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Abstract: In the paper we investigate whether the function-independent test set for detecting single stuck-at
faults in networks realising Reed—Muller canonic (RMC) expansions of switching functions is sufficient to detect
all bridging faults in such networks. The investigation, however, reveals its insufficiency, and to circumvent this
we propose a technique of augmenting the network with some additional observation points, so that a universal
test set can be designed for detecting bridging faults as well.

1 Introduction

For the last few years, several researchers [3, 7, 9] have
shown considerable interest in the study of stuck-at fault
detection in combinational networks. However, apart from
the stuck-at fault model there exists another important
class of faults frequently occurring in logic networks, parti-
cularly in MOS LSI circuits, which are known as bridging
faults. The occurrence of such faults is mainly due to
circuit malfunction resulting in a short circuit between two
or more lines of the circuit. Also, a breakdown of insula-
tion between the metallisation on a chip, or some acciden-
tal short between two conducting paths, may cause the
occurrence of bridging faults. With the advent of
integrated-circuit technology diagnosis of bridging faults
has received considerable attention [1, 2, 11-13]. In this
paper, we discuss a relatively unexplored problem of
devising a universal test set for detecting bridging faults in
combinational logic circuits. However, no remarkable
work has yet been reported regarding the determination of
test sets for bridging faults in combinational networks.
Such determination of test sets is totally dependent on
functions and their circuit topology, and no function inde-
pendent test set is yet known to exist. And as such, a recent
trend in the methodology of fault diagnosis in com-
binational networks gives attention to their testable design
with function independent test sets. We thus deal with this
aspect, in so far as the problem of bridging fault detection
is concerned.

It is well known that only in a very few restricted classes
of combinational networks, a universal, ie. a function
independent test set for stuck-at faults, exists. For example,
AND-EXOR arrays based on the Reed—Muller canonic
(RMC) expansions of switching functions possess universal
test sets for detecting stuck-at fault [3]. Besides this,
methods for minimal realisation of such networks are
known to exist [4-6, 8, 10]. One most important advan-
tage of the test set [3] is that it has a simple algebraic
structure and hence can be generated easily. However, the
fault coverage of this test set with respect to bridging faults
has yet to be examined, and will be discussed in the follow-
ing Sections.

Paper 3801E (C2, E10), first received Ist February 1983 and in revised form 17th
January 1985

Mr. Bhattacharya is with the Electronics Unit, and Mr. Gupta is with the Com-
puter Science Unit of the Indian Statistical Institute, 203 B.T. Road, Calcutta
700035, India. Mr. Sarkar is with the Institute of Radio Physics and Electronics and
Prof. Choudhury is with the Department of Computer Science, Calcutta University,
92 Acharya P.C. Road, Calcutta 700009, India

1EE PROCEEDINGS, Vol. 132, Pt. E, No. 3, MAY 1985

In order to illustrate the effect of a bridging fault let us
consider a logic circuit as shown in Fig. 1A. The bridging
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Fig. 1A Original circuit

fault between two lines h and m can be modelled as either
a wired-AND or wired-OR function [2]. This fault has an
effect of an AND function for positive logic (i.e. where
logic 1 is represented by higher voltage) and that of an OR
function for negative logic (i.e. where logic 0 is represented
by higher voltage) [1, 2]. The equivalent faulty networks
are shown in Fig. 1B. In other words, a bridging fault
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Fig. 1B Equivalent faulty circuits for AND and OR bridging faults

between two lines h and m would change both the func-
tional values f, and f,, on lines h and m to (f, - f,,) in the
case of AND bridging, and to (f, + f,,) in the case of OR
bridging. In addition, all lines that are directly connected
to h and m in the physical layout of the concerned network
would be equally affected [1].

2 Some properties of Reed—Muller canonic (RMC)
expansions of switching functions

The RMC expansion of any switching function f(x,, x,,
..., X,) s expressed as
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(i) x; = x; or x; and is fixed for a particular expansion
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(i) ao = constant term in the expansion; it may be
Oorl

(i) a;=0o0r1,for1 <j<2"~ 1

(iv)j = 2j1—1 4 221 4o 2im=1

(v) there are 2" possible expansions corresponding to 2"

. . . * X * .
possible combinations of x,, x,, ..., x. These expansions
are unique for any given function.

The realisations of such expansions of switching functions
are known as AND-EXOR arrays based on RMC expan-
sions or simply RMC networks. These arrays may be two-
dimensional cellular cascades. The vertical cascades consist
of a set of AND gates, and the horizontal cascade
(collector row) consists of a set of EXOR gates. One such
realisation for a function Fy = x; @ x; X, ® x, X3 X4 ® X,
X3 X4Xs is shown in Fig. 2. A significant saving in logic
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Fig. 2  Network realising the function F
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levels can be achieved if the restriction over the number of
inputs to the AND gates is withdrawn. In other words, all
the AND gates need not necessarily have the same number
of inputs and this number may vary from 2 to n, where n is
the number of variables present in the function realised.
This type of realisation has notionally two levels only.
However, from the point of view of single stuck-at fault
detection, the same function independent test set is suffi-
cient in each of the above two realisations. In this paper
we are interested in detecting bridging faults that can
occur involving lines in the same level of the network, and
hence the two-level realisation described above is the
circuit of choice because of its smaller number of levels
compared to that of two-dimensional cellular cascade
realisation. Fig. 3 shows such a realisation for the function
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Fig. 3  Network realising the same function F as in Fig. 2

The following two lemmas follow from some simple
observations regarding RMC expansions of switching
functions.

Lemma 1: Let P; and P; be any two product terms in an
RMC expansion of a switching function F,. Then there
must be at least one literal which will be present either in
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P;, but not in P;, or in P;, and not in P;. Proof of Lemma
1 is obvious.

Lemma 2: Any two product terms P; and P; of an RMC
expansion are related to each other by one of the following
two relations R, and R,:

R,: Either P;> P;, or P, c P,
R,: P;$ P;, P;¢ P;and P, n P; # (J (null)

Proof: Suppose that neither of the two relations R, and R,
hold good in the case of the two product terms P; and P;
taken. Hence the only possible relations left are P, = P;
and P; n P; = ¢ (null). The first one is immediately ruled
out because otherwise the RMC expansion will be devoid
of P; and P;, contradicting our assumption that P; and P;
are two of its product terms. The second one can never
exist because in any RMC expansion the polarity of the
variables is fixed. Hence the lemma follows.

Definition 1: Consider two product terms P; and P; in an
RMC expansion of an n-variable function F,. Then the
literal/literals present in P; and not in P;, and vice versa,
is/are called the control literal/literals with respect to P,
and P;.

We now state the following function independent test set T
for single stuck-at faults in an AND-EXOR array realising
an RMC expansion of an n-variable function F,. This was
originally derived by Reddy [3]. He has shown that this
test set T fails to detect single stuck-at faults at the
primary inputs if the corresponding input variables appear
in an even number of product terms of the RMC expan-
sion. However, Reddy has shown that the test set will be
sufficient if the original network is augmented by adding
some extra AND gates [3]. The test set T is given by

T=T,uT,
where
Ay Xy X3 Xj Xn
{ 0O 0 0 O 07
I ) 1 1 1 1
h= 1 0 0 O 0
1 1 1 1 1]
and
Ao X3 Xp X3 Xn
(4 0 1 1 1]
d 1 0 1 1
T,=|d 1 1 0 1
a4 t 1 1 - 0]

where d can be taken as O or 1 and the cardinality of the
test set T is

ITI=ITi|+|Tl=4+n

We will show in the later Sections that this universal test
set T is sufficient to detect any bridging fault included in
our proposed fault model in the network, provided the
fault is an OR-type, and we will also show that some more
function independent tests are necessary in case the fault is
AND-type. However, in either case it requires augmenta-
tion of the network.

3 Bridging faults in a RMC network

3.1 Definitions

Before proceeding to the detection problem of bridging
faults in such networks, we will first present the following
definitions and auxiliary results.
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Definition 2: Any bridging fault involving two lines h and
m in a logic network is said to be a single bridging fault if
none of the lines h and m is a fanout stem or a fanout
branch line.

Definition 3: Any bridging fault involving more than two
lines, either physically or logically, (by the term logical we
mean to incorporate the fact that if a line, say h, is
involved in a bridging fault, and if h happens to be a
fanout stem or fanout branch line, then all the lines ema-
nating from the parent stem line would also be logically
involved in the fault) is called a multiple bridging fault.

Definition 4: Let f,,, and f,,, be two bridging faults denoted
by (hy, hy, ..., h,) involving lines h,, h,, ..., b, and (I,
Iy, ..., k) involving lines I, I,, ..., I, respectively. Note
that, if any of the lines involved in f,,, (f,,,) happen to be a
fanout stem or branch line, then all the lines emanating
from the parent stem line would be automatically involved
in f,,, (f,), so far as the logical effect of the bridging fault
is concerned and thereby an augmented set f,,, (f,) of
involved lines is created. If f,, ~ f,,, = & (null), then the
fault instance defined by the simultaneous occurrence of
{fmisSmy} is called a multiple group bridging fault of
multiplicity two. Similarly the idea can be extended to
define a multiple group bridging fault of higher multiplic-

ity, say n: {fi, s fmys---sfm,} such that

Vi,j9 iaje(ml,mz,...,m"), I%J’

SO 5= (null)

Definition 5: Any bridging fault involving the input lines of
a logic gate in a logic network is said to be an intragate
bridging fault.

Definition 6: Any bridging fault involving input lines to
different logic gates in a logic network is said to be an
intergate bridging fault.

Definition 7: Any bridging fault involving lines of the same
logic level in a logic network is said to be an intralevel
bridging fault.

Definition 8: Let f, be an AND/OR bridging fault between
two lines h and m. Then it is symbolically represented as

Jo = *(h/m)] + (h/m).

Definition 9: Let h be a line in a logic network. Then the
functional value at line h is referred to as the line function
of h and it is denoted by f(h).

Theorem 1: Let F, be a linear function of n-variables, say
Xy, X3, ..., X,, and let it be realised by a one-dimensional
EXOR array. Then, any OR bridging fault, whether it is
single, multiple or multiple group bridging, involving the
primary input lines, is always detected by some test
belonging to a function independent test set T*, under the
assumption that no bridging fault causes the network to
oscillate or to behave as an asynchronous machine. The
test set T* is given by

Xy X3 X; X,
0 1 r - 1
1 0 1 1
T*=11 1 0 1 | ninput vectors
1 1 1 - 0

Proof: The proof is constructive.
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First, consider a single bridging fault. Let it be f, =
+(h/m) and the line functions of the primary input lines h
and m be f(h) and f(m), where f(h) = x, and f(m) = x,,. It
is clear that in the presence of f,, f(h) =f(m) = x, + x,,,.
To detect the fault, an input vector is to be applied that
makes either f'(h) = 1, f(m) = 0, or, f(h) = 0, f(m) = 1 in the
fault free condition. The following two input vectors are
able to produce the above assignments of values of lines h
and m. These are:

(i) x, =0, and all other x;s =1,for | i< n,i+#h,

(i1) x,, = 0, and all other xs =1, for 1 <i<n, i #m.

In any case, in the presence of f,, f(h) = f(m) = 1. Thus it
is seen that f(h) and f(m) are of opposite values in the
absence of f,, and of same values when f, is present. This
causes a logic value at the network output, which is differ-
ent from the expected one. Hence f), is detected. Clearly the
two input vectors considered above belong to the set T*.

Next, we consider a multiple bridging fault. Let it be f,
involving the primary input lines h, m, ..., I, the corre-
sponding line functions being f(h) = x,,, f(m)=x,,, ...,
f() = x; in the fault free condition. In the presence of f, all
the above line functions become identical and each of them
becomes equal to (x, + x,, + - + x;). To detect the fault,
an input vector ¢ is chosen that imparts 0 at one of the
involved lines, say h, and imparts 1 at all other lines, in the
fault free condition. In other words, it sets x, = 0 to make
f(h) =0 and all other x;s =1, for 1 <i < n,i+# h Under
the application of this input vector f(h) becomes 1, due to
the bridging fault, which is otherwise zero in the absence of
the fault. This in turn causes a logic value at the network
output, which is different from that expected, showing
therefore that f, is detected. Evidently this input vector ¢
belongs to the set T*.

Lastly we consider multiple group bridging fault. Let it
befo, = {fo,> foys ---» Jr,,}- T detect the fault, we select one
of the component faults, say f,,, and excepting only one
line, say h, involved in the bridging f,, all other primary
input lines involved in the bridging fault f, are fixed at
logic value 1, as well as all other primary input lines not
involved in the bridging. In other words, an input vector is
chosen that sets x, =0, where f(h) = x, and all other
xs=1,for 1 <i<n i+#h As in the previous two cases
Sf(h) becomes 1 due to f, causing a change in logic value at
the network output line. Thus f, is detected. Clearly this
test also belongs to the set T*.

Hence we conclude that T* is sufficient for detecting the
different OR-bridging faults considered in the theorem.

Extension of theorem 1 to the case of AND-bridging
faults reveals the fact that the universal test set T* is not
sufficient to detect all the AND-bridging faults considered
in theorem 1. One such case where the test set T* fails to
detect a fault is the presence of any multiple bridging fault
that involves odd number of input lines. The reason
behind this failure is quite obvious. However, it can be
shown in an identical way as in the case of OR-bridging
faults that another function independent (universal) test set
T** of cardinality n is sufficient to detect different single,
multiple and multiple group AND-bridging faults involv-
ing the primary input lines in the EXOR array realising a
linear function, Fg = x; ® x, ® - @ x,,. The test set T**
is given by

Xy X; X3 X,
1 0 O 0
0 1 O 0
T**=10 0 1 0

(=]
o
—
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In Fig. 4 a general model of a complement free RMC
network is shown, where the two levels of the network

Xy
X2
X
Xn
ao—&--&-

Fig. 4 General model of a complement free RMC network

have been designated by L, and L,. However, networks
realised in other polarity vectors of input variables will be
discussed subsequently.

We now state the following fault model which we con-
sider in the present work.

Fault model:
(a) Only intralevel bridging faults will be dealt with.
These are mainly;

(i) bridging faults involving only two lines in the
L,-level. These lines may be those that are directly con-
nected to the collector-row EXOR gates from the primary
input stems. This type of bridging also includes bridging
between two inputs of the same EXOR gate in the collec-
tor row.

(ii) the following different types of bridging faults are
considered in L,-level. These are: bridging involving only
primary input lines, intragate and intergate bridging faults
and any bridging fault involving some input lines of AND
gates and some lines that are directly connected to the
collector-row EXOR gates from their primary input stems.

(b) all single stuck-at faults are considered.
(c) feedback bridging faults are not considered.

Without any loss of generality we first assume OR-
bridging faults in the network in the foltowing Section.

3.2 OR-bridging

We consider here the network of Fig. 4 which has been
realised using negative logic. Each intralevel bridging is
considered separately in the following way:

Bridging faults in L,-level: We classify the different cases of
bridging faults in this level in the following subclasses:

Class A: Let the bridging fault be f, = +(i/j). The line
functions of lines i and j are f(i) = P; and f(j) = P;, respec-
tively, where P; and P; are product terms. According to
Lemma 2, P; and P; are related to each other either by
relation R, or by R,. We consider each case separately.

Case 1: When relation R, holds good, then either P, > P;
or P;,c P;. To detect the fault an input vector is to be
applied that sets opposite logic values at the lines i and j in
absence of the fault. In other words, it will set either P; =
1,and P; =0, or P, =0 and P; = 1. According to Lemma
1 the product term, covered by the other whenever relation
R, exists between them, always contains at least one
control literal. Then clearly an input vector that sets this
control literal at 0 and all other (n — 1) literals in the
binary n-vector at 1, with a, = 0 or 1, is a test. Under this
input assignment, in the absence of the fault f(i) =1,
S() =0if P, > P; and vice versa if P; ¢ P;. However, in
either case, the presence of the fault makes both f(i) = 1
and f(j) = 1. The effect of this change of logic value of

158

either line i or line j will propagate to the network output
causing there a change of logic value. Thus the fault is seen
to be detected and this input vector is clearly a member of
the universal test set T, described earlier.

Case 2: When relation R, holds good, i.e. when P; $ P;,
P;¢& P; and P, n P; # ¢J (null), then each of P; and P;
contains at least one control literal. In this case we start
with either P; or P;, say P;, and an input vector ¢ is chosen
that sets one of the control literals in P; at 0 to make P, =
0 and all other x;s in the binary n-vector at 1 to make
P; =1, with a; = 0 or 1. As in the previous case this input
vector detects the fault at the network output. Here also
teT.

Class B: Here we consider bridging between two lines h
and m, such that f(h) = x, and f(m) = P,,, a product term.
The line h may be a fanout branch line. To detect the fault,
we design a test vector ¢ such that f(h) = x, = 1 and one of
the control literals in P,,, say x, = 0 to make P,, = 0, and
all other (n — 2) variables in the test vector are set at I,
with ao = 0 or 1. In the presence of the bridging fault, f(m)
becomes 1 and this change in value of line m produces a
change in value at the network output. This test vector ¢ is
also included in the set T. In fact by making x, = 1, the
propagation of the effect of the bridging fault to the parent
stem line of line h, if it is a fanout branch line has been
stopped.

Class C: Let us consider a bridging fault f, = +(h/m),
where f(h) = x, and f(m) = x,,. Unless both of the lines h
and m are fanout branches, tests can be found included in
the set T to detect f, as in the previous two cases.
However, problems arise when both h and m are fanout
branches. Because any input vector chosen from the set T
that has a chance to detect f, at network output must fix
either x, =0 and x,, =1 or x, =1 and x,, = 0. In either
case, in the presence of f,,, x, = x,, = 1 and this change of
logic value at line h or m, which can be considered as the
effect of the bridging fault, propagates to the correspond-
ing stem line and hence to all other fanout branch lines
emanating from this stem line. In effect all these lines will
have a logic value 1 instead of the applied value 0. This
may cause the logic value at the output to remain the
same. Thus T may fail to detect f, . In fact, the detection of
such faults by the set T depends on how many times, and
in what way, x, and x,, appear in the RMC expansion.
However, we will show later that a proper augmentation of
the network will enable T to detect such faults.

Class D: Here we consider a bridging fault f, = +(h/m),
where the lines & and m are the two inputs of a collector
row EXOR gate. It is seen that the third row veztor of the
test set T, (e T) always brings a 1 on the horizontal input
line and a 0 on the vertical input line simultaneously.
Hence, it is a test vector for this type of faults. If one of the
input lines is the control line, then by using the second row
vector of the test set T, we can detect the fault because this
input vector always brings a 0 on the horizontal input line,
i.e. the control line and a 1 on the vertical input line.

Bridging faults in Ly-level: We consider the different cases
of bridging faults in this level in the following way.

Intragate bridging faults: Unless all the lines involved in
the bridging are fanout branches, the test set T is able to
detect such faults. Let us assume an intragate bridging
fault f, and let the involved lines be (h, k, ..., I) such that at
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least one of them, say , is not a fanout branch line. Then a
test vector is always found in T that sets x, =0, where
f(h) = x, and all other x;s =1, for 1 <i<n, i #h with
ao, =0 or 1. Under the application of this test vector the
faulty output of the affected AND gate will be 1, which is
otherwise 0 in the fault-free condition. This will cause a
change of the logic value at the output. Hence f, is
detected. However, if all the lines involved in the bridging
are fanout branches then it cannot be guaranteed that T
will detect the bridging fault. Reasons behind this are
similar to that in the class C case.

Intergate bridging faults: Here also T may fail to detect
such faults if all the lines involved in the bridging are
fanout branches. Reasons are similar as in the case of
intragate bridging faults.

Bridging fault involving the primary input lines: The test set
T may fail to detect such faults because their detection by
the test set T depends on how many times, and in what
way, the literals connected to the input lines involved in
the bridging appear in the RMC expansion of the realised
function.

Lastly we consider a bridging fault f, that involves some
lines that are inputs to some AND gates, and some lines
that are directly connected from their input stems to some
collector row EXOR gates. In this case also the presence of
the fault may not be ensured by applying test vectors
included in T. The explanation of this failure is similar to
the previous cases.

We shall now show that in the proposed testable
network the bridging faults in Ly- and L,-level, which are
undetected by the test set T at network output before aug-
mentation, will be detected by this test set T.

We now propose the following testable design to detect
the above mentioned undetectable bridging faults.

A testable design: This is a technique to add an extra AND
gate to make the universal test set T sufficient to detect the
different types of bridging faults and stuck-at faults con-
sidered in the fault model. The output of the added AND
gate is assumed to be observed during testing. The aug-
mented network is shown in Fig. 5. This added gate is an
n-input AND gate, realising the function (x, * x, - x,).

Xy

X2

X

Xn

%@

Fig. 5  Testable design in case of OR-type bridging

We now show that all the bridging faults that are unde-
tected under the test set T in the unaugmented network
will be detected at the observable output point 0, by the
application of tests from the same test set T. It is inter-
esting to note that the bridging faults in the L,-level
described earlier are nothing other than some single and
multiple bridging faults. Any such fault is detected at 0, by
a test vector that fixes one of the bridged lines, say i, at 0
by making x; =0, where f(i) = x; and all other (n — 1)
variables at 1. In the absence of the fault, the output at 0,
is 0 under such an input vector, whereas it becomes 1 when
the fault happens to occur. This input vector is clearly
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included in T. Moreover another type of fault, namely
multiple group bridging fault in this level, is also detected
at 0, in the following way. Let the multiple group bridging
fault be f, = {f,, /5> - -» Ji,}- T detect the fault at 0,, we
select, arbitrarily, one of the component faults, say f,,, and
apply an input vector ¢ that sets only one of the lines, say
h, involved in the bridging f,, at 0, by making x, =0,
where f(h) = x,,, and all other x;s in the binary n-vector at
1. In the absence of f,, the output at 0, is O whilst it
becomes 1 when the fault happens to occur. So, t detects
J»- It is seen that ¢ € T. The class C type of faults described
earlier in this Section can also be detected at the observa-
ble output 0, in a similar way. In each of the above cases,
the detection procedure makes use of the fact that the
effect of a bridging fault involving a fanout branch line
always propagates to the corresponding stem line.

It is clear, following the arguments given by Reddy [3],
that all single stuck-at faults in the augmented network are
detected by the test set T, either at the primary output or
at the output of the added gate.

We now state in theorem 2 the results so far obtained.

Theorem 2: An AND-EXOR array realising the com-
plement free RMC expansion of a switching function F of
n-variables can be so augmented by adding an extra AND
gate that the universal test set T, of cardinality (n + 4), is
sufficient to detect the different intralevel OR-bridging
faults and all single stuck-at faults.

It may be noted that any bridging fault involving some
lines in the Lg-level and some of the input lines of the
testing AND gate, or simply involving some of the input
lines of this gate, is always detected by the same test set T
at the augmented output 0,. The detection procedure is
identical to that in case of Lg-level bridging described
above.

3.3 AND-bridging

Here we consider that the network of Fig. 4 has been rea-
lised using positive logic. Also, in the case of AND-
bridging similar arguments prevail regarding the failure of
the test set T to detect some of the intralevel bridging
faults in the unaugmented network. These bridging faults
are of the same classes as in the case of OR-bridging.

We have shown earlier that in the case of OR-bridging
faults only one extra AND gate is necessary to make the
universal test set T sufficient for detecting the different
bridging faults and all single stuck-at faults. So naturally
the question arises as to whether the addition of only one
extra OR gate makes the test set T sufficient in case of
AND bridging faults. However, the answer is negative. The
following discussion shows that we will have to generate
another function independent test set 7, of cardinality n,
which, together with the test set T, will be sufficient for
detecting the different AND bridging faults considered in
the fault model and all single stuck-at faults, if the network
is made testable by adding only one extra OR-gate. T, is
given by

ap X; X3 X3 Xn
d 1 0 0 0
d 0 1 0 0
T.=|d 0 0 1 0
d 0 0 0 - 1

We propose the following testable design in which an extra
OR gate is added to the AND-EXOR array, as shown in
Fig. 6, and the output 0, of the added gate is assumed to
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be observed during testing. This added gate is an n-input
OR-gate realising the function (x; + x, + -+ + x,).

X

x

X

Xn

| - the added
.............. OR gate
20— @ o
1
Fig. 6  Testable design in case of AND-type bridging

The method used for detecting all the bridging and
stuck-at faults of the fault model, by the test sets T and T,
at the observable output points 0, and 0,, is similar to
that described in the previous Section. That the test set T
fails even in this augmented network to detect some bridg-
ing faults is clear from the following discussion.

Consider a bridging fault f, involving some lines h, k,
..., lin the Ly-level and also let us assume that this fault f,
was initially undetectable by T at network output before
augmentation. Suppose the corresponding line functions
are x,, X, ..., X;, respectively. In order to detect f, at the
augmented output 03, at least one of these variables is to
be fixed at 0. If we choose some input vector ¢ from the set
T to do so, then this input vector sets all other (n — 1)
variables at 1. Due to the bridging the line functions of all
the bridged lines become 0. However, if there exists in the
Ly-level at least one line, say i with f(i) = x;, not involved
in the bridging, such that f(i) differs from all the line func-
tions of the involved lines, then all lines emanating from
the parent stem line of line i together with the line i will
not be affected by the bridging fault. So, under this input
assignment f (i) will always be 1, as well as an input line to
the OR-gate, which is directly connected to the parent
stem line of line i, will always have a logic value 1, irre-
spective of whether the fault is present or not. Hence, the
output at 0, will always have a logic value of 1, regardless
of the presence or absence of f,. Thus ¢ fails to detect f,.
On the other hand, if we select some input vector from the
set T, to fix only one of the variables x,, x, ..., x; at 1 and
all other (n — 1) variables at 0, then, in the absence of f;,
output at 03, will be 1 and it will be 0 when f, is present.
Thus f, is detected. In fact, in this way it can be easily
shown that the test set T together with the test set T, is
sufficient to detect all bridging faults of the fault model.

The following theorem reflects the above obtained
results.

Theorem 3: An AND-EXOR array, realising the com-
plement free RMC expansion of a switching function F, of
n-variables, can be so augmented by adding an extra
OR-gate that the universal test set T, of cardinality
(2n + 4) is sufficient to detect the different intralevel AND-
bridging faults and all single stuck-at faults. T, is given by

L=TuT,

Here also, any bridging involving some of the inputs of the
testing OR-gate and some other lines in the Ly-level, or
simply involving some of the inputs of the testing OR-gate,
is always detected at the testing gate output by the same
test set T,,.

Corollary 1: Any AND-bridging fault in the Ly-level, that
does not change the fault free function at network primary
output 0,, is always detected at the observable output 0,
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of the testing OR-gate by a test ¢, where t € T,, provided
that all of the lines involved in the bridging fault are not
fanout branch lines of the same input stem line.

Proof: Consider a bridging fault f, in Ly-level, which does
not change the fault free function at network primary
output, and hence is basically an undetectable fault.
However, the effect of the bridging fault always propagates
to the inputs of the testing OR-gate. Let h be a line that is
involved in the bridging fault f,, and let the line function of
line h be x,. Then an input vector ¢ that sets x, = 1 and all
other x;s =0, for 1 <i< n,i+#h,is a test, because under
the application of ¢, the output at the observation point 05
is 1 in the absence of f, whilst it becomes 0 in the presence
of f,. Itis clear that t € T,.

As a consequence of corollary 1 questions may arise about
the necessity of detecting undetectable bridging faults
because in the presence of such faults the network operates
properly. However, the presence of such undetectable
bridging faults may invalidate the valid tests for detecting
some detectable stuck-at faults at network primary output
0, [13], when, simultaneously, bridging and stuck-at faults
occur. We give an example of such a situation. Consider
the network shown in Fig. 7. The fault free function at
network output 0, is

Fo=Xx,X, @ x; X3 X3 B X, X5 X4

We consider a bridging fault f, = *(h/k), as shown by the
dotted line in the Figure. It is seen that f, does not change
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Fig. 7  Network realising the function F,

Fo=XX;®x, XX, D X, X, %4

the fault free function F,. Now, we assume that in pre-
sence of f, the line | has been stuck-at 1. As a result of the
simultaneous occurrence of the bridging and the stuck-at
fault, the faulty function at network output 0, becomes

Fr=Xxx,@x;X;X3@D X X4

We now try to detect this stuck-at 1 fault by the test
designed for it. Tt is: x;, =1, x, =0, x3=1, x, = | and
ay = 0 or 1. Clearly this test belongs to the set T. It is seen
that this test fails to detect the stuck-at fault at the output
0, because, due to the presence of the bridging and stuck-
at fault, the faulty and the fault-free logic values under this
test, at lines m, n and p, are identical. In other words, the
presence of this undetectable bridging fault has masked the
otherwise detectable stuck-at fault at the output 0,.
However, this problem can be totally circumvented by the
test set T, which detects this type of bridging faults at the
observable output 0.

We now give the necessary and sufficient conditions in
order that a bridging fault, involving some primary input
lines in a complement free RMC network, becomes unde-
tectable by any test at the network primary output. This is
illustrated in the following theorems.
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Theorem 4a: Let h and m be two primary input lines con-
nected to the literals x, and x,,, respectively, in a com-
plement free RMC network N realising a Boolean function
F,. Then a bridging fault f, = *(h/m) is undetectable by
any test at the network primary output if, and only if, Xj
appears only in all the terms containing the literal x,, in
the RMC expansion.
Proof is simple and hence is omitted.

Theorem 4b: Let h and m be two primary input lines con-
nected to the literals x, and x,,, respectively, in a com-
plement free RMC network N realising a Boolean function
F,. The RMC expansion can always be factored as

Fo=A®x, B®x, C®x,x, D

where the Boolean functions A4, B, C and D are indepen-
dent of x, and x,. Then a bridging fault f, = +(h/m) is
undetectable at the network primary output by any test if,
and only if,

B=C=D
Proof is simple and hence is omitted.

Theorems 4a and 4b depict conditions of undetectability
of bridging faults among primary input lines. Note that,
whenever the complement free RMC expansion of a
Boolean function satisfies such properties, those bridging
faults become undetectable irrespective of network topol-
ogy. Even these bridging faults can be detected at the
outputs 0, and 0}, of the testing gates.

4 Conclusion

In the present work, it has been shown that in RMC net-
works bridging faults can be detected by function indepen-
dent tests, as is the case with stuck-at faults. It has also
been shown that the necessary augmentation for detecting
both OR and AND-type bridging faults in a complement
free RMC network requires the addition of only one extra
gate in each case. For any RMC expansion other than
complement free, we propose the following augmentation.
In the case of OR-bridging faults one OR-gate and one
AND-gate, both of which are n-input gates for an n-
variable function realised by the network in question, are
required. The output functions of the respective gates are
(x; + x, + -+ +x,) and (x, - x, -+ x,). One more AND-
gate with n,-inputs is required, where n, is the number of
distinct complemented literals that appear in the RMC
expansion. The input lines of this AND-gate are lines
drawn from the outputs of the corresponding inverters
used to obtain the n, complemented literals. The required
tests are the same as in the case of AND-bridging faults in
a complement free RMC network. In the case of AND-
bridging faults, a proper augmentation can also be carried
out similarly.

Although we have not included in our fault model the
occurrence of any feedback bridging faults, still the testable
designs proposed in this paper are capable of detecting a
large number of such faults. For example, consider a bridg-
ing fault f, = +(h/k), where f(h) = x, and f(k)= P,, a
product term in which the literal x, is present. We detect
this fault by fixing the logic value of x, at 1 and some
control literal x, in P, at 0 to make P, = 0, so that the
effect of f,, which causes the line k to be set at 1, cannot
propagate to the parent stem line of line h and therefore
cannot affect the other branch lines emanating from this
stem line.

From the point of view of fault detection, so far almost
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all existing works are based on stuck-at fault models, and
the incorporation of bridging faults has, so far, been
ignored, although in MOS-LSI circuits the probability of
bridging faults in different layers of metallisation and diffu-
sion is substantially high. That is why our present work
includes bridging faults. We have not considered interlevel
bridging faults because in that case the behaviour of the
circuit would become highly complex and some additional
tests might be necessary. Moreover we can avoid the possi-
bility of interlevel bridging faults to a large extent by
proper fabrication of the chip so that the proximity effect
among lines corresponding to different levels is minimised,
with a consequent reduction in the probability of
occurrence of interlevel bridging faults.
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