Logic design using digital summation
threshold-logic gates

A. Pal, B.Sc., M.Tech., Ph.D., Mem.l.S.1I.

Indexing terms: Algorithms, Logic

Abstract: The advent of IC technology has resulted in the fabrication of IC threshold gates which are com-
petitive, both in performance and cost with standard logic packages. Of them, the multioutput digital summa-
tion threshold-logic (DSTL) gate is considered to be a potential candidate of future interest. In this paper, an
algorithm has been developed to realise nonthreshold functions utilising the multioutput capability of DSTL
gates. In this context, optimal realisation has been discussed. An universal logic module (ULM) has been
proposed, based on DSTL approach, and an optimised structure of ULM for 4-variable functions is suggested.

1 Introduction

Threshold gate is one of the versatile complex modules pro-
posed in the late 1950s. Since then, extensive studies have
been reported on its functional properties and circuit realisa-
tion. Although threshold-logic theory flourished during the
last two decades [1, 2], the threshold-gate circuit realisation
based on the technology of those days faced two major
problems — the circuit tolerance problem and the noise
immunity problem. As a result, competitive and reliable
threshold gates were not commercially available, and actual
application of these gates to practical problems have been far
fewer. The advent of IC technology has overcome early design
problems and implementation of integrated-circuit threshold
gates-that are competitive both in cost and performance, with
the standard logic packages, have been reported [3, 4]. Recent
developments on CCD technology has also opened up the
possibility of a more viable realisation of threshold-logic ele-
ments [5, 6]. This has renewed interest in this powerful
module.

A novel design called digital-summation threshold-logic
(DSTL) gate has been reported by Hurst [7]. A typical DSTL
gate is shown in Fig. 1 A. It consists of an iterative arrangement
of identical cells with a uniform interconnection pattern among
them. The cell details are shown in Fig. 1B. There are m input
lines Y;, 1 <i<m and m output lines Z;, 1 <i<m. The
network is so connected that the output lines Z;, 1 <j<m,
assume value 1 if any of the j number of inputs attain value 1.
Thus the output line Z; realises a threshold function with a
threshold value j for the inputs Y;s, each having an input
weight of 1. To provide a gate input weight greater than 1, say
2, any two such input lines may be metallised together or
connected externally, providing a single external line, as shown
for the input line x, in Fig. 1A. In this way, any input weight
greater than 1 may be provided. The most important features
of a DSTL gate are:

(a) The gate is realised by digital circuitry throughout, and
so the analog tolerance problems encountered in early designs
are overcome.

(b) It has a cellular form of realisation which is very attrac-
tive from the fabrication point of view.

(¢) It has inherent multioutput capability which is poten-
tially advantageous in many circumstances, e.g. as a variable
threshold element, for synthesis of nonthreshold functions etc.

Although some works [8, 9] have been reported on the logic
design using DSTL gates, design techniques to fully utilise the
logic power of the DSTL gate are, however, still awaited. In
particular, proper utilisation of the multioutput feature of the

Paper 2249E, received 14th September 1982
The author is with the Indian Statistical Institute, 203 Barrackpore
Trunk Road, Calcutta 700 035, India

32

DSTL gate may lead to a reduction in overall system cost and
may increase the versatility of logic design. Literature on multi-
threshold threshold logic elements [10—14] is relevant in this
context. However, most of these works are concentrated on
realisation with a minimum number of thresholds; but, because
of the inherent multioutput feature of the DSTL gates the
number of threshold is not a limitation. On the other hand, we
shall see that the sum of weights is a more important parameter
in logic design using DSTL gates.

In this paper, we have developed an algorithm where the
multioutput feature of the DSTL gates has been utilised to
realise nonthreshold functions. The algorithm is based on the
concept of functional decomposition technique called ‘isobaric
decomposition’. Following this method, any nonthreshold
function can be realised by using a DSTL gate in conjunction
with a simple ‘AND — OR’ gate. In this context, optimal

Zma Im

Fig. 1A Basic digital summation threshold-logic gate

R S R

P Q P Q
Fig. 1B Cell details of DSTL gate
=P+Q, §=PQ
IEE PROC., Vol. 130, Pt. E, No. 1, JANUARY 1983

realisation, a realisation with a minimum sum of weights, is
discussed and a method for obtaining optimal realisation for
any given function is considered. An optimised DSTL structure
for realising functions of four variables has been suggested in
Section 4. A commercially viable universal logic module
(ULM) has been proposed in Section 5.

2 Isobaric decomposition of a function

Given a Boolean function f, the true (T) and false (F) sets
of input vectors are decomposed into a mutually disjoint set
of subsets:

F13F2,--'$Fk'andT13T‘2y~"’Tk

(where k and k' are equal or differ by one), respectively and
are arranged in a ordered manner:

Tk IFk' . Tk-] :
(assume k = k') such that the following conditions are satisfied:

Condition 1

The functions formed by the union of all the subsets to the
right (or left) of any subset from the ordered arrangement is a
threshold function, ie. C;=T, UF, UT,_; U...UF; (or
Ci=TyUF,U...UT), 1<i<k, is threshold function.
Let the threshold value of C; be ¢; and that of C; be t;.

Condition 2 o o

Any pair of functions C; and C;, where Cj is either C; or
Cj, 1 <i,j<k, formed in the above manner are isobaric 2],
i.e. they can be realised by threshold gates of the same weight
vector but of different threshold value.

Definition 1
A decomposition of a function f satisfying the above condi-
tions will be called the isobaric decomposition of f.

Before we proceed to obtain an algorithm for obtaining the
isobaric decomposition of a given function, let us consider
how this can be utilised to realise the function, using a DSTL
gate.

Let the isobaric decomposition for a function f be as shown
in Table 1:

Table 1: Function £, isobaric decomposition

T Fp, T, F

1

t th-) t, t,

The decomposition corresponds to the weight vector (wy,

Ws,...,w,) for the n input variables, and the threshold

values separating the subfunctions are shown in Table 1.

Now, consider a DSTL gate with input weight vector (w,,

Wa,...,w,) and provided with outputs Z,,Z,,...,Zpn,
n

where m = = w;. Conceivably, the values of ¢; and #; (1 <i
i=1

<k) will lie in the range from 1 to m. From Table 1, the

following expression can be readily written:

i =T, +T,+.. . +Ty
= Ztl 'Z—t; +Zt7 'Zt; + ...+Ztk
In this way, by simple gating some of the Z; terminals of the

DSTL gate, we can realise any nonthreshold function. This is
illustrated with help of the following example:

IEE PROC., Vol. 130, Pt. E, No. 1, JANUARY 1983

Table 2: Function of f,, isobaric decomposition

T3 FJ T] Fl Tl Fl
1

1m 9 7 8 2 0
3

13 14 5 4
10

15 12 6

7 6 5 3 1

Example 1

Consider a function f; = Z(2, 4, 6, 7, 11, 13, 14, 15). The
isobaric decomposition is shown in Table 2. Here w, =3,
wy, =1,wz =1 andw4 =3.

From Table 2, we obtain f; =Z,Z3 + ZsZ¢ + Z,

The realisation of f; is shown in Fig, 2.

X —e{3 4

xq— % i
3 1 zg

XL——- 3 h

Fig. 2 Logic network realising f,

3 Algorithm for obtaining isobaric decomposition

The detailed method of obtaining isobaric decomposition for a
given function has been considered elsewhere [13, 16, 17].
In this paper, we shall briefly outline the method for the sake
of completeness.

From the first property of isobaric decomposition, as stated
in Section 2, it is evident that, for a particular weight vector,

n
the excitation ¥ a;w; of any input vector in a certain subset
i=1

(say T;) should not be less than the excitation of any input
vector in the succeeding subsets (7;_, or F;_,). This, in
turn, demands that no input vector in a subset T; (or F;) is
covered by any input vector of the succeeding subsets. A
decomposition satisfying this covering property can be obtained
by primary partition [13, 17]. So ‘primary partition’ may be
considered as a first step towards isobaric decomposition. The
algorithm for obtaining the ‘primary partition’ of a given
function has been considered elsewhere [13, 17].

The second step is to check whether the functions generated
by primary partition are linearly separable or not. The checking
is done by testing 2-asummability [2, 17—19] of these func-
tions. If, at any stage, the 2-asummability is not satisfied, the
subsets are further decomposed, such that all the functions
generated by the decomposition are linearly separable.

The second condition of isobaric decomposition requires
that the functions obtained by decomposition are mutually
isobaric [1]. The isobaricity of these functions are tested by
using the property of mutual 2-asummability [2]. If the
decomposition from the previous steps satisfies ‘mutual-
2-asummability’ condition, the isobaric decomposition is
obtained, otherwise the decomposition is further modified to
satisfy mutual 2-asummability condition. The mutual 2-asum-
mability is tested by using a technique called ‘inverse mapping’
[13,16,18].

The checking of 2-asummability and mutual 2-asummability
conditions are basically table lookup methods and can be
conveniently performed with the help of the Tables of Refer-
ence 18. It may be noted that 2-asummability is a necessary
and sufficient condition for linear separation upto eight

33

variables and mutual 2-asummability is a necessary and suffic-
ient condition, up to seven variables. Since our method is
based on these properties, the algorithm is restricted to
functions containing no more than seven variables.

4 Minimal realisation

It has been found that circuit realisation problems are, in
general, constrained or motivated by either practical or econ-
omical, or both, reasons. In the present case, also, the synthesis
technique is motivated by the following facts. From Fig. 1,
it is evident that the array size of a DSTL gate depends on the

n
value of nE w; for that gate. The greater the value of Z w,
i=1 i=1
the larger the size of the array. The speed of the gate, in turn,
depends on the array size. The larger the array size, the greater
is the delay through the gate. So, if one wants to realise a
function with minimum cost and with fastest response using
the DSTL gate, it is necessary to synthesise the function with

n
minimum X w;. We shall call this minimal DSTL realisation.
i=1

The minimal DSTL realisation, in turn, requires an isobaric
decomposition of the function, corresponding to minimum
n

z Wi.

i=)

It is seen that the decomposed structure obtained through
isobaric decomposition may differ for transformed functions
obtained by complementation of the input variables. This
idea can be utilised to obtain isobaric decomposition with

n
minimum % w;. The idea is illustrated with the help of the
i=1

following example:

Example 2
Consider a function f, = 2(0, 1, 2, 5, 6, 7, 11, 12). The iso-
baric decomposition for f, is shown in Table 3. Here w, =1,

4
wy, =1, w3 =3 and wy = 2, and so .E w;=17.
1=1

Table 3: Function f,, isobaric
decomposition

F, T, F, T,
13 5 4 0
14 6 8 1
15 12 3 2
7 9
11 10
6 4 2

Now, transforming f, by complementing the variables x,
and x,, we get the function f3 = 2(3, 2,1, 6,5, 4, 8, 15).
The isobaric decomposition for f3 is shown in Table 4.

In this case w;, =1, w, =1, wy =1 and wq =2 and so

é w; = 5. Note that the DSTL array size in this case is smaller
i=1

than the previous one, but the complemented inputs x; and
x, must be fed to the DSTL gate to realise f; .

It is presumed that complements of the variables are avail-
able to the module inputs. To obtain the realisation for a given
function, it is necessary to get isobaric decomposition for all
possible complementation, which is 2" for a function of
n variables. However, it has been found that it is sufficient to
consider only 2" 7! cases, because the nature of the isobaric
decomposition and the weight-threshold vector remains
unchanged if all the variables of a function are complemented.

34

Table 4: Function f,, isobaric
decomposition

TZ F2 Tl F
15 9 1
10 2
12 4
7 8
11 3
13 5
14 6
5 3 1
Table 5: Equivalent classes of
functions
4 Number of equivalent
'21 classes of functions
i=
1 1
2 2
3 4
4 13
5 14
6 38
7 41
8 53
9 8
10 59
12 4

5 Optimum DSTL gate specification

Based on the approach considered in Section 2, we have
investigated the optimum DSTL gate specification, the most
suitable for general-purposes usage. Results of an industrial
survey shows that more than five or six binary inputs per logic
area is seldom found, and an average of 3.2 binary inputs per
random logic has been quoted [6]. So, we have searched for
a DSTL package with minimum array size, minimum input/
output connections, and one that can be used to realise all
(or most of the) equivalent classes of functions of four vari-
ables. Minimal DSTL realisations for all equivalent classes of
functions of four variables were obtained with the help of
computer. A summary of the results is shown in Table 5,
which shows that, out of the 237 equivalent classes of func-

n
tions, only four equivalent classes require £ w; =12, and
i=1 a
the rest of the equivalent classes can be realised with = w;i
i=1

< 10. To realise all possible functions with minimal isobaric

4
decomposition corresponding to X w;< 10, the possible
i=1

DSTL structure is shown in Fig. 3. The gate has specification
2,2,2,1,1,1, 1) and all the ten output Z, to Z,, are avail-
able. We shall call this optimised DSTL package for n = 4.
It can be accommodated in a 20-pin dual-in-line package (DIP).

Vee— — 2
G — — 7
Y, —{1 P2
21! l
Y3 1 ;
Y, —1 !
Ys —12 H
Y =2 H—2g
Fig. 3 Optimised DSTL package

IEE PROC,, Vol. 130, Pt. E, No. 1, JANUARY 1983

The AND—OR package, which can be used in conjunction
with the optimised DSTL package to realise nonthreshold
functions, is shown in Fig. 4.

—

Fig.4 AND — OR package

From Table 5 we find that there are four equivalent classes
of functions of four variables which require Zw; = 12 for their
realisation. These functions cannot be realised using the optimal
DSTL package considered above. A function of this type can
be realised by decomposing the function about one of the
input variables. This is illustrated by the following example:

Example 3
Consider a function f3 =2(0, 1, 2, 3, 4, 10, 13). By expanding
about x4, we obtain

fs = Xafs+xaf3
where
fr = 22, 5)and fy = 2(0,1,2,3,4)

The isobaric decomposition of f3 and f3 is shown in Tables
6 and 7, respectively. The realisation of f3 is shown in Fig. 5.
The above technique can also be used to realise functions of
five variables.

Table 6: Function f,, isobaric
decomposition

(w, =w, =1,w, =2)
F2 Tl Fl
3 2 0
1
6 5 2
7 4
3 1

Table 7: Function £, isobaric
decomposition
(w, =w, =1,w,=2)

F\ Tl
0
1

6 2

7 4
3

6 Universal logic module

In a conventional logic module (ULM), the function selection
is done by changing the input/output terminal connection while
the internal structure remains invariant, whereas, in cellular
logic arrays, the input/output connections remain invariant
while the cell function is changed to realise different functions
[22]. Utilising both these concepts, we have formulated a
technique for the realisation of universal logic module for
functions of four variables.

IEE PROC., Vol. 130, Pt. E, No. 1, JANUARY 1983

In realising a function using a DSTL gate, it is found that
the method essentially consists of two steps: (@) proper inter-
connection of the input terminals to realise a particular input
weight vector, and (b)proper interconnection of the Z;
terminals to the inputs of the AND—OR gate. As discussed
in Section 5, functions of four variables can be realised using
the optimised DSTL gate of Fig. 3 and the AND—OR package
of Fig. 4. Now consider the case where both of these circuits
are fabricated on a single chip. The input terminals of DSTL
gate and output of AND—OR gate are externally provided,
whereas interconnections among the DSTL gate outputs and
the AND—OR gate inputs are internal by a metallisation
technique.

Thus, by realising functions in two stages, one at the time
of fabrication and the other at the time of practical implemen-
tation, this provides us with a DSTL-based universal logic
module.

7 Conclusions

In this paper, an algorithm has been presented, realising non-
threshold functions utilising the multioutput feature of DSTL
gates. It is simple, straightforward and basically a table-lookup
method. The Tables in Reference 18 can be conveniently
utilised, and so it does not involve much computation.

It may be noted that the realisation considered here is
similar to the synthesis of multithreshold threshold elements
[10—14] . Hence, it is not irrelevant to compare results obtained
by previous workers in this field; particularly Haring and
Ohori [10] and Mow and Fu [11] have provided the multi-
threshold threshold realisation of all 221 equivalence classes
of functions of four variables in tabular form. By looking at
the Tables in References 10 and 11, it is found that there are
many equivalence classes of functions which require a sum of
weights greater than ten in the multithreshold threshold realis-
ations. Table 8 gives the number of equivalent classes requiring
sum of weights greater than ten. However, the main objective
of Haring and Ohori [10] and Mow and Fu [11] was to obtain
realisations with a minimum number of thresholds.

Recently, Picton [14] has reported the realisation of multi-
threshold threshold logic networks, using the Rademchar-
Walsh transform. This is an extension of the spectral translation
methods of Edwards [15]. Although this method does not
involve much computation, it usually leads to a nonminimal

X

1 1
Xz‘— f3'
L B 3 ‘

2
X
X
1 1
X 3 2
2 1 s
X3 7
Fig.5 Realisation of f,

Table 8: Equivalent classes of functions

Number of equivalent classes of functions

Zw; Haringand Oheri [10] Mowand Fu [11] Present method

11 19 1 -
12 17 10 4
13 11 3 -
14 10 6 -
15 2 - -
16 6 1 -
17 1 - —
18 2 1 -

35

realisation in terms of sum of weights or the number of thres-
holds. For example, consider the examples in Reference 14,

Example 4
Let

f4 = £1;2x3 +f1x2)-c-3 +X1x_2;3 = 2(1,2,4)

Picton’s realisation (see example 1) needs Ew; = 8 and three
threshold, whereas in our method it needs Zw; = 3 and two
thresholds. The realisation of f, is shown in Fig. 5.

Example 5
Let

fs = X1x3 +x3(X3 +xg) + X2x3%4

$(0,1,2,8,9,10,7,11, 14, 15)

Picton’s realisation (see example 3) needs Zw; = 15 and four
thresholds.

1
X ! L
1

x e—

z fe

p—_ o e a——
X4 2
Fig. 6 Realisation of f,
. h— 4

1 2
L) a— 9
xg—Do 10 's
X —

4 1
Fig. 7 Realisation of f
Xl 3 2
X , Bennet's

array

Xg——1 2
XL 3 24

Fig. 8 Realisation of f, using Bennet's array

The realisation of this function by our method is shown in
Fig. 6. Here it needs Zw; = 10 and three thresholds.

The improved forms of threshold-logic function implemen-
tation proposed by Bennet [20, 21] can be used in the realis-
ation of a function as considered in this paper. After obtaining
the isobaric decomposition for a given function, it can be

realised by following the method discussed by Bennet [21].

Here, Bennet’s array outputs should be used in conjunction
with a decoder and a OR gate. For example, the realisation of
f1 using Bennet’s array is shown in Fig. 8. The ULM considered
in Section 6 can also be implemented using Bennet’s array. In
this case, Bennet’s array, the decoder and the OR gate can be
fabricated on a single chip, but the interconnections, depending
on the function to be realised.

8 Acknowledgment

The author wishes to thank the unknown referees for their
constructive suggestions.

36

9 References

1 SHENG, C.L.: ‘Threshold logic’ (Academic Press, New York, 1969),
206 pp
2 MUROGA, S.: ‘Threshold logic and its applications’ (Wiley-Inter-
science, New York, 1971), 478 pp
3 HAMPEL, D.: ‘Multifunction threshold gates’, IEEE Trans., 1973,
C-22, pp. 197-203
4 HAMPEL, D.,and WINDER, R.O.: ‘Threshold logic’, IEEE Spectrum,
1971, 8, pp. 32-39 :
5 HANDY, R.J.: ‘The use of CCD’s in the development of digital
logic’, IEEE Trans., 1977, EC-16, pp. 10491061
6 MONTGOMERY, J.H., and GAMBLE, H.S.: ‘Basic CCD logic
gates’, Radio & Electron, Eng., 1980, pp. 258—-268
7 HURST, S.L.: ‘Digital summation threshold logic gates: a new
circuit element’, Proc. IEE, 1973, 120, (11), pp. 1301-1307
8 HURST, S.L.: ‘Logic network synthesis using digital summation
threshold logic gates’. Proceedings of twelfth annual Allerton
conference on circuit and system theory, Oct. 1974, pp. 525-534
9 HURST, S.L.: ‘Application of multioutput threshold logic gates to
digital network design’, Proc. IEE, 1976, 123, (2), pp. 128134
10 HARING, D.R., and OHORI, D.: ‘A tabular method for the syn-
thesis of multithreshold elements’, JEEE Trans., 1967, EC-16,
pp. 216-220
11 MOW, C.W,, and FU, K.S.: ‘An approach for the realization of
multithreshold threshold elements’, ibid., 1978, C-17, pp. 32—46
12 HARING, D.R,, and DIEPHUIS, R.J.: ‘A realization procedure for
multithreshold threshold elements’, ibid., 1967,EC-16, pp. 828835
13 GHOSH, S., and CHOUDHURY, A .K.: ‘Partition of Boolean func-
tions for realization with multi-threshold threshold elements’,
ibid., 1973, C-22, pp. 204215
14 PICTON, P.D.: ‘Realization of multithreshold threshold logic net-
work using the Rademchar-Walsh transform’, IEE Proc E, Electron.
Circuits & Syst., 1981, 128, (3), pp. 107-113
15 EDWARDS, C.R.: ‘The application of the Rademchar-Walsh trans-
from to Boolean function classification and threshold logic synthe-
sis’, IEEE Trans., 1975, C-24, pp. 48—62
16 PAL, A.: ‘Studies on the synthesis of digital logic circuits using
" threshold gates and MOS modules’. Ph.D. thesis, University of
Calcutta, 1975
17 DE, P, SEN, A, PAL, A., SARMA, D., and CHOUDHURY, AK.:
‘Minimal realization of arbitrary switching functions with 2-level
network of isodistinct and isobaric threshold gates’, Int. J. Syst.
Sci., 1974, 5, pp. 555-573
18 DE, P, PAL, A, SEN, A,, SARMA, D,, and CHOUDHURY, AK.:
‘A tabular method for finding 2-summable and mutually 2-summable
pairs’, Int. J. Electron., 1976, 37, pp. 409427
19 PAL, A.: ‘An iterative algorithm for testing 2-asummability of
Boolean functions’, Proc. IEEE, 1981, 69, pp. 1164—-1166
20 BENNET, L.AM.: ‘Improved forms of threshold-logic-function
implementation’, Electron Lett., 1977, 13, (12), pp. 368-370
21 BENNET, L.AM.: ‘Threshold logic functions and the exclusive-
OR’, ibid., 19717, 13, (7), pp. 195-196
22 STONE, S.H.: ‘Universal logic modules’, in ‘Recent development
in switching theory’, MUKHOPADHYAY, A. (Ed.): (Academic
Press, New York, 1971), pp. 229-254

Ajit Pal was born in 1949 in West Bengal,
India. He received the B.Sc., M.Tech. and
Ph.D. degrees from Calcutta University in
1968, 1971 and 1976, respectively.
From 1972 to 1975 he was research
N fellow of the Department of Atomic
- Energy and University Grants Commis-
: sion, Government of India. In 1976, he
‘ “served for a brief period — about four
months — at the Radar Division of the
Defence Electronics Research Laboratory,
Hyderabad. In the same year he joined Indian Telephone
Industries Ltd., Naini, where he has been concerned with the
design and development of a number of digital communication
and test equipments. Since May 1979 he has been on the
faculty of the Indian Statistical Institute, Calcutta. His current
interests include microprocessor-based systems, logic design,
automata theory and fault tolerance computing.
Dr. Pal is a member of the Indian Statistical Institute, India.

IEE PROC., Vol. 130, Pt. E, No. 1, JANUARY 1983

	1A.pdf
	2.pdf

