding to the system S be repre-
sented by the following adjacency matrix B = (b;)
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U, Uy Uz Uq Us

wf[o 0o 1 o0

U | 1 0O 0 0 o0
B=u3] 0 1 0 0 1

ugl 1 0O 0 0 O

us | 0 1 0 1 O]
by =1 if u; tests u;

0 otherwise

Now we have a check if there is any pair of consistent fault
sets which are also indistinguishable.

Let us start with 7) = u3 and T3 = &t3. Following the
method described above, we see that T, and T, can be
refined as follows:

T, = u3, T, = u;
Ty = uzity, Ty = Usu,

T\, = uzit tiquy, Ty = UsUylUsily

Then we see that Ty, and T, cannot be refined any more
so that both of them remain consistent as well as indis-
tinguishable. Thus we see that any two fault sets O, and
0, , oneof them containing u, and the other not containing
it, are always distinguishable.

If we start with u,, we have

Ty, = us, T, = i,
Ty = ugus, Ty = Ugus

and we see that T, cannot be refined any further. Hence
the sets Q) = {4, us}and Q, = {us }are bothindistinguish-
able and consistent since

W(@Q:) = —log 6 >f(1)
W(Q:) = —log2>f()

Hence the system S given above is not p-t-diagnosable.

5 Design of p-t-diagnosable system

In this Section, we shall discuss about the design of a p-t-
diagnosable system. The design problem can be specified as
follows. Given a set of nodes V together with the probability
of failure of each node, the set of edges £ is to be deter-
mined in order that the graph G = (V, E) is p-t-diagnosable
for some preset ¢. It will be shown that whenever the con-
dition of theorem 2 holds, it is always possible to find the
set E.

The design is given by the following steps and we shall
prove that the following algorithm gives a p-r-diagnosable
system.

Step 1:

Compute, from each probability, the W-value of each node.
Sort them according to ascending values of Ws. Call the
nodes u;, u,, . . .,u, (Where there are n nodes) so that u,
has the lowest W and u,, the highest.
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Step 2:
Select any u;. If i <n and

n
2 Wi <f@,
j=i
find the lowest k& for which

k
> Wi <5,

j=i

else go to step 3. Have u; tested by all of ;. 1, Ujvg, . -+, Up-
Go to step 4.

Step 3:
Find the lowest k such that

i +Zw<m)

Have u; tested by ¢; 4y, .-+ 5 Un, Urs - - 5 U

Step 4:
Pepeat steps 2 and 3 for all i.

Now we shall prove that the graph, obtained by the
edges given by the above steps, is p-t-diagnosable. We shall
always assume that the condition given by the theorem 2
holds for the set of nodes V.

Theorem 5:

With the above design, any pair of sets of faulty nodes,
where u; appears in one set of the pair and not in the other
set, is distinguishable.

Proof:

To prove the theorem, we shall show that if we apply our
diagnosability-testing algorithm starting with u; on the
digraph obtained by the above algorithm, no indis-
tinguishable set pair can be obtained. Thus, to start with,
T, =u, and T, = if,. Then, in T}, and T,; all the nodes
Uy, Us,...,u, testing u; will appear and, as discussed
earlier, at least one node will appear as complemented in
Ti; and uncomplemented in Tyy. Let / be the highest
number, I <k, such that u; appears so. Then in Ty, and
T,, all the nodes testing ©, must appear excluding those
which have appearedin Ty; and Ty . Letuy, 1, U4q, . . -5 U

be the nodes testing u;. If m<I+1, ie. if ﬁl W; < £(e),
]=

then all the » nodes will appear in Ty, and T, in com-
plemented or uncomplemented form as we started with
u, ; but as the condition of theorem 2 holds, T, and T,
are not admissible pairs. So we have proved the theorem. If
m =1+ 1, then we will show that m > k. As per design,

i
,EI W; <f(t) and k is the lowest integer to fulfil this
i

condition. Similarly, §1 W; <f(@t) and m is the lowest
iz

integer to fulfil the condition Since W; < W, <...<W,,

fz"z W; < £(£) implies 2 W, <f(:).Thusk <m—1+1

i=

and since 1 > 1, m >k Hence we find that in T, and T,
all the nodes u,, u;,...,u, appeared and in the next
refinement, T, and T,,, more nodes are included. Proceed-
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ing in this way, the refinement will stop when all the nodes
are included, but as the condition of theorem 2 holds, the
final refined terms are notadmissible terms. Thus, we have
proved the theorem.

Now, we will generalise theorem 5 for any arbitrary u;
instead of u, . Consider any u; as the starting node and, thus,
T\ =u; and T, =i;. Then Ty, and T,, will be formed as
discussed earlier. In Ty; and T,; for any i, if u; is the node
with highest / which appears complemented in one of T;
and T,; and uncomplemented in the other so long as

n
‘21 W; <f(t). Using the same argument as in theorem 5, we
=

find that the nodes included in Ty, y and Ty(yy are
always more than the nodes included in 7,; and 7;. If,

n
however, for some i, ;l W; = f(t) where [ is as before, the

number of nodes included in T1(is1) and T2(,H) may be
equal or greater than that in T); and T,;. If it is greater,
then using the same argument as in theorem 5, we can
prove dxstmgmshabﬂlty If it is equal and u; is tested by

Upsys oo s Up, Uy, ..., U, then from the description of the
design

I;
.51 W, + _il W; < £(z)
i= j=

and since u; is the node with highest / <#, no node among
Uiey, - .., U, appears as primed in one of Ty; and T,; or
unprimed in the other, then, as per condition (b) discussed
in Section 2, at least one of the nodes among
Uy, Uy, ..., u, must appear as primed in one of Ty
and Tz(m) and unprimed in the other. Hence, the nodes
included in T1(,+2) and Tj(j4p) must be more than the
nodes included in T,y and T,y and thus extending
the argument of theorem 5 henceforth, we find that the
distinguishability will hold whenever theorem 2 holds.

Thus we have proved that the system designed by the
four steps above will give a p-¢-diagnosable system.

Example 2:

Let us consider a system S with 5 units as given in example
1. We have to give the test pattern so that S will be p-¢-
diagnosable. It can easily be checked that the necessary
conditions given in theorem 2 are satisfied. Nodes
uy,...,us are sorted in ascendmg order of W values.
Call the sorted nodes v, v5,...,0s so that W(v,)=
—log4, W(w)=—log3, W(w)=—log3, W(,)=
—log 2, W(vs) = —log 2.

Then for each v;, if é‘_ W; <f(¢), find the smallest &
i+h
such that ;3 W; <f(z), otherwise find the smallest & such

k
that § W; + '21 W; <f(¢r). In the first case, have v; tested
j=i i=

by Uis1, Uiaa,- .., Vs and in the second case, have v
tested by iy, Visas .. o5 Uns V15 Vg, ..., Y. Thus we see
that v, is tested by v, only, since

Wi+ W, = —log12<—1log 10 = f(1)

Following this procedure the digraph G is obtained as in

47



Fig. 1. Using the procedure given in Section 4 it can be
checked that system S given by Fig. 1 is p-t-diagnosable.

\}]

V3

Vg A3

Fig. 1 P-tdiagnosable system

6 Remarks

A computer network can be represented as a digraph as in
the graph-thoeretical model described above, where each
individual computer in the network is represented by a
node in the graph. Each computer in the graph can be
tested by a number of other computers so that, if the tested
computer appears to be faulty, its job load wiil be shared
by the testing computers. These testing links are represented
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by corresponding directed edges in the graph. Now each
individual computer is tested in offline and its probability
of failure is calculated, which is associated with the corre-
sponding node as its weight. Thus a computer network can
be represented by a weighted digraph and it can be tested
in the method described in this paper in order to locate any
faulty unit(s).
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